PolyFect® Transfection Reagent Handbook

For optimized transfection of COS-7, NIH/3T3, HeLa, 293, and CHO cells

September 2000
Contents

Kit Contents 5
Storage and Stability 5
Quality Control 5
Technical Assistance 5
Introduction 6
 The PolyFect Principle 6
General Guidelines 7
 Cell culture 7
 Effect of serum 7
 Vector construct 7
 Plasmid DNA quality 7
 Ratio of PolyFect Reagent to DNA 8
 Transfection of oligonucleotides or large vector constructs 8
 Protocol for Transient Transfection of COS-7, NIH/3T3, and CHO Cells 10
 Protocol for Transient Transfection of HeLa Cells 12
 Protocol for Transient Transfection of 293 Cells 14
Troubleshooting Guide 16
Appendix A: Composition of Buffers 19
Appendix B: Background Information 19
 Transfection Principle 19
 Transient transfection 19
 Stable transfection 19
 Primary cells and cell lines 20
 Adherent cells 20
 Suspension cells 20
 Primary cell culture 20
 Finite cell line 20
 Continuous cell line 20
 Transfection considerations 20
 Media and supplements 20
 Serum 21
 Transfection methods 21
 Plasmid DNA quality 21
Genetic Reporter Systems

- Chloramphenicol acetyltransferase
- Firefly luciferase
- β-Galactosidase
- Human growth hormone (hGH)
- Green fluorescent protein

References

Product Use Limitations

Product Warranty and Satisfaction Guarantee

Ordering Information

QIAGEN International Distributors
Kit Contents
1.0 ml of PolyFect Transfection Reagent (2 mg/ml), sufficient for 25–65 transfections in 60 mm dishes, or 50–100 transfections in 6-well plates.

Storage and Stability
PolyFect® Transfection Reagent is supplied as a ready-to-use solution and is shipped at ambient temperature without loss in stability. However, it should be stored at 2–8°C upon arrival. PolyFect Transfection Reagent is stable for 1 year at 2–8°C.

Quality Control
Endotoxin levels are ≤10 EU/ml determined using a Kinetic-QCL test (BioWhittaker, Inc.)
PolyFect Transfection Reagent is tested by transfection of pCMVß (CLONTECH) into HeLa-S3 and COS-7 cells to ensure lot-to-lot consistency. Sterility tests guarantee absence of any contaminating bacteria or fungi.

Technical Assistance
At QIAGEN we pride ourselves on the quality and availability of our technical support. Our Technical Services Departments are staffed by experienced scientists with extensive practical and theoretical expertise in molecular biology and the use of QIAGEN products. If you have any questions or experience any difficulties regarding PolyFect Transfection Reagent, or QIAGEN products in general, please do not hesitate to contact us.

QIAGEN customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at QIAGEN. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques.

For technical assistance and more information, please call one of the QIAGEN Technical Service Departments or local distributors listed on the last page.
Introduction

PolyFect Transfection Reagent has been specifically developed and designed for transfection of commonly used cell lines. PolyFect Reagent protocols offer optimal conditions for transfection of COS-7, NIH/3T3, HeLa, 293, and CHO cells in three different plate formats. All protocols in this handbook have been optimized for each particular cell line, eliminating the need for optimization trials. In addition, the fast and easy protocols eliminate the need for removal of the complexes or a medium change after transfection. PolyFect Reagent combines excellent performance with a convenient transfection method.

PolyFect Transfection Reagent offers:

- Fast and easy protocol
- No removal of complex required
- Optimized protocols for COS-7, NIH/3T3, HeLa, 293, and CHO cells
- Transfection in the presence of serum
- Economical price
- High efficiency

The PolyFect Principle

PolyFect Transfection Reagent is an activated-dendrimer transfection reagent specifically designed for the transfection of commonly used cell lines. PolyFect Reagent offers significant advantages over many other transfection methods. PolyFect Reagent possesses a defined spherical architecture, with branches radiating from a central core and terminating at charged amino groups. PolyFect Reagent assembles DNA into compact structures, optimizing the entry of DNA into the cell. PolyFect–DNA complexes possess a net positive charge, which allows them to bind to negatively charged receptors (e.g., sialylated glycoproteins) on the surface of eukaryotic cells. Once inside the cell, PolyFect Reagent buffers the lysosome after it has fused with the endosome, leading to pH inhibition of lysosomal nucleases. This ensures stability of PolyFect–DNA complexes and the transport of intact DNA into the nucleus.

NOTE: The amounts of DNA and PolyFect Reagent given in the protocols represent optimal conditions for transfection of the particular cell line. Therefore, we strongly recommend using the optimized amounts of DNA and PolyFect Reagent given in the appropriate protocol.

General Guidelines

Transfection efficiencies depend on a variety of parameters. The factors below should be taken into account when performing transfections.

Cell culture

A healthy cell culture lays the foundation for successful transfection. Different cells or cell lines have very specific medium, serum, and supplement requirements. Low passage number (<50 splitting cycles) ensures that the cell genotype has not become altered. Highest transfection efficiencies are obtained using the confluence levels indicated in the appropriate protocol sections. We recommend subculturing cells 24 h before transfection. This ensures normal cell metabolism and increases the likelihood of DNA uptake. Contamination with bacteria (e.g., mycoplasma) and fungi should be avoided, since this can drastically alter transfection results. Antibiotics can be included in the medium used for transfection with PolyFect Reagent and during subsequent incubation for gene expression.

