

August 2023

Quick-Start Protocol

# **Reverse Transcriptase**

Reverse Transcriptase (cat. no. RT32-010) is a modified, recombinant form of the Reverse Transcriptase from Moloney Murine Leukemia Virus (M-MuLV) purified from *E. coli*. Reverse Transcriptase synthesizes a complementary DNA strand in the presence of a primer using either RNA (cDNA synthesis) or single-stranded DNA (ssDNA) as a template.

Reverse Transcriptase is shipped on dry ice. All components should be stored at  $-20^{\circ}$ C in a freezer without a defrost cycle.

### Further information

- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.qiagen.com

### Notes before starting

- Acquisition of high quality, intact RNA, free of genomic DNA and RNase traces, is vital for the synthesis of full-length cDNA followed by an accurate quantitative analysis (qPCR). The following recommendations for working with RNA should therefore be followed:
  - Maintain aseptic working conditions: use disposable gloves, changing them as frequently, as required; use RNase-free consumables; only work in an area assigned for working with RNA and with equipment designated for that purpose.

## Sample to Insight

- RNA samples should be stored aliquoted at -70°C. Avoid subjecting the samples to repeated freezing and thawing cycles.
- During RT-PCR preparation keep Reverse Transcriptase and **10x RT** Reaction Buffer on ice or in a freezing rack.
- Use an RNase H treatment for reactions sensitive to residue RNA traces in order to increase the sensitivity of RT-qPCR.
- The quantity of cDNA used when preparing PCR or qPCR reactions should not exceed 1/10 of a final reaction volume; e.g., a maximum volume of 2.5  $\mu$ L of cDNA should be used in a 25  $\mu$ L reaction.
- The activity of Reverse Transcriptase is inhibited by metal ion chelating agents (e.g., EDTA), inorganic phosphors, pyrophosphates and polyamines.
- Enzyme inactivation should be carried out at 85°C for 5 min.

## Protocol for the first strand cDNA synthesis

 Add all reaction reagents listed below to a sterile nuclease-free tube placed on ice or in a freezing rack (for a larger quantity of samples, preparing Master Mix without an RNA template is recommended). The reagents should be added in the following order:

|             | Reagent                                                                            | Quantity                                        |
|-------------|------------------------------------------------------------------------------------|-------------------------------------------------|
| RNA         | Total RNA<br>mRNA                                                                  | 10 pg – 5 μg<br>10 pg – 500 ng                  |
| Primer      | oligo(dT) <sub>12-18</sub> primer mix<br>or random hexamers<br>or specific primers | 1 μL (50 μM)<br>1 μL (50–250 ng)<br>1 μL (pmol) |
| Nucleotides | 10 mM dNTP MIX                                                                     | 1 µL (final conc. 0.5 mM)                       |
| Water       | Nuclease-free water                                                                | Fill up to 16 µL                                |

#### Table 1. Reagents to be added and corresponding quantities

**Optional**: For denaturation, incubate the sample at 65°C for 5 min, cool on ice, spin briefly, and return to ice. This denaturation step is necessary if GC-rich templates containing secondary structures are used.

#### 2. Add the reagents listed below to the sample in the order tabulated below.

#### Table 2. Order of reagents to be added to the sample

| Reagent                                  | Quantity     |
|------------------------------------------|--------------|
| 10x RT Reaction Buffer                   | 2 µL         |
| RNase Inhibitor (optional, not provided) | 1 µL (40 U)  |
| Reverse Transcriptase                    | 1 µL (200 U) |
| Total volume                             | 20 µL        |

3. Mix gently and spin briefly.

**Optional**: Incubate sample at 25°C for 10 min. If random hexamers are used, this step is mandatory.

- 4. Incubate at 50°C for 30 min.
- 5. Stop the reaction at 85°C for 5 min and immediately cool the sample on ice.
- 6. The cDNA obtained is ready for direct use in PCR or qPCR (undiluted or diluted in nuclease-free water or TE buffer) or can be stored at -20°C or -70°C.

## **Document Revision History**

| Date        | Changes         |
|-------------|-----------------|
| August 2023 | Initial release |

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN<sup>®</sup>, Sample to Insight<sup>®</sup> (QIAGEN Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

08/2022 HB-3444-001 © 2023 QIAGEN, all rights reserved.