1996-2013: The evolution of HIV viral load testing

Anna Maria Geretti

Institute of Infection & Global Health

QIAGEN would like to thank our speaker, Prof. Anna Maria Geretti, for her presentation.

Disclaimer:

QIAGEN is not affiliated with the University of Liverpool. The views expressed herein are those of the speaker, and do not necessarily express the views of QIAGEN.

For up-to-date licensing information and product-specific disclaimers for QIAGEN products, see the respective QIAGEN kit handbooks or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

The HIV Virology Timeline

Key virological characteristics of HIV infection

High virus replication rate 10⁹-10¹⁰ virus particles produced each day
Rapid virus clearance T_{1/2} of virus producing cells: <1 day T_{1/2} of free virus in plasma: a few hours
Virus latency – integration into host DNA
Continuous genetic evolution

Wong et al. PNAS 1997; Wong et al. Science 1997; Chun et al. Nature 1997; Chun et al. PNAS 1997; Siliciano et al. Nat Med 2003; Strain et al. PNAS 2003

Natural history of HIV infection

Viral load predicts disease progression and mortality

Mortality according to frequency of viral load measurements >400 cps during first-line ART

Cumulative mortality stratified by % of VL measurements ≥400 over 18 months after ART initiation

Lohse et al. Clin Infect Dis 2006

SMART Study: Stopping ART is associated with a risk of disease and mortality

El-Sadr et al. NEJM 2006

Pathogenesis of HIV infection

Viral load in "Elite Controllers"

- Week 4: Week 12: Week 24: p < 0.001 p < 0.001p < 0.001ART-naïve patients (n=16) Plasma HIV RNA HIV+ for 10 yrs (4.5, 24) (log₁₀ S/Co) Viral load 77 cps (40, 324) 0 CD4 count 615 cells (476, 801) -1--2 TDF/FTC + RAL for 24 wks 24 12 Weeks
- Decline in viral load and immune activation
 No significant change in CD4 counts

Obstacles to HIV eradication with ART

Sanctuary sites

Cell-to-cell virus spread

Integration and latency

Cell-cell infection

e.g., lymphoid tissue

HIV-1 DNA detection during suppressive ART

HIV-1 DNA quantified in PBMC from 104 patients receiving consistently suppressive ART (<50 cps) for 1 to 15 years</p>

PBMC = Peripheral blood mononuclear cells

Rilpivirine for first-line ART: Virological failure at wk 48 by baseline viral load

Rilpivirine for first-line ART: Resistance analysis

	EFV (n=392)	RPV (n=394)	RPV (n=550)	EFV (n=546)
Any resistance	1%	4%	7%	2%
NNRTI resistance	1%	4%	6%	2%
NRTI resistance	0.3%	4%	7%	1%
By baseline HIV-1 RNA				
≤100,000	1%	2%	2%	1%
100,001–500,000	0	5%	9%	2%
>500,000	4%	19%	21%	7%

Viral load suppression as the goal of ART

Viral load "undetectability"

Defined by the technical properties of the assay

- First-generation assays 400 cps
- Second-generation assays 50 cps (e.g. Roche Amplicor v1.5; Bayer bDNA v3)
- Third-generation assays 20 cps, 40 cps, 45 cps + qualitative RNA detection below these cut-offs (e.g. Roche TaqMan v1/v2; Abbott RealTime;

Qiagen Artus_{HIV})

Defining viral load cut-offs

Patients who achieve and maintain viral load suppression <50 cps have a small risk of rebound during follow-up, and the risk declines further the longer the viral load stays <50 cps</p>

Virological failure according to current guidelines

DHHS 2013: Inability to achieve or maintain <200 cps

IAS-USA 2012: Sustained elevation 50- 200 cps should prompt evaluation of factors leading to failure and consideration of changing ART

BHIVA 2012: Failure to achieve <50 cps 6 months after commencing ART, or confirmed rebound >400 cps following suppression <50 cps

EACS 2013: Confirmed >50 cps 6 months after initiation or modification of ART

Welcome to the grey zone

Low-level viraemia (LLV) during ART: Definitions

Magnitude: 50-200; 50-400; <1000 cps/ml

What causes low-level HIV-1 RNA detection during ART?