Effect of serum

In contrast to many liposome transfection reagents, the presence of serum during transfection with PolyFect Reagent significantly increases transfection efficiencies. Therefore, we recommend using the percentage of serum that cells have been adapted to in culture during incubation of cells with transfection complexes. However, we do not recommend using serum during complex formation between PolyFect Reagent and plasmid DNA, as serum may inhibit complex formation.

Vector construct

The type of transfection vector (plasmid DNA, RNA, PCR products, oligonucleotides) influences the transfection results. The configuration and size of the constructs determine the efficiency of transfection. Transient transfection is most efficient with supercoiled plasmid DNA. In stable transfection, linear DNA yields optimal integration of the DNA into the host genome, but results in lower DNA uptake by the cells, relative to supercoiled DNA.

Plasmid DNA quality

Plasmid DNA quality strongly influences several transfection parameters such as efficiency, reproducibility and toxicity, as well as interpretation of results. Therefore only plasmid DNA of the highest purity should be used. DNA purified with QIAGEN, QIAfilter™ and HiSpeed™ Plasmid Kits is well suited for transfection of most cell lines. For best results with all cell lines, we recommend DNA purified with the EndoFree® Plasmid Kit. This kit quickly and efficiently removes bacterial endotoxins during the plasmid purification procedure, ensuring optimal transfection results.
Ratio of PolyFect Reagent to DNA

The overall charge of PolyFect–DNA complexes is determined by the ratio of PolyFect Reagent to DNA. Optimal binding of PolyFect–DNA complexes to the negatively charged groups (e.g., sialylated glycoproteins) on the cell surface requires a slightly positive net charge. To achieve an optimal ratio of PolyFect Reagent (µl) to DNA (µg), we strongly recommend using the optimized amounts of DNA and volumes of PolyFect Reagent indicated in the appropriate protocol.

Transfection of oligonucleotides or large vector constructs

For the transfection of oligonucleotides or large vector constructs (>20 kb), we recommend carrying out optimization trials to determine optimal amounts of DNA and PolyFect Reagent to be used. The amounts of DNA and PolyFect Reagent given in the protocols can be used as a starting point.

To determine the optimal amount of PolyFect Reagent, set up trial reactions using double and half the protocol-recommended amount, keeping the DNA amount as given in the protocol. In a second set of reactions, use double and half the protocol-recommended amount of DNA, keeping the PolyFect Reagent amount as given in the protocol. By following this optimization strategy you should be able to determine the optimal PolyFect Reagent/DNA ratio for your transfection.
Transfection Procedure for PolyFect Transfection Reagent

1. Add PolyFect Transfection Reagent to DNA solution and vortex for 10 seconds.
2. Incubate 5–10 min at RT.
3. Add medium and pipet up and down 2x.
4. Apply diluted complexes to cells.
5. Incubate.
6. Evaluate transfection efficiency or select for stably transfected cells.
Protocol for Transient Transfection of COS-7, NIH/3T3, and CHO Cells

The following protocol is optimized for transient transfection of COS-7, NIH/3T3, and CHO cells in 60 mm dishes. Parameters for transfection using other culture formats are given in Table 1.

IMPORTANT: To ensure optimal results we strongly recommend using the optimized amounts of DNA and PolyFect Reagent given in the protocol and table below.

1. **The day before transfection,** seed **8 x 10⁵** cells per 60 mm dish in **5 ml** of appropriate growth medium.

2. Incubate the cells at **37°C** and **5% CO₂** in an incubator. The dishes should be **40–80% confluent** on the day of transfection.

3. **Dilute 2.5 µg of DNA dissolved in TE buffer pH 7 to pH 8** (minimum DNA concentration: **0.1 µg/µl**) with cell growth medium containing no serum, proteins, or antibiotics to a total volume of **150 µl**. Mix and spin down the solution for a few seconds to remove drops from the top of the tube.

 IMPORTANT: Serum, proteins, and antibiotics present during this step interfere with complex formation and will significantly decrease transfection efficiency.

 Note: Plasmid DNA quality strongly influences several transfection parameters such as efficiency, reproducibility and toxicity, as well as interpretation of results. Therefore only plasmid DNA of the highest purity should be used. DNA purified with QIAGEN, QIAfilter and HiSpeed Plasmid Kits is well suited for transfection of most cell lines. For best results with all cell lines, we recommend DNA purified with the EndoFree Plasmid Kit. This kit quickly and efficiently removes bacterial endotoxins during the plasmid purification procedure, ensuring optimal transfection results.

4. **Add 15 µl of PolyFect Transfection Reagent** to the DNA solution. Mix by pipetting up and down **5 times**, or by vortexing for **10 sec**.

 Note: It is not necessary to keep PolyFect Reagent on ice at all times. 10–15 min at room temperature will not alter its stability.

5. **Incubate samples for 5–10 min at room temperature (20–25°C)** to allow complex formation.

6. **While complex formation takes place,** gently aspirate the growth medium from the dish, wash cells once with **4 ml PBS**, and add **3 ml** of fresh cell growth medium (containing serum and antibiotics).

7. **Add 1 ml of cell growth medium** (containing serum and antibiotics) to the reaction tube containing the transfection complexes. Mix by pipetting up and down twice, and immediately transfer the total volume to the cells in the 60 mm dishes. Gently swirl the dish to ensure uniform distribution of the complexes.

