Validation Report

July 2021

Validation of QIAamplifier® 96 with Investigator STR assays

Purpose

The purpose of this validation report is to confirm the compatibility of the QIAamplifier® 96 with Investigator STR assays. We further compared the performance of the QIAamplifier 96 to the Applied Biosystems Veriti 96-Well Thermal Cycler, which represents an alternative cycling system.

Introduction

The accuracy of STR analyses, an essential component of human identification (HID) efforts, is dependent on the efficacy of PCR amplification of the target loci. In addition to requiring quality amplification, these analyses must ideally be performed quickly and in an automated fashion to most effectively support the work of forensic laboratories. Among other HID STR assays, QIAGEN offers the Investigator 24plex QS Kit for casework or reference samples from purified DNA and the Investigator 24plex GO! Kit, for direct amplification from reference samples such as buccal swabs or blood or epithelial cells on FTA paper. They both provide robust, multiplex amplification of the CODIS (Combined DNA Index System) core loci, the ESS (European Standard Set) markers, as well as SE33, DYS391, D2S1338, D19S433 and Amelogenin.

For further information on the products’ developmental validation, see PROM-8361 and HB-1959 or go to the corresponding product catalogue pages at www.qiagen.com.

The QIAamplifier 96 is an end-point PCR instrument featuring a 96-well, 0.2 ml aluminum block with gradient functionality, and is controlled through a 7” touchscreen user interface. It is suitable for any end-point PCR application in molecular biology workflows such as genotyping, target detection, semi-quantitative gene expression, reverse transcription, and multiplex PCR.

The QIAamplifier 96 includes a high-speed thermoblock, high-performance smart lid, user-specific list of quick start programs, easy programming, and a linear gradient tool.

The QIAamplifier 96 is also an open system. This means that it is compatible with a wide range of consumables and plasticware. For additional details on these features, please see the QIAamplifier 96 User Manual (HB-2739).
Materials and methods

Thermal cycler programs

The Investigator 24plex QS Kit was used to assess the compatibility of STR amplification chemistry with the QIAamplifier 96. A 29-cycle amplification program, the times and temperatures of which are described in the Investigator 24plex QS Kit Handbook, were used. The QIAamplifier 96 was set to a ramp rate of 4°C/sec and a heated cover temperature of 104°C. The 24plex QS Kit was also applied to the Applied Biosystems Veriti 96-Well Thermal Cycler, which used a 100% ramp rate and heated cover temperature of 105°C. The Veriti 96-well thermal cycler has a published average maximum block ramp rate of 3.9°C/sec.

In addition, samples prepared from three different buccal swabs using the Investigator 24plex GO! Kit were tested on both thermal cyclers. Each swab was prepared and amplified at 27 cycles, in triplicate, as described in the Investigator 24plex GO! Handbook. A total of 18 samples were amplified across both thermal cyclers.

Assessment parameters

Three parameters were used to assess the efficacy of the STR reactions, as indicated below: reproducibility, sensitivity, and inhibition.

Reproducibility

Twelve replicates of the Investigator 24plex QS Kit positive control and 4 negative template controls (NTCs) were amplified across both thermal cyclers, for a total of 32 samples. A target input amount of 0.5 ng was used for the positive controls.

Sensitivity

Two male genomic samples were used to create a 5-point dilution series (1 ng, 0.5 ng, 0.25 ng, 0.125 ng and 0.063 ng) and were amplified in triplicate across both thermal cyclers, for a total of 60 samples.

Inhibition

0.5 ng of Investigator 24plex QS Kit positive control was spiked with one of three final concentrations of hematin (10 µM, 20 µM and 30 µM) in the amplification reactions. Each sample was amplified in quadruplicate across both thermal cyclers for a total of 24 samples.
All samples were injected and electrophoresed on an Applied Biosystems 3500xl Capillary Electrophoresis instrument (with Data Collection v3.1), following the recommended injection and run conditions outlined in the respective handbooks. Subsequent data analysis was performed in GeneMapper® ID-X v1.6 using the standard panels, bins, and stutter filters. Samples amplified with 24plex QS were analyzed at the following peak amplitude thresholds: 60 relative fluorescence units (RFU; Blue), 65 RFU (Green), 65 RFU (Yellow), 65 RFU (Red), 60 RFU (Purple) and 60 RFU (Orange). Samples amplified with 24plex GO! were analyzed at a peak amplitude threshold of 150 RFU for all dye channels with a 0.2 Global Cutoff Filter.
Data analysis

Statistical analysis and calculations

Allele recovery

The average allele recovery was calculated by counting the number of true donor alleles detected above the peak amplitude threshold and dividing by the total number of expected alleles for that sample.