Technique-related

Assay concordance at the 50 cps cut-off

		>50 cps						
		Amplicor 1.5	RealTime	TaqMan v2	Artus_{HIV}			
	Amplicor 1.5	-	NA	6%-23%	-			
<50	RealTime	NA	-	13%	5%			
cps	TaqMan v2	5%	7%	-	-			
	Artus _{HIV}	-	5%	-	-			

Assays that capture both RNA and DNA during the extraction step are vulnerable to certain conditions of specimen collection and handling (e.g., PTT vs. EDTA collection tubes, delays in plasma separation)⁴

> 1. The International Viral Load Assay Collaboration. JCM (in press); 2. Garcia et al. JCV 2013; 3. Taylor et al. PLOS One 2013; 4. Adachi et al. IAS 2013

RealTime vs. TaqMan assays

Parallel testing of clinical samples RealTime vs. Taqman v2

> Lower limit of quantification Abbott RealTime = 40 cps/ml Roche TaqMan-v1 = 40 cps/ml Roche TaqMan-v2 = 20 cps/ml

 Median difference (log₁₀ cps/ml):

 RealTime
 0.0 (-0.1, 0.1)

 TaqMan-v1
 0.2 (0.1, 0.5)

 TaqMan-v2
 0.7 (0.4, 0.7)

Geretti et al, 12th European AIDS Conference, Cologne, Germany, 2009

Artus HIV-1 QS-RGQ assay

 Qiagen QIASymphony SP for sample preparation, QIAsymphony AS for set-up, Rotor-Gene Q for real-time PCR
 Targets a 93-nucleotide region in the 5'LTR of HIV-1 group M
 IC introduced into each specimen during sample preparation
 Dynamic range 100 to 10⁸ IU/ml (45 to 4.5 x 10⁷ cps/ml)

Assay performance with 2nd WHO International Standard for HIV-1 RNA

Artus_{HIV} vs. RealTime: Correlation analysis

61/211 (29%) samples from treated patients <LLQ of both assays 125/211 (59%) samples quantified by both assays

Artus_{HIV} (log₁₀ cps/ml)

HIV-1	No. of	Mean log10 copies/ml (SD			
Subtype	abtype		RealTime		
A	12	3.5 (1.3)	2.4 (0.7)		
в	71	4.1 (1.0)	4.6 (1.3)		
с	19	3.6 (1.3)	2.6 (1.2)		
D	4	3.4 (1.5)	3.2 (1.3)		
F	1	2.8	2.4		
G	5	4.8 (1.8)	4.2 (1.7)		
CRF01	4	4.1 (1.4)	3.6 (1.2)		
CRF02	4	2.7 (0.8)	2.6 (0.6)		
CRF012	1	2.0	1.9		
CRF14	1	3.7	3.3		
Complex	3	4.8 (1.3)	4.4 (1.2)		

Artus_{HIV} vs. RealTime: Agreement analysis

5/125 (4%) results outside the limit of agreement:

3 higher by RealTime (by 0.8 to 1.8 log₁₀)

3 higher by $Artus_{HIV}$ (by 1.3 to 2.5 log_{10})

4/125 (3%) samples differed by >1 \log_{10} 22/125 (18%) samples differed by >0.5 \log_{10} Values generally higher with Artus_{HIV}

Artus_{HIV} vs. RealTime: Discordance rates

13/211 (6%) samples quantified by RealTime alone median VL 54 cps/ml (range 40 -824)

- 11/211 (5%) samples quantified by Artus_{HIV} alone median VL 78 cps/ml (range 42-2,193)
- All samples from patients on ART

At the 50 cps threshold, 15/147 (10%) results discordant:

- 8 quantified by RealTime alone median VL 57 (range 57-824) cps
- 7 quantified by Artus_{HIV} alone median VL 78 (range 67-2193) cps

What causes low-level HIV-1 RNA detection during ART?

Technique-related

Patient-related

Low-level HIV-1 RNA detection during ART varies according to patient characteristics

Patients less likely to show low-level HIV-1 RNA detection

♦ Older	p <.0001
♦ White MSM	p =0.006
Lower pre-ART viral load	p =0.04
On ART for longer	p <.0001
Viral load <50 cps for longer	p <.0001
Higher CD4 count	p <.0001
On NNRTI-based ART	p <.0001
Greater adherence	p <.0001

Univariate analysis

Doyle et al. Clin Infect Dis 2012

Low-level HIV-1 RNA detection during ART predicts viral load >400 cps

- In the first year after achieving <50 cps, <u>confirmed</u> VL 50-400 cps predicts rebound >400 cps during median 2 yrs of follow-up¹
 Adjusted RR of rebound 2.18
- Adjusted RR of rebound 2.1 [95% Cl 1.15-4.10]

