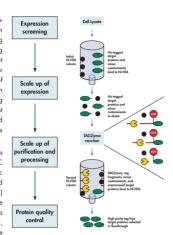
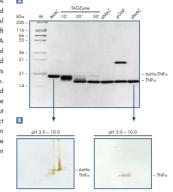
Single-column purification of native proteins to homogeneity for structural studies - the IMAC/TAGZyme process



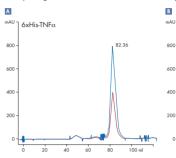
Helena Block¹, Jan Kubicek¹, Jörg Labahn², Frank Schäfer¹

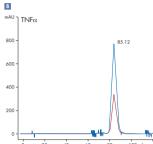
¹ QIAGEN GmbH, Qiagen Strasse 1, 40724 Hilden, Germany; ² Institute of Structural Biology (IBI-2), Research Center Jülich, 52425 Jülich, Germany

Introduction

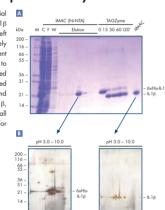

- Use of proteins for structural studies and bio pharmaceuticals places high demands on protein quality, purity, and integrity. With increasing numbers of highly diverse proteins being investigated, technologies are required that avoid developing new production strategies for every target. IMAC technology for purification of 6xHis-tagged recombinant proteins [1] has been a major step towards this goal. However, using IMAC, protein purity is sometimes not sufficient for protein crystallization and vector-encoded amino acids are undesirable in biopharmaceuticals and may interfere with protein structure.
- We describe production of high-quality protein of native structure using a single Ni-NTA IMAC chromatography column and exoproteolytic His-tag removal via the TAGZyme system followed by a reverse purification step (subtractive IMAC) to remove protease and other impurities (see flowchart). The applicability of this process is demonstrated with the production, quality control, and structural investigation of monomeric cytokine Interleukin-1 beta (IL-1β [2]) and trimeric human Tumor Necrosis Factor alpha (TNFα).

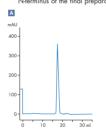
TNF α production and quality control

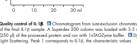

TNFα was highly pure after single-step Ni-NTA chromatography . However, some co-purified host cell proteins were visible upon 2D gel electrophoresis and silver staining (B left panel). These were removed by reverse Ni-NTA IMAC purification (B. right panel). The residual portion of 6xHis-TNFα which rema by TAGZyme DAPase (30 min, A) represents formylated N-Met or N-Met-processed protein.

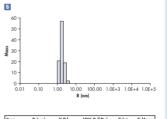

Thus, by its selectivity for deformylated and Met-extended, i.e. in-frame substrate N-termini, DAPase acts as a filter to sort out microheterogeneities and increase product homogeneity. The sub-band pattern of $TNF\alpha$ in 2D gels between pl 6.7 and 5.8 is in accordance to previously reported results for the human protein produced in yeast (3).

TNF α production and quality control

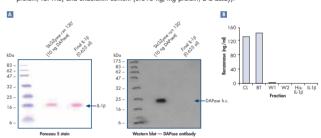

 \blacksquare The purity of the preparation is confirmed by gel filtration where TNF α eluted in a single sharp peak as predicted. In comparison, δx His-TNF α eluted slightly earlier from the gel filtration column N-terminal sequencing showed the desired N-terminus of the final preparation of TNF α (see table below).


IL-1 production and electrophoretic analysis


 Although apparently highly pure after initial IMAC
 2D electrophoresis of the óxHis-IL1β elution fraction revealed impurities (
 , left panel) which, however, were removed completely by subtractive IMAC (B, right panel). The different spots of IL-1 B visible at different pl values seem to be an isoelectric focusing artifact as confirmed by further analyses. As for TNFa, N-Met-formylated or –processed protein was left uncleaved and was removed completely by sIMAC. 2 g of IL-1β, was produced by the process with an overall recovery of 67%, showing its suitability for

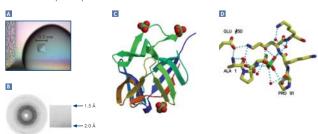

Analysis of IL-1 \beta reveals high-quality protein production

■ IL-1ß eluted in a single sharp peak from a gel filtration column at ~20 kDa 🛕 and DLS 🖪 confirmed the monodispersity of the preparation. 99.9% of the mass corresponds to peak 1 with a hydrodynamic radius of 1.9 nm equivalent for a protein of ~15 kDa. N-terminal sequencing showed the desired us of the final preparation of IL-1β (see table below).

