text.skipToContent text.skipToNavigation

GeneRead Sequencing Q Kits

For preparation of DNA sequencing for next-generation sequencing (NGS) applications using the QIAGEN GeneReader instrument 
  • For high quality sequencing performance
  • Available in kits for multiple flow cell runs
  • Color-coded kit components for easy set-up
  • Proven performance with the GeneReader NGS System
Next-generation sequencing (NGS) is a driving force for numerous new and exciting applications, including cancer research, stem cell research, metagenomics, population genetics and medical research. The QIAGEN GeneRead Sequencing Q Kits consists of easy-to-use buffers and reagents that only need to be mixed together before loading onto the GeneReader instrument, saving time and preventing handling errors. Optimized enzyme and buffer compositions ensure high quality sequencing performance, perfect for research applications that require precise data insight. Streamlined GeneRead sequencing protocols enable straightforward automation of sequencing-by-synthesis technology on the GeneReader.
Cat No./ID: 185221
GeneRead Fast Sequencing Q Kit
Contains reagents, two disposable flow cells and wash buffers; Sufficient to perform two single flow cell runs with 100 cycles of sequencing on each flow cell.
The GeneRead Sequencing Q Kits are for Research Use Only. Not for use in diagnostic procedures.
Principle
The GeneRead Sequencing Q Kits provide high quality reagents that are easy to mix and install on the GeneReader for a sequencing run. The GeneReader workflow includes the following processes: sequencing primer hybridization, flow cell preparation, reagents preparation, flow cell loading and run start (refer to the QIAGEN GeneReader User Manual for additional information). GeneReader sequencing chemistry is briefly described in the Procedure section below. It consists of a unique terminator-dNTP sequencing-by-synthesis paradigm that ensures highly accurate and cost-effective NGS runs.

Procedure
The GeneReader sequencing-by-synthesis technology consists of the incorporation of unique, reversible terminated and fluorescent-labeled dNTPs (“labeled nucleotides”) first, followed by unlabeled reversible terminated dNTPs (“dark nucleotides”). The GeneReader sequencing chemistry uses four dye colors for labeling with each color indicating a different base (A, C, G or T) that is incorporated onto the DNA fragment. Furthermore, the reversible terminators facilitate the addition of only one engineered nucleotide at a time to the growing strand of all DNA templates.

Upon signal detection from each bead the fluorescent labeling as well as the terminators are removed allowing for a new cycle of incorporation, ensuring highly accurate and cost-effective next-generation sequencing.

DNA libraries are clonally amplified on beads using the GeneRead QIAcube to become a sequencing template. After hybridization of a sequencing primer the primer-template carrying beads are immobilized via direct bead-glass interaction to produce a high-density array on a GeneReader flow cell. To read out the content of templates on each bead, the array of fragments is first subjected to reagents containing uniquely engineered dNTPs, as described above These bases are incorporated by a modified DNA polymerase to the end of the growing strand of DNA in accordance with the base on the complementary strand. The array is subsequently scanned by a high-resolution digital camera and the fluorescent output of each of the four dye colors at each array position is measured and recorded. Finally, the array is exposed to cleavage chemistry to break off the fluorescent dyes and reversible terminators that will then allow additional bases to be added. This cycle is then repeated on the GeneReader.
Applications
For use with the QIAGEN GeneReader instrument.
fragment fix placeholder