

The card offers a reliable laboratory and field collection tool suitable for use in plant phylogenetics and population genetics. Proven nucleic acid storage and extraction methods enable barcoding and molecular systematics in insects, plants and fungi.

↓ °C	Compact storage and transport at room temperature	
Ċ*	Detection of plant- or insect-transmitted pathogens with less biohazard risks due to e.g., virus or bacteria inactivation	QIA cord FTA T
E LE XXX	Nucleic acid extraction methods require fewer hazardous chemicals (no phenol/chloroform or CTAB)	
A.	FTA technology enables safe storage and analysis of precious samples for detecting GMOs or to provide DNA identification information to law enforcement e.g., Cannabis strains.	QIAcard FTA Technolog FTA (Flinders Technolog a chemically coated cel impregnated chemistry
	Suitable for downstream procedures including end-point PCR, STR analysis and next-generation sequencing studies	cells upon contact and Released DNA is trappe protected from degrade

gy

y Associates) is llulose matrix. The is capable of lysing denatures proteins. ed on the card and ition.

Sample to Insight

Analysis Protocol for QIAcard FTA PlantSaver

FTA Wash Buffer Method

1. Sample press Ø Press solid tissue on the card or apply homogenate

Punch a disc out of the FTA matrix impregnated with sample material using e.g. a UniCore Puncher

Place the disc in a PCR tube and wash twice with QIAcard FTA

Wash twice with TE⁻¹ buffer and discard used reagent after

Completely dry the disc in the PCR tube

Add the PCR master mix directly to the disc to perform a direct

Plant samples

I

- Analysis of plant DNA/RNA & associated viral RNA
- Reduced propagation capability of plant material important for national import restrictions and transport between states and countries
- DNA stabilization allows resampling of material for precious samples e.g., Cannabis strains

Aggrotis capillaris¹ (Common bent) Agrostis stolonifera¹ (Bentgrass) Asclepias syriaca² (Common milkweed) Magnolia virginiana² (Sweetbay magnolia) Opuntia laevis² (Prickly pear) Petunia × hybrida³ (Garden petunia) Pinus virginiana² (Virginia pine) Ratibida pinnata² (Prairie coneflower) Sorghum bicolor⁴ (Great millet) Terminalia arjuna⁵ (Arjun tree)

References

Insect samples			
Febres	 Insect DNA and insect-transmitted pathogen detection possible even on site with e.g., loop-mediated isothermal amplification (LAMP) Protein denaturing and enzyme inactivation Endogenous cellular material released by cell lysis 	References	Crematogaster osakensis ⁹ (Valentine ant) Liriomyza sativae ⁸ (Leafminers) Macrosteles quadrilineatus ⁶ (Aster leafhopper) Macrotermes gilvus ⁷ (Hagen termite) Macrotermes carbonarius ⁷ (Hagen termite) Nasutitermes corniger ⁷ (Motschulsky termite)

Fungi samples

Learn more about our QIAcard FTA PlantSaver cards, including instructions for use. Visit www.qiagen.com/products/human-id-and-forensics/

The mentioned samples are an example of already analyzed materials without any claim to comprehensiveness Instructions for use to be found at www.giagen.com

Ordering Information

Product	Pack size	Cat. no.
QIAcard FTA PlantSaver	100 cards	WB120065
QIAcard FTA Wash Buffer	25ml bottle	WB120112
QIAcard FTA Wash Buffer	500ml bottle	WB120204
Indicating Desiccant Pack	Desiccant packets (1g) with colour indicator	WB100003
Multi-Barrier Pouch (4.37" x 6.5")	100 pouches (4.37 "x 6.5"/11.1 x 16.5 cm)	WB100037
UniCore Punch Kit 2.00 mm	4 pieces (including 2 cutting mats)	WB100029
Cutting Mat (2.5″ x 3.0″)	For clean sample cuts from FTA/FTA Elute Cards	WB100088
Cutting Mat (6″ x 8″)	For clean sample cuts from FTA/FTA Elute Cards	WB100020

References

- 1. Warnke (2020) Detection of interspecific hybrids between creeping bentgrass and colonial bentgrass using DNA marker analysis. Agrosystems Geosci Environ. doi.10.1002/agg2.20048
- Siegel et al. (2017) Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa. Appl Plant Sci. doi. 10.3732/apps. 1600109 2.
- Walworth et al. (2013) Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Mol Breeding. doi. 10.1007/s11032-013-9989-7 3.
- 4.
- Adugna et al. (2013) Estimation of in situ mating systems in wild sorghum (Sorghum bicolor (L.) Moench) in Ethiopia using SSR-based progeny array data: implications for the spread of crop genes into the wild. J Genet. doi:10.1007/s12041-013-0214-6 Sairkar et al. (2013) Optimization of DNA isolation process and enhancement of RAPD PCR for low quality genomic DNA of Terminalia arjuna. J Genet Eng Biotech. doi:10.1016/j.jgeb.2013.02.001 5.
- Pusz-Bochenska et al. (2020) A rapid, simple, laboratory and field-adaptable DNA extraction and diagnostic method suitable for insect-transmitted plant pathogen and insect identification. Plant Health Progress. doi.10.1094/PHP-09-19-0063-FI 6.
- 7 Bujang et al. (2011) An improved method for extraction and purification of termite endo--1,4-gluanase from FTA cards. Florida Entomol. doi.10.1653/024.094.0236
- Blacket et al. (2015) DNA-based identifications reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua 8. New Guinea. Bull Entomol Res. doi.10.1017/s0007485315000383
- Content of an appropriate of the polygynous ant, Crematogaster osakensis. Insectes Sociaux. doi. 10.1007/s00040-016-0522-y
 Dentinger et al. (2010) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol Ecol Resour. doi. 10.1111/j. 1755-0998.2009.02825.x
- Subara & Kurogi (2015) Cantharellus cyphelloides (Cantharellales), a new and unusual species from a Japanese evergreen broad-leaved forest. Mycological Progress. doi.10.1007/ s11557-015-1079-2 11.
- Childgane et al. (2013) Incorporation of resistance to angular leaf spot and bean common mosaic necrosis virus diseases into adapted common bean genotype in Tanzania. African J Biotech. doi.10.5897/AJB2012.9651 12.
- 13. Omoigui et al. (2019) Inheritance of resistance to Cercospora leaf spot disease of cowpea [Vigna unguiculata (L.) Walp]. Euphytica. doi.10.1007/s10681-019-2420-7
- 14. Grund et al. (2010) Application of FTA® cards to sample microbial plant pathogens for PCR and RT-PCR. J Phytopathol. doi. 10.1111/j.1439-0434.2010.01695.x

Trademarks: QIAGEN®, Sample to Insight®, QIAcard® QIAGEN Group); FTA® (Whatman Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

PROM-18983-001 1125508 08/2021 © 2021 QIAGEN, all rights reserved.