Average peak heights

The average peak heights for each sample were determined by dividing the total RFU for all STR fragments by the total number of true donor alleles recovered, excluding the Quality Sensor (QS). The average peak height ratio (intra-locus balance) at a heterozygous locus was determined by dividing the lower peak height of the two alleles by the higher peak height.

Intra-color balance

Intra-color balance was determined by dividing the lowest average peak height of a locus in a dye channel by the highest average peak height of another locus in the same channel. The average peak height of a locus was calculated by dividing the total RFU of the true donor alleles at that locus by two. DYS391 and the QS were excluded from this calculation.
Results

Reproducibility

All expected alleles were recovered from all replicates amplified across both thermal cyclers. The average RFUs of the Investigator 24plex QS Kit positive controls, along with their distributions, are shown in Figure 1. When the averages for each replicate were compared and analyzed using a two-tailed probability of the F statistic, no significant difference was observed. All replicates across both platforms averaged a peak height ratio of 88%, with a range of 84–91%.

Average peak heights

![Average Peak Heights](image)

Figure 1. Box and whisker plot of the average peak heights of the Investigator 24plex QS positive control replicates.

Intra-color balance

The Investigator 24plex QS intra-color balance distributions for each thermal cycler are plotted in Figures 2 and 3. The lowest observed average intra-color balance was 49% (yellow dye channel in Figure 2) and the highest observed average intra-color balance was 80% (red dye channel in Figure 2). When the averages for each dye channel were compared and analyzed using a two-tailed probability of the F statistic, no significant difference was observed.
Figure 2. Box and whisker plot of the intra-color balance of the Investigator 24plex QS positive control amplified using QIAamplifier 96.

Figure 3. Box and whisker plot of the intra-color balance of the Investigator 24plex QS positive control amplified using Veriti.

The NTCs used in this study did not produce amplified DNA. Moreover, the QIAamplifier 96 baseline results were similar to those produced by the Veriti.
Sensitivity (Male DNA 1)

Allele recovery

The Investigator 24plex QS average allele recovery and the average peak height of all replicates for Male DNA 1 used in the analysis of sensitivity are displayed in Figure 4. All dilution points recovered 100% of alleles across both platforms. As expected, the peak heights decreased in a linear fashion as the target input amounts decreased. When the peak height averages for each replicate were compared and analyzed using a two-tailed probability of the F statistic, no significant difference was observed.

![Figure 4](image.png)

Average peak height

Investigator 24plex QS average peak height ratios, as expected, decreased as the peak heights decreased and the total input amounts of DNA reached or exceeded the stochastic level of the kit. At 0.063 ng input, the average peak height ratio for both thermal cyclers was 69%.

Intra-color balance

The Investigator 24plex QS intra-color balance ranged from 45% (yellow channel, 0.063 ng input, Table 2) to 94% (red channel, 1 ng input, Table 1). Overall, the intra-color balance was consistent between the thermal cyclers and a two-tailed probability of the F statistic found no significant differences between the data points.

Table 1. Intra-color balance for Male DNA 1 in the analysis of sensitivity using QIAamplifier 96
Table 2. Intra-color balance for Male DNA 1 in the analysis of sensitivity using Veriti

<table>
<thead>
<tr>
<th>Veriti input amount</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ng</td>
<td>70%</td>
<td>63%</td>
<td>61%</td>
<td>81%</td>
<td>84%</td>
</tr>
<tr>
<td>0.5 ng</td>
<td>72%</td>
<td>56%</td>
<td>56%</td>
<td>74%</td>
<td>77%</td>
</tr>
<tr>
<td>0.25 ng</td>
<td>70%</td>
<td>62%</td>
<td>52%</td>
<td>81%</td>
<td>85%</td>
</tr>
<tr>
<td>0.125 ng</td>
<td>59%</td>
<td>74%</td>
<td>60%</td>
<td>70%</td>
<td>68%</td>
</tr>
<tr>
<td>0.063 ng</td>
<td>73%</td>
<td>51%</td>
<td>45%</td>
<td>63%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Sensitivity (Male DNA 2)

The Investigator 24plex QS average allele recovery and the average peak height of all replicates for Male DNA 2 used in the analysis of sensitivity are displayed in Figure 5. As expected, the peak heights decreased in a linear fashion as the target input amounts decreased. When the peak height averages for replicates with complete allele recovery (i.e., ≥ 0.250 ng) were compared and analyzed using a two-tailed probability of the F statistic, no significant difference was observed.