 At this stage serum and antibiotics no longer interfere with transfection and will significantly enhance the transfection efficiency of PolyFect Reagent.
8. Incubate cells with the complexes at 37°C and 5% CO₂ to allow for gene expression. Harvest cells and assay for reporter gene expression after an appropriate incubation time.

For example, cells transfected with β-gal or cat reporter constructs are typically incubated for 24–48 h after transfection to obtain maximal expression levels of the reporter gene.

Table 1. Parameters for transient transfection of COS-7, NIH/3T3, and CHO cells in different formats

<table>
<thead>
<tr>
<th>Culture format</th>
<th>No. of cells to seed</th>
<th>Volume of medium ¹ (ml)</th>
<th>Volume of DNA (µg)</th>
<th>Volume of diluted DNA (µl)</th>
<th>Volume of PolyFect Reagent to add to cells ² (µl)</th>
<th>Volume of medium to add to complexes ³ (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-well plate ²</td>
<td>4 x 10⁵</td>
<td>3.0</td>
<td>1.5</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>60 mm dish</td>
<td>8 x 10⁵</td>
<td>5.0</td>
<td>2.5</td>
<td>150</td>
<td>15</td>
<td>3.0</td>
</tr>
<tr>
<td>100 mm dish ³</td>
<td>1.6 x 10⁶</td>
<td>8.0</td>
<td>4.0</td>
<td>300</td>
<td>25</td>
<td>7.0</td>
</tr>
</tbody>
</table>

¹ When working with 35 mm dishes use the amounts stated for 6-well plates.
² When working with 85 or 90 mm dishes use the amounts stated for 100 mm dishes.
³ Medium containing serum and antibiotics.
Protocol for Transient Transfection of HeLa Cells

The following protocol is optimized for transient transfection of HeLa cells in 60 mm dishes. Parameters for transfection using other culture formats are given in Table 2. Please note that for HeLa-S3 cells the optimal amounts of DNA and PolyFect Reagent differ from the amounts given in the protocol below. If you work with HeLa-S3 cells, please call one of the QIAGEN technical service departments (see inside front cover) or your local distributor (see inside back cover) for an optimized protocol.

IMPORTANT: To ensure optimal results we strongly recommend using the optimized amounts of DNA and PolyFect Reagent given in the protocol and table below.

1. The day before transfection, seed 8 x 10⁵ cells per 60 mm dish in 5 ml of appropriate growth medium.

2. Incubate the cells at 37°C and 5% CO₂ in an incubator. The dishes should be 40–80% confluent on the day of transfection.

3. Dilute 3 µg of DNA dissolved in TE buffer pH 7 to pH 8 (minimum DNA concentration: 0.1 µg/µl) with cell growth medium containing no serum, proteins, or antibiotics to a total volume of 150 µl. Mix and spin down the solution for a few seconds to remove drops from the top of the tube.

IMPORTANT: Serum, proteins, and antibiotics present during this step interfere with complex formation and will significantly decrease transfection efficiency.

Note: Plasmid DNA quality strongly influences several transfection parameters such as efficiency, reproducibility and toxicity, as well as interpretation of results. Therefore only plasmid DNA of the highest purity should be used. DNA purified with QIAGEN, QIAfilter and HiSpeed Plasmid Kits is well suited for transfection of most cell lines. For best results with all cell lines, we recommend DNA purified with the EndoFree Plasmid Kit. This kit quickly and efficiently removes bacterial endotoxins during the plasmid purification procedure, ensuring optimal transfection results.

4. Add 25 µl of PolyFect Transfection Reagent to the DNA solution. Mix by pipetting up and down 5 times, or by vortexing for 10 sec.

Note: It is not necessary to keep PolyFect Reagent on ice at all times. 10–15 min at room temperature will not alter its stability.

5. Incubate samples for 5–10 min at room temperature (20–25°C) to allow complex formation.

6. While complex formation takes place, gently aspirate the growth medium from the dish, wash cells once with 4 ml PBS, and add 3 ml of fresh cell growth medium (containing serum and antibiotics).
7. Add 1 ml of cell growth medium (containing serum and antibiotics) to the reaction tube containing the transfection complexes. Mix by pipetting up and down twice, and immediately transfer the total volume to the cells in the 60 mm dishes. Gently swirl the dish to ensure uniform distribution of the complexes.

At this stage serum and antibiotics no longer interfere with transfection and will significantly enhance the transfection efficiency of PolyFect Reagent.

8. Incubate cells with the complexes at 37°C and 5% CO₂ to allow for gene expression. Harvest cells and assay for reporter gene expression after an appropriate incubation time.

For example, cells transfected with βgal or cat reporter constructs are typically incubated for 24–48 h after transfection to obtain maximal expression levels of the reporter gene.

Table 2. Parameters for transient transfection of HeLa cells in different formats

<table>
<thead>
<tr>
<th>Culture format</th>
<th>No. of cells seeded</th>
<th>Volume of medium (ml)</th>
<th>Volume of DNA (µg)</th>
<th>Volume of PolyFect Reagent (µl)</th>
<th>Volume of medium to add to cells (ml)</th>
<th>Volume of complexes (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-well plate*</td>
<td>4 x 10⁵</td>
<td>3.0</td>
<td>1.5</td>
<td>100</td>
<td>12</td>
<td>0.6</td>
</tr>
<tr>
<td>60 mm dish</td>
<td>8 x 10⁶</td>
<td>5.0</td>
<td>3.0</td>
<td>150</td>
<td>25</td>
<td>1.0</td>
</tr>
<tr>
<td>100 mm dish†</td>
<td>1.6 x 10⁷</td>
<td>8.0</td>
<td>6.0</td>
<td>300</td>
<td>50</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* When working with 35 mm dishes use the amounts given for 6-well plates.
† When working with 85 or 90 mm dishes use the amounts given for 100 mm dishes.
‡ Medium containing serum and antibiotics.
Protocol for Transient Transfection of 293 Cells

The following protocol is optimized for transient transfection of 293 cells in 60 mm dishes. Parameters for transfection using other culture formats are given in Table 3.