Low-level HIV-1 RNA detection during ART predicts viral load >1000 cps

- Patients with ≥12 months of ART who achieved <1000 cps</p>
- Persistent viraemia for ≥6 months (blips excluded)
- Stratified in 50-199, 200-499, and 500-999 cps
- Versant bDNA v3 (1999-2010), Abbott Real-Time (from 2010)

Cox modeling of univariate and multivariate analyses of the association between persistent low-level viraemia and viral load rebound >1000 cps after 1 year

Persistence Duration, HIV Load	Univariat	е	Multivariate ^a		
	HR (95% CI)	P Value	Adjusted HR (95% C	I) <i>P</i> Value	
≥6 mo					
<50 RNA copies/mL	1.00 (reference)		1.00 (reference)		
50-199 RNA copies/mL	2.61 (1.88-3.63)	<.001	2.22 (1.60–3.09)	<.001	
200–499 RNA copies/mL	2.92 (1.99-4.28)	<.001	2.15 (1.46–3.17)	<.001	
500–999 RNA copies/mL	5.57 (3.67-8.46)	<.001	4.85 (3.16-7.45)	<.001	

Adjusted for age, sex, race, sexual orientation, IDU, monthly income, type of employment, date of HIV diagnosis, baseline CD4 count, IDU, ART use

Detection of resistance-associated mutations at low viral load levels

					RAM	VL <1000	VL >1000	
					M41L	20.7	27.0	NRTIS
					D67N	21.5	23.3	
	VL cps	n	% RAMs	RR (95% CI)	K70R	17.1	16.1	
	(200	440	<u> </u>	0.04 (0.07.4.04)	L210W	12.2	16.0	
	<300	449	60	0.94 (0.87-1.01)	T215Y/F	19.1	25.6	
	300-1000	552	72	0.99 (0.94-1.04)	T215F	6.2	7.6	
				, ,	K219Q	7.0	7.7	
-	1000-3000	1120	76	1	K219E	6.2	5.7	
ຊ	000-10000	1312	77	1.01 (0.97-1.05)	K65R	5.34	4.18	
J		1912		1.01 (0.37 1.03)	L74V	3.27	6.50	
1	0000-30000	1326	67	0.91 (0.87-0.95)	M184V	38.8	39.3	
20	000 100000	1/20	60		K103N	38.0	35.6	NNDTI
50	000-100000	1430	80	0.04 (0.00-0.00)	Y181C	15.7	19.7	
	≥100000	1682	49	0.70 (0.66-0.74)	G190A	12.2	15.2	
					D30N	5.4	6.1	
R/	AMs: Resistanc	e-asso	ciated muto	ations	M46I	12.3	10.5	
Rŀ	R: Relative risk	of RAI	M detection		V82A	10.7	11.7	Ple
					184V	5.4	11.2	F 13
					L90M	14.0	21.2	

Mackie et al. J Infect Dis 2010

HIV protease and gag evolution during low-level viraemia on TDF 3TC LPV/r

Geretti et al. (unpublished)

- **1.** Is there any level of HIV replication that can be regarded as "safe"?
- **2.** Does HIV RNA detection always indicate ongoing virus replication?

HIV-1 RNA kinetics after starting first-line ART with TDF/FTC + EFV or LPV/r

Abbott RealTime HIV-1 assay

Plasma HIV-1 RNA kinetics during ART

Ongoing virus replication

Bursts of virus replication

HIV-1 RNA detection below 50 cps predicts rebound >50 cps and >400 cps

1247 patients with viral load <50 cps at an arbitrarily selected time point during ART (=T0)

