GeneReader NGS System

For next-generation sequencing applications


The GeneReader Platform is for Research Use Only. Not for use in diagnostic procedures. Please note: The GeneReader NGS System is currently only available with proprietary new sequencing chemistry in the US. Legacy sequencing chemistry is only available ex-US.
GeneReader Platform

Cat. No. / ID:  9002312

Next-generation sequencing instrument: includes installation and training, 1 year warranty on parts and labor
GeneReader, Premium Agreement

Cat. No. / ID:  9243849

On-site GeneReader instrument repair, including travel, labor and parts, for a period of one year. Response time of next business day. Includes one Preventive Maintenance or Inspection Service during the Premium Agreement period.
GeneReader, Full Agreement

Cat. No. / ID:  9243847

On-site GeneReader instrument repair, including travel, labor and parts, for a period of one year. Response time of two business days. Includes one Preventive Maintenance or Inspection Service during the Full Agreement period.
GR QIAcube, Full Agreement, no PM

Cat. No. / ID:  9244791

On-site GeneRead QIAcube instrument repair, including travel, labor and parts, for a period of one year. Response time of two business days.


  • The world’s first truly complete NGS workflow: Rely on one partner to provide a seamlessly integrated workflow offering ease of use and efficiency from Sample to Insight.
  • Actionable insights: Create relevant reports using QIAGEN’s proven gene panels and bioinformatics.
  • Flexibility to fit your needs: Scalable batch sizes and continuous loading of multiple flow cells enable you to adapt and scale the GeneReader NGS System to match your needs and grow.
  • Guaranteed results with predictable costs: Innovative commercial models such as price-per-insight options offer better cost management and low initial investment hurdles.
  • Proven expertise and service for our customers: Our teams at QIAGEN are ready to support you in efficiently implementing, validating and operating GeneReader in your lab.

Product Details

The GeneReader platform redefines the NGS workflow by providing unmatched batching flexibility with multiple flow cells (1-3). Its inventive turntable design makes it possible to sequence multiple samples (up to 42 samples at a time) independently and in a parallel or staggered manner. Random access, scalability and cost-efficiency mean that you can process samples when needed instead of when allowed by the sequencer. The GeneReader sequencing instrument is fully embedded into the Sample-to-Insight GeneReader NGS System.

The GeneReader platform is now available for use with an expanded targeted gene panel menu, including the GeneRead QIAact Actionable insights Tumor, BRCA 1/2 and Lung DNA panels, covering copy number variants (CNVs), SNVs and Indel variants, to provide deeper cancer research insights than ever before.


The GeneReader is designed to perform next-generation sequencing (NGS) applications by integrating highly parallel fluorescence-based sequencing chemistry with detection of the corresponding fluorescent signal templates that have been clonally amplified using the GeneRead QIAcube.
GeneReader software provides a wizard for setting up the sequencing run, data storage management, and the functionality for base calling and generation of FASTQ files. The GeneReader has been verified with the GeneReader NGS System.
The GeneReader workflow includes the following 6 processes: sequencing primer hybridization, flow cell preparation, reagents preparation, experiment set-up in QCI Analyze, flow cell loading and run start, and post-run maintenance wash. The GeneReader sequencing chemistry consists of a unique terminator-dNTP sequencing-by-synthesis paradigm that ensures highly accurate and cost-effective NGS runs.
After DNA library construction, DNA clonally amplified using the GeneRead QIAcube is immobilized via direct bead-slide interaction and exposed to a DNA sequencing primer to produce a high-density array on a GeneReader Flow Cell. To read out the sequence of each of the beads, the array of fragments is first subjected to reagents containing uniquely engineered DNA bases that include a removable fluorescent dye and an end cap. These bases attach themselves to the end of the growing strand of DNA in accordance with the base on the complementary strand. The array is scanned by a high-resolution electronic camera and the fluorescent output of each of the four dye colors at each array position is measured and recorded. The color indicates which base (A, C, G or T) was incorporated onto the DNA fragment from the previous step. Finally, the array is exposed to cleavage chemistry to break off the fluorescent dye and end cap that will then allow additional bases to be added. This cycle is then repeated on the GeneReader.


The GeneReader system consists of the GeneReader instrument, the workstation, the GeneReader software and a handheld bar code scanner that connects to the workstation for scanning bar codes of kits and buffers, which are then automatically entered into the GeneReader software. The GeneReader software provides a FASTQ file of sequence information that is ready for QCI Analyze, which automatically runs an optimized workflow for GeneReader panels and generates an analysis-ready report (VCF file).


The GeneReader is intended to be used only in combination with QIAGEN kits indicated for use with the GeneReader.


Safety Data Sheets (1)