IMPORTANT: To ensure optimal results we strongly recommend using the optimized amounts of DNA and PolyFect Reagent given in the protocol and table below.

1. The day before transfection, seed 1.2 x 10⁶ cells per 60 mm dish in 5 ml of appropriate growth medium.

2. Incubate the cells at 37°C and 5% CO₂ in an incubator. The dishes should be 40–80% confluent on the day of transfection.

3. Dilute 4 µg of DNA dissolved in TE buffer pH 7 to pH 8 (minimum DNA concentration: 0.1 µg/µl) with cell growth medium containing no serum, proteins, or antibiotics to a total volume of 150 µl. Mix and spin down the solution for a few seconds to remove drops from the top of the tube.

IMPORTANT: Serum, proteins, and antibiotics present during this step interfere with complex formation and will significantly decrease transfection efficiency.

Note: Plasmid DNA quality strongly influences several transfection parameters such as efficiency, reproducibility and toxicity, as well as interpretation of results. Therefore only plasmid DNA of the highest purity should be used. DNA purified with QIAGEN, QIAfilter and HiSpeed Plasmid Kits is well suited for transfection of most cell lines. For best results with all cell lines, we recommend DNA purified with the EndoFree Plasmid Kit. This kit quickly and efficiently removes bacterial endotoxins during the plasmid purification procedure, ensuring optimal transfection results.

4. Add 40 µl of PolyFect Transfection Reagent to the DNA solution. Mix by pipetting up and down 5 times, or by vortexing for 10 sec.

Note: It is not necessary to keep PolyFect Reagent on ice at all times. 10–15 min at room temperature will not alter its stability.

5. Incubate samples for 5–10 min at room temperature (20–25°C) to allow complex formation.

6. While complex formation takes place, gently aspirate the growth medium from the dish and add 3 ml of fresh cell growth medium (containing serum and antibiotics).

7. Add 1 ml of cell growth medium (containing serum and antibiotics) to the reaction tube containing the transfection complexes. Mix by pipetting up and down twice, and immediately transfer the total volume to the cells in the 60 mm dishes. Gently swirl the dish to ensure uniform distribution of the complexes.

At this stage serum and antibiotics no longer interfere with transfection and will significantly enhance the transfection efficiency of PolyFect Reagent.
8. Incubate cells with the complexes at 37°C and 5% CO₂ to allow for gene expression. Harvest cells and assay for reporter gene expression after an appropriate incubation time.

For example, cells transfected with β-gal or cat reporter constructs are typically incubated for 24–48 h after transfection to obtain maximal expression levels of the reporter gene.

Table 3. Parameters for transient transfection of 293 cells in different formats

<table>
<thead>
<tr>
<th>Culture format</th>
<th>No. of cells to seed</th>
<th>Volume of medium (ml)</th>
<th>Volume of DNA (µg)</th>
<th>Volume of diluted PolyFect Reagent (µl)</th>
<th>Volume of medium to add to cells (ml)</th>
<th>Volume of complexes (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol step</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6-well plate*</td>
<td>6 x 10⁵</td>
<td>3.0</td>
<td>2.0</td>
<td>100</td>
<td>20</td>
<td>1.5</td>
</tr>
<tr>
<td>60 mm dish</td>
<td>1.2 x 10⁶</td>
<td>5.0</td>
<td>4.0</td>
<td>150</td>
<td>40</td>
<td>3.0</td>
</tr>
<tr>
<td>100 mm dish†</td>
<td>2.4 x 10⁶</td>
<td>8.0</td>
<td>8.0</td>
<td>300</td>
<td>80</td>
<td>7.0</td>
</tr>
</tbody>
</table>

* When working with 35 mm dishes use the amounts given for 6-well plates.
† When working with 85 or 90 mm dishes use the amounts given for 100 mm dishes.
‡ Medium containing serum and antibiotics.
Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocol(s) in this handbook or molecular biology applications (see last page for contact information).