Abbott RealTime assay

Doyle et al. Clin Infect Dis 2012

Factors associated with viral load rebound

Multivariate model		VL >50 cps/ml			VL >400 cps/ml		
T ₀ VL	40-49 cps/ml	4.68	2.40, 9.12	<0.0001	10.71	3.30, 34.81	<0.0001
	RNA detected	2.33	1.26, 4.31		3.78	1.23, 11.59	
	RNA not detected	1.00	-		1.00	-	
Length VL<50 cps/ml	Per yr longer	0.79	0.69, 0.91	0.0005	0.88	0.72, 1.06	0.15
ART duration	Per yr longer	1.06	0.99, 1.15	0.10	1.14	1.02, 1.27	0.03
Gender	Male	0.81	0.45, 1.45	0.47	1.49	0.65, 3.38	0.35
	Female	1.00			1.00		
Age	Per 10 yrs older	0.80	0.61, 1.04	0.09	1.07	0.71, 1.62	0.74
Ethnicity	White	1.00		0.11	1.00		0.17
	Black	1.91	1.00, 3.63		2.40	0.91, 6.36	
	Other	1.50	0.75, 2.98		1.85	0.59, 5.83	
Risk group	Homosexual	1.00		0.36	1.00		0.63
	Heterosexual	0.83	0.41, 1.70		1.36	0.48, 3.85	
	Other	1.70	0.63, 4.64		2.07	0.50, 8.60	
ART regimen	NNRTI based	0.40	0.21, 0.77	0.002	0.46	0.17, 1.23	0.23
	Other/Unknown	1.40	0.79, 2.48		0.99	0.40, 2.46	
	PI based	1.00			1.00		
Adherence	Not available	0.59	0.32, 1.10	0.23	0.99	0.39, 2.47	0.99
	<95%	1.00			1.00		
	>95%	0.87	0.54, 1.39		0.96	0.45, 2.07	
CD4 count	Per 100 cells higher	0.92	0.84, 1.00	0.06	1.00	0.87, 1.15	0.97
Pre-ART VL	Per 1 log ₁₀ cps higher	1.04	0.80, 1.33	0.79	0.74	0.52, 1.05	0.10

HIV-1 RNA detection below 50 cps predicts rebound >50 cps and >400 cps

Álvarez et al. J Clin Microbiol 2013

Risk of confirmed rebound >50 cps according to previous (4 months) HIV-1 RNA level

***** 1214 patients followed for mean 378 days

Siemens Ultrasensitive Assay

Maggiolo et al. J Acquir Immune Defic Syndr 2012

HIV-1 RNA detection in patients with consistent suppression <50 cps for ≤15 years

Geretti et al. International Workshop on HIV & Hepatitis Viruses Drug Resistance 2013

HIV-1 RNA detection in plasma

Plasma HIV-1 RNA detected in 52/104 (50%) patients

 No association with age, sex, race, risk group, duration of HIV diagnosis, nadir & current CD4 count, pre-ART viral load, NNRTI used, NNRTI concentration

	Year	rs VL <50 cps	/ml	Total		
cps/ml	0-4 (n=31)	5-7 (n=33)	8-15 (n=40)	(n=104)	Р	
Median (range)	3 (1, 35)	3 (1, 10)	3 (1, 11)	3 (1, 35)	0.451	
Mean log ₁₀ (SD)	0.6 (0.3)	0.5 (0.2)	0.5 (0.2)	0.5 (0.2)	0.451	

Geretti et al. International Workshop on HIV & Hepatitis Viruses Drug Resistance 2013

What causes low-level HIV-1 RNA detection during ART?

Technique-related Patient-related

Drug-related

Virus-related

Take away points: Viral load testing

- Importance of lab-clinic dialogue
- > Assay selection, sample handling, result interpretation

Take away points: the 50 copies cut-off

- Well validated as a target of ART
- Importance of regular monitoring in the first year after achieving <50 cps</p>
- Persistent viral load <50 cps during this period predicts a very low risk (5%) of subsequent rebound
- Importance of confirming viral load rebound >50 cps in a subsequent sample
- Confirmed low-level viraemia predicts increased risk of rebound >400 and >1000 cps
- Most (but not all) new assays read "50" as older assays did

Take away points: New cut-offs

- Detection of HIV-1 RNA levels of 10-50 cps predicts rebound
 >50 and >400 cps
- Suggestive of ongoing virus replication in at least a subset of patients with LLV detection below the 50 cps threshold
- During long-term, seemingly suppressive ART, HIV-1 RNA remains detectable in plasma at levels ~ 3 cps using research assays
- Different population from that with levels ~10-49 cps
- Not associated with a risk of rebound
- Viral load not usually detectable by current commercial assays

Looking ahead

- Studies required to define the optimal management of patients with low-level HIV-1 RNA detection both above and below the 50 cps cut-off
- At present, readings below 50 cps obtained with available commercial assays can be used to define need for patient review and optimal frequency of monitoring

- Andrew Phillips, Alessandro Cozzi-Lepri, UCL, London
- Ana Garcia, Royal Free NHS Foundation Trust, London
- Stacey King, Andrew Owen, University of Liverpool
- Nicola Mackie, Imperial College Healthcare NHS Trust, London
- Jonathan Ainsworth, Anele Waters, N. Middlesex University Hospital, London
- Frank Post, King's College Hospital, London
- Simon Edwards, Central & Northwest London Community NHS Foundation Trust, London
- Julie Fox, St Thomas' Hospital, London