Figure 5. Average allele recovery and average peak height for Male DNA 2 analysed with Investigator 24plex QS Kit in the analysis of sensitivity (QA = QIAmplifier 96).
Allele dropout

Allelic drop-out was observed beginning at 0.125 ng input.

Average peak heights

Consistent with the results for Male DNA 1, the Investigator 24plex QS average peak height ratios for Male DNA 2 decreased as the peak heights decreased and the total amount of input DNA reached or exceeded the stochastic level of the kit. At 0.063 ng input, the average peak ratio for both thermal cyclers was 65%.

Intra-color balance

The Investigator 24plex QS intra-color balance ranged from 33% (yellow channel, 0.063 ng input, Table 4) to 91% (red channel, 1 ng input, Table 3). As allelic drop-out increased, the average intra-color balance decreased. Overall, the intra-color balance was consistent between the thermal cyclers and a two-tailed probability of the F statistic found no significant difference between samples with complete allele recovery.

Table 3. Intra-color balance for Male DNA 2 in the analysis of sensitivity using QIAamplifier 96

<table>
<thead>
<tr>
<th>QIAamplifier Input amount</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ng</td>
<td>59%</td>
<td>62%</td>
<td>53%</td>
<td>91%</td>
<td>76%</td>
</tr>
<tr>
<td>0.5 ng</td>
<td>61%</td>
<td>65%</td>
<td>52%</td>
<td>88%</td>
<td>80%</td>
</tr>
<tr>
<td>0.25 ng</td>
<td>58%</td>
<td>52%</td>
<td>47%</td>
<td>68%</td>
<td>75%</td>
</tr>
<tr>
<td>0.125 ng</td>
<td>66%</td>
<td>46%</td>
<td>37%</td>
<td>85%</td>
<td>68%</td>
</tr>
<tr>
<td>0.063 ng</td>
<td>48%</td>
<td>43%</td>
<td>41%</td>
<td>57%</td>
<td>57%</td>
</tr>
</tbody>
</table>

Table 4. Intra-color balance for Male DNA 2 in the analysis of sensitivity using Veriti

<table>
<thead>
<tr>
<th>Veriti Input amount</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ng</td>
<td>67%</td>
<td>73%</td>
<td>48%</td>
<td>82%</td>
<td>81%</td>
</tr>
<tr>
<td>0.5 ng</td>
<td>67%</td>
<td>75%</td>
<td>51%</td>
<td>81%</td>
<td>87%</td>
</tr>
<tr>
<td>0.25 ng</td>
<td>54%</td>
<td>73%</td>
<td>42%</td>
<td>77%</td>
<td>74%</td>
</tr>
<tr>
<td>0.125 ng</td>
<td>62%</td>
<td>74%</td>
<td>39%</td>
<td>73%</td>
<td>84%</td>
</tr>
<tr>
<td>0.063 ng</td>
<td>42%</td>
<td>64%</td>
<td>33%</td>
<td>57%</td>
<td>54%</td>
</tr>
</tbody>
</table>
Inhibition

Allele dropout

All of the positive control samples analysed with Investigator 24plex QS Kit obtained 100% allele recovery with all levels of inhibitor tested across both thermal cyclers.

Average peak heights

The Investigator 24plex QS average peak height distributions are plotted in Figure 6. No significant difference was observed when the averages for each replicate were compared and analyzed using a two-tailed probability of the F statistic. The average peak height ratios averaged 87% for all samples, with a range of 83–90%.

![Average Peak Heights](image)

Figure 6. Box and whisker plots of the average peak heights of Investigator 24plex QS positive controls spiked with varying levels of hematin.

Intra-color balance

The Investigator 24plex QS intra-color balance distributions for each thermal cycler are plotted in Figures 7 and 8. The lowest observed average intra-color balance was 49% (yellow dye channel, Figure 7) and the highest average observed was 77% (red channel, Figure 7). When the averages for each dye channel were compared and analyzed using a two-tailed probability of the F statistic, no significant difference was observed.
Figure 7. Box and whisker plot of the intra-color balance for Investigator 24plex QS positive controls spiked with varying levels of hematin amplified on QIAamplifier 96.