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Cause</th>
<th>Comments and suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low transfection efficiency</td>
<td>PolyFect Reagent or DNA amount is suboptimal</td>
<td>The amounts of DNA and PolyFect Reagent given in the protocols represent optimal conditions for the transfection of the particular cell line. To ensure optimal results use the amounts of PolyFect Reagent and DNA given in the appropriate protocol. However, if you are working with oligonucleotides or large vector constructs (> 20 kb) please follow the guidelines given on page 8 under “Transfection of Oligonucleotides or large vector constructs”.</td>
</tr>
<tr>
<td>Incubation time for gene expression is suboptimal</td>
<td>Different cell types achieve maximal expression levels at different times post-transfection. This should be kept in mind when determining the length of incubation with the complexes. If the time point of maximal expression is not known for a particular cell line, a time course experiment may be necessary.</td>
<td></td>
</tr>
<tr>
<td>Cell density at the time of PolyFect-DNA complex addition is too high</td>
<td>If the cell density is too high during complex addition cells may not be at the optimal phase of growth. This can lead to insufficient uptake of the complexes into the cells or to insufficient expression of the gene of interest. Be sure to use the confluence levels indicated in the appropriate protocol.</td>
<td></td>
</tr>
<tr>
<td>Reporter assay problem</td>
<td>Include positive controls to ensure that the reporter assay is working properly.</td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>Possible Cause</td>
<td>Comments and suggestions</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Poor DNA quality</td>
<td>Plasmid DNA quality strongly influences several transfection parameters such as efficiency, reproducibility and toxicity, as well as interpretation of results. Therefore only plasmid DNA of the highest purity should be used. DNA purified with QIAGEN, QIAfilter and HiSpeed Plasmid Kits is well suited for transfection of most cell lines. For best results with all cell lines, we recommend DNA purified with the EndoFree Plasmid Kit. This kit quickly and efficiently removes bacterial endotoxins during the plasmid purification procedure, ensuring optimal transfection results.</td>
<td></td>
</tr>
<tr>
<td>Excessive cell death</td>
<td>Amount of PolyFect Reagent or DNA is too high</td>
<td>The amounts of DNA and PolyFect Reagent given in the protocols represent optimized conditions for the transfection of the respective cell line. To ensure optimal results use the amounts of PolyFect Reagent and DNA given in the appropriate protocol.</td>
</tr>
<tr>
<td>Cells are stressed</td>
<td></td>
<td>In general, avoid stressing cells with temperature shifts and long periods without medium during washing steps. We recommend performing transfection experiments in the presence of serum, so that cells are not deprived of necessary growth factors and nutrients.</td>
</tr>
<tr>
<td>Vector related influences</td>
<td></td>
<td>Toxic effects may arise if a plasmid encoding a toxic protein is used or if too much plasmid with a high expression rate is used. Conversely, if insufficient plasmid with low expression rate is used, transfection efficiency may be too low. When performing transfection experiments, it is useful to perform controls. A known reporter construct can help determine if the promoter works in the target cell line. In addition, using a plasmid with no insert can help determine if the gene of interest is toxic.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible Cause</td>
<td>Comments and suggestions</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Variable</td>
<td>Inconsistent cell confluency in replicate experiments</td>
<td>Count cells prior to seeding to ensure that the same number of cells is seeded for each experiment. Keep incubation times between seeding and complex addition consistent between experiments.</td>
</tr>
<tr>
<td>transfection</td>
<td>Possible mycoplasma contamination</td>
<td>Mycoplasma contamination influences transfection efficiency. Variations in the growth behavior of mycoplasma-infected cells will lead to different transfection efficiencies between replicate experiments.</td>
</tr>
<tr>
<td>efficiencies in replicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>experiments</td>
<td>Cells have been passaged too many times</td>
<td>Cells that have been passaged for an extended number of times tend to change their growth behavior, morphology and transfectability. When cells with high passage numbers are used for replicate experiments, decreased transfection efficiencies may be observed in later experiments. We recommend using cells with low passage number (<50 splitting cycles).</td>
</tr>
<tr>
<td></td>
<td>Serum variability</td>
<td>Variations in serum quality can lead to variations in transfection efficiency. In general, it is advisable to test a small lot of serum from a reputable supplier with a control cell line before performing transfection experiments. Once a given lot has yielded satisfactory and reproducible results, additional sera from the same lot should be purchased.</td>
</tr>
</tbody>
</table>
Appendix A: Composition of Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Composition</th>
<th>Storage</th>
</tr>
</thead>
</table>
| 1x PBS (phosphate buffered saline) | 137 mM NaCl
2.7 mM KCl
4.3 mM Na₂HPO₄
1.47 mM KH₂PO₄
Adjust to a final pH of 7.4 | Room temperature |
| 1x TE buffer, pH 7 to pH 8 | 10 mM Tris-Cl
1 mM EDTA
Adjust to a pH between 7 and 8 | Room temperature |

Appendix B: Background Information

Transfection Principle

Transfection — delivery of foreign molecules such as DNA into eukaryotic cells — has become a powerful tool for the study and control of gene expression, for example in biochemical characterization, mutational analyses, or investigation of the effects of regulatory elements or cell growth behavior. Two principally different transfection techniques can be used; transient transfection and stable transfection. For further background information on transfection, please refer to current molecular biology manuals (1, 2).

Transient transfection

When cells are transiently transfected, the DNA is introduced into the nucleus of the cell, but does not integrate into the chromosome. This means that many copies of the gene of interest are present, leading to high levels of expressed protein. Transcription of the transfected gene can be analyzed within 24 to 96 hours after introduction of the DNA depending on the construct used. Transient transfection is most efficient when supercoiled plasmid DNA is used.

Stable transfection

With stable or permanent transfection, the transfected DNA is either integrated into the chromosomal DNA or maintained as an episome. Stable transfection involving integration of the DNA is most efficient when linearized plasmid DNA is used, since linearization facilitates recombination of the DNA with the host cell chromosome. Cells which have successfully integrated the DNA of interest or have maintained episomal plasmid DNA can be distinguished by using selectable markers. Frequently used selectable markers are the genes encoding aminoglycoside phosphotransferase (APH; neo² gene) or hygromycin B phosphotransferase (HPH). Other selectable markers are the genes encoding adenosine deaminase (ADA), dihydrofolate reductase (DHFR), thymidine kinase (TK) or xanthine-guanine phosphoribosyl transferase (XGPRT; gpt gene).
Primary cells and cell lines
Depending on their origin, cell cultures or cell lines grow as an adherent monolayer or in suspension. Cells or cell lines vary greatly with respect to their growth behavior and nutritional requirements (1). Optimization of the cell culture technique is therefore necessary to ensure that cells are healthy and in optimal condition for transfection. For extensive information on culturing of cells, please refer to the manual Culture of Animal Cells (1).

