# The impact of template addition volume on sensitivity in digital PCR



Miriam Hesse, Özlem Karalay, Ronny Kellner, Domenica Martorana, Colin Donohoe, Andreas Hecker, Daniel Heinz Löfgren, Francesca Di Pasquale, Andreas Missel QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, Germany

# Template addition volume and template analyzed volume

Digital PCR (dPCR) has become the method of choice for the detection of targets with minute copy numbers, using templates with ultra-low concentrations. There are several dPCR systems on the market, which differ in aspects such as type and number of partitions, the percentage of reaction that is analyzed and the template volume that can be added. In this study, we compared three dPCR platforms and examined the impact of template addition volume and analyzed volume on sensitivity. We provide data that support the conclusion that the most important factors in determining the



relative sensitivity of each system are template addition volume and template analyzed volume.

#### Reaction volumes for three commercially available dPCR technologies

|                                                                                                | Nanoplate 26K | MAP 16 dPCR Plate | QX200 ddPCR   |
|------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| Reaction volume                                                                                | 40 µL         | 9 µL              | 22 µL         |
| Maximum template addition volume<br>(assuming 4x master mix and highly<br>concentrated assays) | ca. 27 μL     | ca. 6 µL          | ca. 14 μL     |
| Reaction volume analyzed =<br>reaction volume – non-analyzed<br>volume                         | 21.6 µL       | 8.2 µL            | 11.5–12.6 µL* |

\*Based on mean droplet count of 16,000 and measured droplet volume of 0.718 to 0.786 nl.

## Instruments and materials

| struments                                           |                          |  |  |  |  |
|-----------------------------------------------------|--------------------------|--|--|--|--|
| Instrument                                          | Manufacturer             |  |  |  |  |
| QIAcuity <sup>®</sup> Four dPCR System              | QIAGEN GmbH              |  |  |  |  |
| Bio-Rad <sup>®</sup> QX200 <sup>™</sup> with AutoDG | Bio-Rad                  |  |  |  |  |
| QuantStudio® Absolute Q™                            | Thermo Fisher Scientific |  |  |  |  |

#### Templates

| Templates                                                      | Manufacturer      |
|----------------------------------------------------------------|-------------------|
| Human genomic DNA from a male donor                            | Prepared in-house |
| QuantiNova® Internal Control DNA<br>(synthetic dsDNA template) | QIAGEN            |

#### Assays

| Target | Dye               | Source |
|--------|-------------------|--------|
| QN IC  | HEX™              | Custom |
| ERBB2  | FAM <sup>TM</sup> | Custom |

#### Mater

| Material                                                                                    | Manufacturer                |
|---------------------------------------------------------------------------------------------|-----------------------------|
| Molecular grade water                                                                       | Various                     |
| 1x TE Buffer                                                                                | Various                     |
| QIAcuity Probe PCR Kit                                                                      | QIAGEN                      |
| Custom Primers/Probe mix for QIAcuity (0.8 $\mu$ M primer and 0.4 $\mu$ M probe)            | Custom                      |
| Nanoplate 26k 24-well                                                                       | QIAGEN                      |
| Bio-Rad ddPCR Supermix for Probes                                                           | Bio-Rad                     |
| Custom Primers/Probe mix for Bio-Rad and Thermo Fisher<br>(0.9 µM primer and 0.25 µM probe) | Custom                      |
| Bio-Rad ddPCR consumables (various)                                                         | Bio-Rad                     |
| QuantStudio Absolute Q MAP16 Plate Kit                                                      | Thermo Fisher<br>Scientific |
| Absolute Q DNA Digital PCR Master Mix                                                       | Thermo Fisher<br>Scientific |

25%

0%

25%

0

# dPCR reaction setup on three different platforms with maximal template input volume

We generated template solutions that represent the lower bounds of (d)dPCR technologies consisting of 10–40 total copies per 50  $\mu$ L. We then generated dPCR/ddPCR reactions to assess three template addition volumes, 6  $\mu$ L per 9  $\mu$ L reaction, 27  $\mu$ L per 40  $\mu$ L and 10  $\mu$ L per 22  $\mu$ L reaction, each of them representing the upper volume limit of the platform.

Each resulting solution was tested in replicate of 12 (8; Absolute Q) on the respective system. Average concentration and CV were calculated. Additionally, the number of samples where no positive partitions were observed were counted and the percentage of negative samples was measured for each set of replicates at each concentration.