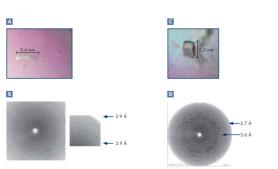

IL-16 molecule	N-terminal sequencing
Native mature IL-1β (NM000576)	APVRSLN
6xHis-IL-1β	MKHQHQHQHQHQAPVRSLN
TAGZyme/IMAC processed IL-18	APVRSLN

Item	K (nm)	%Pd	MW-K (KDa)	%Int	%Mass
Peak 1	1.9	25.8	(15)	64.5	99.9
Peak 2	43.9	50.8	23408	-	-
Peak 3	203.7	0.0	850442	-	_
Peak 4	11124.6	44.6	9878150000	35.5	0.1

Enzyme depletion in IL-1β production


■ Monoclonal antibodies versus the TAGZyme/DAPase subunits were generated and western blot analysis protein, ICP-MS) and endotoxin content (0.013 ng/mg protein, LAL assay).

ontrol of IL-1 B. 🔼 Im


Crystallization and structural analysis of IL-1\beta

 \blacksquare X-ray crystallography of II-1 β confirmed the previously solved structure (pdb 9ILB) at 1.5 Å resolution. In addition to 9ILB, the built model showed the presence of three SO₄2 ions in the molecule. A zoom into the structure shows that the protein is completely folded even at the termini. Heavy metal ions such as Ni² were not visible in the electron density. The fact that the N-terminus (Ala1) is engaged in intermolecular contacts within the crystal may explain why we failed to crystallize His-tagged IL-1 β . The data show that the IMAC/TAGZyme strategy delivers proteins that are structurally intact, indicating that the process is

Crystallization and structural analysis of TNFa

■ TNFα as well as 6xHis-TNFα could be crystallized. Both rhombohedral and tetragonal forms of crystals were obtained from TNFα as reported (3) with crystal sizes of 0.3 x 0.2 mm and 0.16 x 0.03 mm, respectively, with 6xHis-TNFα forming tetragonal crystals. The tetragonal TNFα crystal diffracted to 2.0 Å (synchotron) and the tetragonal 6xHis-TNFα crystal diffracted to 2.5 Å (homelab).

Conclusions

We show the application of a protein purification strategy which makes use of a single Ni-NTA IMAC column and the exoproteolytic removal of the His-tag by TAGZyme to generate native proteins of highest purity and

The only process requirement is a properly designed His tag sequence at the N-terminus of the expressed protein. Vectors of the TAGZyme pQE series may be used, or sequences may be checked by the TAGDesigner online tool on www.qiagen.com/products/protein/tagdesigner/default.aspx.

The workflow has been successfully applied for several proteins and we show data for monomeric hll-1 β and trimeric hTNFca. The process is scalable to the production range and enables generation of biopharma grade protein [2]. Its most striking advantages are:

- Ni-NTA IMAC is the only chromatographic principle required use in regular and reverse
- Homogenous protein preparations free of host cell-derived impurities and process components (enzymes)
- Absolute specificity of TAGZyme processing generate quality-proven proteins of native sequence

We believe that this process is a universally applicable strategy for purification of proteins for structural studies as well as for production of biopharmaceuticals.

- Block et al. (2008). Production and comprehensive quality control of recombinant human interfealulin 1b: a case study for a process. Prot. Expr. Purfl., in press.
 Expl. et al. (1986). Cytaellization of himeric recombinant human human necrosis factor (Cachedin), J. Biol. Chem. 263, 12816.