Adherent cells
Adherent cells are anchorage-dependent and propagate as a monolayer attached to the culture vessel. This attachment is essential for proliferation. Most cells derived from tissues are anchorage-dependent with the exception of hemopoetic cells (cells derived from blood).

Suspension cells
Suspension cells are able to survive and proliferate without attachment. Hemopoetic cells, transformed cell lines, and cells from malignant tumors can be grown in suspension.

Primary cell cultures
Primary cell cultures arise from the outgrowth of migrating cells from a piece of tissue or by enzymatic, chemical, or mechanical dispersal of the tissue. Primary cell cultures are morphologically most similar to the parent tissue.

Finite cell lines
Finite cell lines are formed after the first subculturing (passaging) of a primary cell culture, and can be propagated and subcultured several times.

Continuous cell lines
There is a limit to the number of generations that a finite cell line can be propagated. After that it will either die out or acquire a stable, heritable alteration, giving rise to a continuous cell line. This alteration is commonly known as in vitro transformation or immortalization, and frequently correlates with tumorigenicity.

Transfection considerations
Media and supplements
Media are composed of a mixture of essential salts, nutrients, and buffering agents. Sterile media are usually purchased in solution. Alternatively, packaged premixed powders are available. Most media purchased are guaranteed to be mycoplasma- and endotoxin-free. Supplements to the media must include glutamine and can include nonessential amino acids, sodium pyruvate, and antibiotics. Some common media include DMEM, F12, DMEM/F12, RPMI 1640, MEM, and S-MEM.
Serum

In most cases media are supplemented shortly before use with serum. Fetal calf serum (FCS) is often used, but for some applications less expensive sera like horse- or calf serum can be used. Generally serum is a partially undefined material, which contains growth- and attachment factors and may show considerable variation in the ability to support growth of particular cells. Variations in the serum quality can also lead to variation in transfection efficiency. In general, it is advisable to test a small lot of serum from a reputable supplier with a control cell line and assay before performing transfection experiments. Once a given lot has been shown to yield satisfactory and reproducible results, additional sera from the same lot should be purchased.

Transfection methods

Of the variety of different transfection methods described in literature (2, 3), the DEAE-dextran method, the calcium-phosphate method, electroporation, and liposome-mediated transfection are the most commonly used. Each individual method has its characteristic advantages and disadvantages and the choice of transfection method strongly influences transfection results. PolyFect Transfection Reagent represents a transfection reagent based on activated-dendrimer technology, and has been designed to offer very high transfection efficiencies, good reproducibility, and reduced cytotoxic effects. In addition, optimized protocols for commonly used cell lines minimize optimization time.

Plasmid DNA quality

The quality of the plasmid DNA strongly influences the results of transfection experiments. Therefore only plasmid DNA of the highest quality, which is completely free of contaminating RNA, genomic DNA, and proteins, should be used. DNA purified with QIAGEN, QIAfilter and HiSpeed Plasmid Kits is ideally suited for transfection of most cell lines. For transfection of endotoxin sensitive cells, we recommend using DNA purified with the EndoFree Plasmid Kit. This kit efficiently removes bacterial lipopolysaccharide molecules during the plasmid purification procedure, ensuring optimal transfection results.

Genetic Reporter Systems

After cloning a gene of interest, transfection is a useful tool to determine how cis-acting sequences, such as promoters and enhancers, and trans-acting factors, such as transcription factors, act together to control eukaryotic gene expression. Common methods to monitor gene expression involve using techniques such as northern blot analysis or nuclease protection assays to quantitate the specific mRNAs transcribed from the gene of interest. Since these procedures are time-consuming and inconvenient for multiple samples (resulting from multiple constructs), an alternative approach is to link the presumed cis-acting sequences from the gene of interest to the coding sequence of an unrelated reporter gene (see examples below) (2, 3). The reporter gene provides an indirect way of measuring how such regulatory sequences influence gene expression. Reporter genes are also useful
in serving as controls. Transfection efficiencies between transfection experiments can be standardized by comparing the expression of the reporter gene product. Further information on genetic reporter systems can be obtained from current molecular biology manuals (2, 3). In choosing a suitable reporter system, several considerations should be taken into account. First, the reporter gene should be absent from the cells used in the study or easily distinguished from the native form of the gene. Second, the assay for the reporter gene product should be quick, easy, sensitive, and inexpensive. In particular, a broad linear range is important to enable detection of both small and large changes in reporter gene expression. Finally, the presence of the reporter gene should not affect the physiology of the cells being used.

Chloramphenicol acetyltransferase

The prokaryotic enzyme chloramphenicol acetyltransferase (CAT) is commonly used as a reporter. This enzyme catalyzes the transfer of acetyl groups from acetyl-coenzyme A to chloramphenicol. In the common CAT assay, cell lysates prepared from transfected cells are incubated with 14C-labeled chloramphenicol. The resulting acetylated and unacetylated forms of chloramphenicol are separated by thin-layer chromatography. A qualitative estimate of CAT activity can be obtained simply by exposing the plates to X-ray film. For quantitative analysis, the separated bands can be scraped from the thin-layer plate and the levels of radioactivity measured in a scintillation counter. Currently, a CAT ELISA is also often used. In this assay the *total expression* of the chloramphenicol acetyltransferase is measured via antibody detection, in contrast to the classic CAT assay described above, which determines only the *active protein*.