#### dPCR reaction setup

| Starting template co  | ncentration | Template addition volume | dPCR reaction volume | dPCR System | Template analyzed volume | Expected concentration of dPCR reaction | Expected copies per dPCR analyzed |
|-----------------------|-------------|--------------------------|----------------------|-------------|--------------------------|-----------------------------------------|-----------------------------------|
| Total copies in 50 µL | Copies/µL   | μί                       | μί                   | Name        | μί                       | Copies/µL                               | Copies                            |
| 40                    | 0.8         | 6                        | 9                    | Absolute Q  | 5.46                     | 0.53                                    | 4.37                              |
| 20                    | 0.4         | 6                        | 9                    | Absolute Q  | 5.46                     | 0.27                                    | 2.18                              |
| 10                    | 0.2         | 6                        | 9                    | Absolute Q  | 5.46                     | 0.13                                    | 1.09                              |
| 0                     | 0           | 6                        | 9                    | Absolute Q  | 5.46                     | 0.00                                    | 0.00                              |
| 40                    | 0.8         | 27                       | 40                   | QIAcuity    | 14.58                    | 0.54                                    | 11.66                             |
| 20                    | 0.4         | 27                       | 40                   | QIAcuity    | 14.58                    | 0.27                                    | 5.83                              |
| 10                    | 0.2         | 27                       | 40                   | QIAcuity    | 14.58                    | 0.14                                    | 2.92                              |
| 0                     | 0           | 27                       | 40                   | QIAcuity    | 14.58                    | 0.00                                    | 0.00                              |
| 40                    | 0.8         | 10                       | 22                   | QX200       | 5.2 to 5.7               | 0.36                                    | 4.14 to 4.53                      |
| 20                    | 0.4         | 10                       | 22                   | QX200       | 5.2 to 5.7               | 0.18                                    | 2.07 to 2.26                      |
| 10                    | 0.2         | 10                       | 22                   | QX200       | 5.2 to 5.7               | 0.09                                    | 1.03 to 1.13                      |
| 0                     | 0           | 10                       | 22                   | QX200       | 5.2 to 5.7               | 0.00                                    | 0.0                               |

# Increased template addition volume provides higher sensitivity of detection

Results obtained from maximum template addition volume across various template concentrations on three dPCR platforms.

| AP16 | : 6 µL template | volume input       |      |                     |                     | ddPCR: | 10 µL template  | volun |
|------|-----------------|--------------------|------|---------------------|---------------------|--------|-----------------|-------|
|      |                 | Measured copies/µl | cv   | Negative samples, # | Negative samples, % |        |                 | Measu |
|      | 40 copies/50 µL | 0.439              | 40%  | 0                   | 0%                  |        | 40 copies/50 μL |       |
|      | 20 copies/50 µL | 0.341              | 60%  | 0                   | 0%                  |        | 20 copies/50 µL |       |
| FAM  | 10 copies/50 µL | 0.055              | 107% | 4                   | 50%                 | FAM    | 10 copies/50 µl |       |
|      | NTC             | 0.030              | -    | -                   | -                   |        | NTC             |       |
|      | 40 copies/50 µL | 0.496              | 39%  | 0                   | 0%                  |        | 40 copies/50 μL |       |
|      | 20 copies/50 µL | 0.183              | 98%  | 3                   | 38%                 |        | 20 copies/50 μL |       |
| ΠΕΧ  | 10 copies/50 µL | 0.069              | 83%  | 3                   | 38%                 | ПЕХ    | 10 copies/50 µL |       |
|      | NTC             | 0.028              | -    | -                   | -                   |        | NTC             |       |
|      |                 |                    |      |                     |                     |        |                 |       |

#### QIAcuity: 27 µL template volume input

|     |                 | Measured copies/µl | cv  | Negative samples, # | Negative samples, % |
|-----|-----------------|--------------------|-----|---------------------|---------------------|
| FAM | 40 copies/50 µL | 0.615              | 26% | 0                   | 0%                  |
|     | 20 copies/50 µL | 0.336              | 40% | 0                   | 0%                  |
|     | 10 copies/50 µL | 0.112              | 56% | 2                   | 17%                 |
|     | NTC             | 0.00               | -   | -                   | -                   |
| HEX | 40 copies/50 µL | 0.51               | 41% | 0                   | 0%                  |
|     | 20 copies/50 µL | 0.27               | 44% | 0                   | 0%                  |
|     | 10 copies/50 µL | 0.13               | 45% | 0                   | 0%                  |
|     | NTC             | 0.00               | -   | -                   | -                   |

# Conclusions

- Digital PCR is a superior method to qPCR for the detection and absolute quantification of low concentration target templates.
- There are multiple digital PCR systems on the market that differ in numerous aspects including the amount of dead volume, i.e., the volume that is loaded but not analyzed by the instrument.
- The most important factors in determining the relative sensitivity of each system are template addition volume and template analyzed volume.

## Summary of results

- High template addition volumes (27 μL) result in accurate detection of copy numbers (with little-to-no variation between obtained and expected results) across samples with different initial template concentrations
- Low template addition volumes (6 μL and 10 μL), result in high deviation between the expected concentrations (in copies/μL) and the measured concentrations.
- At lower template addition volumes, we observed an increased uncertainty in copy number estimation, as reflected in higher coefficients of variation (%CV) values across replicates.
- The percentage of dPCR replicates with no amplification, referred to as negative samples (samples that contain no templates, thus show no positive signals) is significantly higher in samples with low template addition volumes.



• Higher template addition volumes can overcome any limitations that dead volume may have on the sensitivity of a dPCR application.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit instructions for use or user operator manual. QIAGEN instructions for use and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services (or your local distributor).

Trademarks: QIAGEN<sup>®</sup>, Sample to Insight<sup>®</sup>, QIAcuity<sup>®</sup>, QuantiNova<sup>®</sup> (QIAGEN Group); Bio-Rad<sup>®</sup>, QX200<sup>™</sup> (Bio-Rad Laboratories, Inc.); Absolute Q<sup>®</sup>, FAM<sup>™</sup>, HEX<sup>™</sup> QuantStudio<sup>®</sup> (Thermo Fisher Scientific Inc.).

#### QPRO-3250 1131437 03/2023 © 2023 QIAGEN, all rights reserved.

Sample to Insight