Figure 8. Box and whisker plot of the intra-color balance for Investigator 24plex QS Kit QS positive controls spiked with varying levels of hematin amplified on Veriti.

Direct amplification

Allele dropout

All Investigator 24plex GO! replicates amplified across both thermal cyclers obtained 100% allele recovery.

Average peak heights

The average peak height distributions for Investigator 24plex GO! are plotted in Figure 9. No significant difference was observed when the averages for each replicate were compared and analyzed using a two-tailed probability of the F statistic. The average peak height ratios averaged 91% for all samples, with a range of 88–92%.
Intra-color balance

The Investigator 24plex GO! intra-color balance distributions for each thermal cycler are plotted in Figures 10 and 11. The lowest observed average intra-color balance was 43% (yellow dye channel, Figure 10) and the highest average observed was 87% (green channel, Figure 11). When the averages for each dye channel were compared and analyzed using a two-tailed probability of F statistic, no significant difference was observed.
Conclusions

Our results indicate that the QIAamplifier 96 is compatible with the STR amplification chemistry of the Investigator 24plex QS Kit and the Investigator 24plex GO! Kit. STR amplification using both kits performed well on the QIAamplifier 96 thermal cycler platform, as well as the Veriti system. We observed no significant differences in peak heights, allele recovery, peak height ratio, or intra-color balances between these platforms as assessed using a two-tailed probability of the F statistic. We also observed no new reproducible STR artifacts. We propose that additional human identification STR kits could generate highly comparable data when amplified on a QIAamplifier 96.

Summary

Use of the QIAamplifier 96 thermal cycler provides:

- Compatibility with Investigator STR assays such as Investigator 24plex QS Kit and the Investigator 24plex GO! Kit
- Efficient, reproducible STR amplification, competitive with other thermal cycler platforms
- An open thermal cycler system for flexibility of chemistries and plasticware

Acknowledgements

We thank Leslie Parke and Madeline Roman of Signature Science, LLC, 8329 MoPac Expressway, Austin, TX 78757 for their help in facilitating these experiments.

Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Contents</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIAamplifier 96 (115 V)</td>
<td>Fast cycling, high performance thermocycler with a 96-wellblock and a color touchscreen interface for end-point PCR requirements. 115 V power specification</td>
<td>9002990</td>
</tr>
<tr>
<td>QIAamplifier 96 (230 V)</td>
<td>Fast cycling, high performance thermocycler with a 96-well block and a color touchscreen interface for end-point PCR requirements. 230 V power specification</td>
<td>9002991</td>
</tr>
<tr>
<td>Investigator 24plex QS Kit (100)*</td>
<td>Primer Mix, Fast Reaction Mix 2.0 including Taq DNA polymerase, Control DNA, allelic ladder 24plex, DNA size standard 24plex (BTO), and nuclease-free water</td>
<td>382415</td>
</tr>
<tr>
<td>Investigator 24plex GO! Kit (200)*</td>
<td>Primer Mix, Fast Reaction Mix 2.0 including Taq DNA polymerase, Control DNA, allelic ladder 24plex, and DNA size standard 24plex (BTO)</td>
<td>382426</td>
</tr>
</tbody>
</table>

Related Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Standard BT6 (50)</td>
<td>Matrix standard for 6-FAM, BTG, BTY, BTR2, BTP, and BTO, for Applied Biosystems 3500 Genetic Analyzers</td>
</tr>
<tr>
<td>Investigator STR GO! Lysis Buffer (200)</td>
<td>Lysis buffer for 200 swab samples</td>
</tr>
<tr>
<td>Investigator STR GO! Punch Buffer (200)*</td>
<td>Lysis buffer for 200 samples of epithelial cells on paper</td>
</tr>
</tbody>
</table>

* Larger sizes are available. Please inquire.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Service or your local distributor.

Document revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2021</td>
<td>Initial release</td>
</tr>
<tr>
<td>July 2021</td>
<td>Corrected Figure 6</td>
</tr>
</tbody>
</table>

Trademarks: QIAGEN®, Sample to Insight®, Investigator® (QIAGEN Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

07-2021 HB-2922-002 © 2021 QIAGEN, all rights reserved.

Ordering www.qiagen.com/contact | Technical Support support.qiagen.com | Website www.qiagen.com