Firefly luciferase

Luciferase catalyses a bioluminescent reaction involving the substrate luciferin, ATP, Mg²⁺, and molecular oxygen. When these components are mixed with cell lysates containing luciferase, a flash of light is emitted. Light signals are detected using a luminometer or a liquid scintillation counter.

β-Galactosidase

The prokaryotic enzyme β-galactosidase can be assayed colorimetrically using the substrate o-nitrophenyl-β-D-galactopyranoside (ONPG). The hydrolysis of ONPG by β-galactosidase yields a yellow-colored product, o-nitrophenol, which can be measured photometrically.
Human growth hormone (hGH)

The assay for human growth hormone is based on immunological detection of hGH secreted by transfected cells. Specific 125I-labeled antibodies against hGH are used and results are monitored in a scintillation counter. Currently, a sandwich-ELISA is also often used, which involves an antibody coupled ELisa plate. The hGH protein binds to the antibody on the plate, a digoxygenated antibody binds to hGH, and a secondary antibody coupled to alkaline phosphatase is used for detection.

Green fluorescent protein

Green fluorescent protein (GFP), originally isolated from the jellyfish Aequorea victoria (2), has the ability to absorb blue light and emit green light. This unique protein can be expressed in mammalian cells and protein expression can be visually monitored in living cells. Although the system provides a convenient way to detect protein expression without a specific assay, quantitative analysis is limited. This reporter gene system is best suited for in situ detection of gene expression, such as localization studies of fusion proteins within cells.

References

Product Use Limitations

PolyFect Transfection Reagent is developed, designed, and sold for research purposes only. It is not to be used for human diagnostic or drug purposes or to be administered to humans unless expressly cleared for that purpose by the Food and Drug Administration in the USA or the appropriate regulatory authorities in the country of use. All due care and attention should be exercised in the handling of many of the materials described in this text.

Product Warranty and Satisfaction Guarantee

QIAGEN guarantees the performance of all products in the manner described in our product literature. The purchaser must determine the suitability of the product for its particular use. Should any product fail to perform satisfactorily due to any reason other than misuse, QIAGEN will replace it free of charge or refund the purchase price. We reserve the right to change, alter, or modify any product to enhance its performance and design. If a QIAGEN product does not meet your expectations, simply call your local Technical Service Department or distributor. We will credit your account or exchange the product — as you wish.

A copy of QIAGEN terms and conditions can be obtained on request, and is also provided on the back of our invoices. If you have questions about product specifications or performance, please call QIAGEN Technical Services or your local distributor listed on the last page.
Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Contents</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyFect Transfection Reagent for optimized transfection of COS-7, NIH/3T3, HeLa, 293, and CHO cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolyFect Transfection Reagent</td>
<td>For 25–65 transfections in 60 mm dishes or 50–100 transfections in 6-well plates</td>
<td>301105</td>
</tr>
<tr>
<td>PolyFect Transfection Reagent</td>
<td>For 100–260 transfections in 60 mm dishes or 200–400 transfections in 6-well plates</td>
<td>301107</td>
</tr>
<tr>
<td>PolyFect Transfection Reagent</td>
<td>For 2500–6500 transfections in 60 mm dishes or 5000–10,000 transfections in 6-well plates</td>
<td>301108</td>
</tr>
<tr>
<td>SuperFect Transfection Reagent, based on activated-dendrimer technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperFect Transfection Reagent</td>
<td>For 40 transfections in 60 mm dishes or 160 transfections in 12-well plates</td>
<td>301305</td>
</tr>
<tr>
<td>SuperFect Transfection Reagent</td>
<td>For 160 transfections in 60 mm dishes or 640 transfections in 12-well plates</td>
<td>301307</td>
</tr>
<tr>
<td>Effectene Transfection Reagent, the next generation in lipid technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effectene Transfection Reagent</td>
<td>For 40 transfections in 60 mm dishes or 160 transfections in 12-well plates</td>
<td>301425</td>
</tr>
<tr>
<td>Effectene Transfection Reagent</td>
<td>For 160 transfections in 60 mm dishes or 640 transfections in 12-well plates</td>
<td>301427</td>
</tr>
</tbody>
</table>
Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Contents</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfection-related products*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoFree Plasmid Kits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoFree Plasmid Maxi Kit (10)</td>
<td>10 QIAGEN-tip 500, Reagents, 10 QIAfilter Maxi Cartridges,</td>
<td>12362</td>
</tr>
<tr>
<td></td>
<td>Endotoxin-free Buffers</td>
<td></td>
</tr>
<tr>
<td>EndoFree Plasmid Mega Kit (5)</td>
<td>5 QIAGEN-tip 2500, Reagents, 5 QIAfilter Mega-Giga Cartridges,</td>
<td>12381</td>
</tr>
<tr>
<td></td>
<td>Endotoxin-free Buffers</td>
<td></td>
</tr>
<tr>
<td>EndoFree Plasmid Giga Kit (5)</td>
<td>5 QIAGEN-tip 10000, Reagents, 5 QIAfilter Mega-Giga Cartridges,</td>
<td>12391</td>
</tr>
<tr>
<td></td>
<td>Endotoxin-free Buffers</td>
<td></td>
</tr>
<tr>
<td>HiSpeed Plasmid Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HiSpeed Plasmid Midi Kit (25)</td>
<td>25 HiSpeed Midi Tips, 25 QIAfilter Midi Cartridges, plus syringes,</td>
<td>12643</td>
</tr>
<tr>
<td></td>
<td>reagents, buffers</td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Kits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Midi Kit (25)</td>
<td>25 QIAGEN-tip 100, Reagents, 25 QIAfilter Midi Cartridges</td>
<td>12243</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Midi Kit (100)</td>
<td>100 QIAGEN-tip 100, Reagents, 100 QIAfilter Midi Cartridges</td>
<td>12245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Maxi Kit (10)</td>
<td>10 QIAGEN-tip 500, Reagents, 10 QIAfilter Maxi Cartridges</td>
<td>12262</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Maxi Kit (25)</td>
<td>25 QIAGEN-tip 500, Reagents, 25 QIAfilter Maxi Cartridges</td>
<td>12263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Mega Kit (5)</td>
<td>5 QIAGEN-tip 2500, Reagents, 5 QIAfilter Mega-Giga Cartridges</td>
<td>12281</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QIAfilter Plasmid Giga Kit (5)</td>
<td>5 QIAGEN-tip 10000, Reagents, 5 QIAfilter Mega-Giga Cartridges</td>
<td>12291</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Other prep and kit sizes available
QIAGEN Companies

Please see the inside front cover for contact information for your local QIAGEN office.

QIAGEN Distributors

Argentina
Tecnolab S.A.
Church 1 144 - 1427
Buenos Aires
Fax: (01) 4535 5000
Web site: www.tecnolab.com.ar

Australia
QIAGEN Distributors
Please see the inside front cover for contact information for your local QIAGEN office.

Brazil
QIAGEN Companies
São Paulo-Brasil
V. Congonhas
Av. Barão do Rego Barros, 542
Brazil
Web site: www.westburg.nl
Fax: (31) 33-4951222
Tel: 0800-1-9815
The Netherlands
Westburg b.v.
P.O. Box 214
3830 AE Leusden
Netherlands
P.O. Box 214
Westburg b.v.
Belgium/Luxemburg
E-mail: BIO-TRADE@TELECOM.AT
Fax: (01) 889 18 19 20
Tel: (01) 889 18 19
Austria
1230 Wien-Rodaun
Breitenfurter Straße 480
BIOTRADE
Ges. m.b.H.
Austria/Hungary/Slovenia
Web site: www.tecnolab.com.ar
E-mail: info@tecnolab.com.ar
Tel: (011) 4555 0010
Capital Federal
Charlone 144 - 1427
Tecnolab S.A.
Argentina
Fax: 02-764 614
Phone: 02-765 416
34, Zenonos Sozou Str.
Scientronics Ltd
Cyprus
gzyitao@public.guangzhou.gd.cn
Guangzhou:
Shanghai: gene@public.sta.net.cn
Beijing: gene@public2.bta.net.cn
Hong Kong: info@genehk.com
E-mail: e@research.com
Fax: (852)2515-9371
Chai Wan, Hong Kong, P.R.C.
12 Lee Chung Street
Unit A, 8/F., Shell Industrial Building
China
Web site: www.labtrade.com
E-mail: labtrade@icanect.net
Fax: (305) 828-3819
Tel: (305) 828-3818
USA
6157 NW 167th Street F-26
Labtrade Inc.
Web site: www.labtrade.com.br
or 0800551321
or 0800933966

India
Genetix
11471 Athens
11, Laskareos Str.
BioAnalytica S.A.
Greece
Web site: www.merckeurolab.fi
E-mail: info@merckeurolab.fi
Fax: (09)-804 55200
Tel: (09)-804 551

Norway
Merck Eurolab AS
Kakkelovnskroken 1
Postboks 45, Kalbakken
Merck Eurolab AS
Norway
E-mail: info@biolab.co.nz
Tel: (09)9806700
244 Bush Road
Biolab Scientific Ltd.
New Zealand
E-mail: info@westburg.nl
Tel: (033)-4950094
P.O. Box 214
The Netherlands
Westburg bv.

Portugal
BIOLABS@SINGNET.COM.SG
Fax: 448 3966
Research Biolabs Pte Ltd.
Singapore
Fax: (1)-417 26 59
Tel: (1)-424 73 64
Paizinho
Portugal
Web site: www.syngen.com.pl
E-mail: info@syngen.com.pl
Fax: (071) 351 04 88
Tel: (071) 351 41 06
Syngen Biotech Sp.z.o.o.
Poland
Web site: www.merckeurolab.no
Fax: 22 90 00 40
Tel: 22 90 00 00
Kakkelovnskroken 1

South Africa
TENGIN Bioculture Corporation
3F. Po. box, Section 4
Chewor Road
Taiwan, R.O.C.
Tel: (02) 2880 2913
Fax: (02) 2880 2916
E-mail: taijen@ms10.hinet.net

Thailand
Thaisco Trading Co. Ltd.
144 Charan Song Wrig Road
Charan 13 Bangkok
Bangkok 10600
Tel: (02) 412 5672
Fax: (02) 412 3344
E-mail: tk transforming.co.th

Title

QIAGEN Importers

Saudi Arabia
Abdulla Foud Company
Medical Supplies Division
Prince Mohammad Street
P.O. Box 357, Damman 31411
Kingdom of Saudi Arabia
Tel: (03) 8346400
Fax: (03) 8346174
E-mail: saleq omar@abdulla-foud.com

All other countries
QIAGEN GmbH, Germany