

Quick-Start Protocol

Q-Solution® Kit

For the vast majority of applications on the QIAcuity® platform, users can simply combine their template and assays with any of the uniquely formulated QIAcuity master mixes to obtain excellent results. However, for certain challenging instances, adjusting the QIAcuity reaction chemistry may be necessary to ensure best performance. For these cases, we have developed the Q-Solution Kit, which contains a 5x Q-Solution and a standalone solution of 25 mM magnesium chloride (MgCl₂).

Q-Solution is an innovative and versatile PCR additive that works in part by lowering the melting temperature of DNA. Adjusting template melting properties can be useful when interrogating DNA with high-GC content or with complex secondary structures, like Adenoassociated virus (AAV) genomes. Q-Solution has additional properties that can be used to mitigate the carryover of PCR inhibitors, like ethanol and heparin.

In contrast to Q-Solution, the MgCl₂ supplied with the kit stabilizes double stranded DNA structures, including those formed between primers and template. If weak primer or probe binding is suspected to be underlying poor PCR performance, MgCl₂ may be used to boost primer binding affinity. Magnesium chloride is also an essential cofactor for DNA polymerase function. Carryover of magnesium chelators like EDTA into a PCR reaction may cause total PCR failure. This can be mitigated by adding additional MgCl₂ to the reaction.

Q-Solution and $MgCl_2$ can be used alone or in combination. Particularly high concentrations of Q-Solution (e.g., >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding $MgCl_2$ to the reaction will be necessary for best performance. This Quick-Start Protocol will highlight a few

examples of how the Q-Solution Kit can be used in QIAcuity workflows. However, the utility of the Q-Solution Kit is not limited to the use cases presented here. Furthermore, the concentrations of Q-Solution and MgCl₂ used in the examples shown here may not work for all use cases

Further information

- QlAcuity User Manual: www.qiagen.com/HB-2717
- QlAcuity User Manual Extension: www.qiagen.com/HB-2839
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.qiagen.com

The Q-Solution Kit should be stored immediately upon receipt at -30° C to -15° C in a constant-temperature freezer. Unless otherwise indicated on the label, the components are stable for 36 months without showing any reduction in performance under these conditions.

On the QIAcuity, up to 830 (12 μ L) dPCR reactions or 250 (40 μ L) dPCR reactions can be performed with one kit, when using 1x Q-Solution and 3mM MgCl₂.

Notes before starting

- Refer to the Quick Start Protocol of the according Kits for detailed procedures:
 - O QIAcuity Probe PCR Kit: www.qiagen.com/HB-2792
 - O QIAcuity OneStep Advanced Probe Kit: www.qiagen.com/HB-3048
 - O QIAcuity EG PCR Kit: www.qiagen.com/HB-2791
 - O QIAcuity UCP Probe PCR Kit: www.qiagen.com/HB-3100
- Thaw the Q-Solution and MgCl₂. Vigorously mix the individual solutions. Centrifuge briefly to collect liquids at the bottom of the tubes

Procedure

As a universal approach Q-Solution can be added with 1x concentration in the dPCR reaction. If necessary the concentration range can be titrated from 0.25x to 2x.

High concentrations of Q-Solution (e.g., >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding MgCl₂ to the reaction may be necessary for best performance starting with 3.4mM. If necessary, the concentration range can be titrated from 0mM to 6.7mM.

For detailed examples and further guidance, please use the application note. For cases not mentioned in the QSP or Application note, please proceed as described above and use Q-Solution in the first step. If you still experience unsatisfactory performance adjust the concentration and/or use and adjust $MgCl_2$ concentration.

Table 1. Preparing the QIAcuity Probe PCR reaction mix

Component	Volume/reaction			
	Nanoplate 8.5k (24-well and 96-well)	Nanoplate 26k (8-well and 24- well)	Final concentration	
4x Probe PCR Master Mix	3 µL	10 µL	1x	
10x primer-probe mix 1*	1.2 μL [†]	4 μL [†]	0.8 μM forward primer 0.8 μM reverse primer 0.4 μM probe	
10x primer-probe mix 2, 3, 4, 5* (for multiplex)	1.2 μL [†]	4 μL [†]	0.8 μM forward primer 0.8 μM reverse primer 0.4 μM probe	
Restriction Enzyme (optional)	Up to 1 µL	Up to 1 µL	0.025-0.25 U/μL	
5x Q-Solution	2.4 μL [‡]	8 hr‡	1x	
25mM MgCl ₂	Variable	Variable	OmM§	
Rnase-free water	Variable	Variable		
Template DNA or cDNA	Variable¶	Variable¶		
Total reaction volume	12 µL	40 μL		

^{*} For respective dye recommendation for the probe and available channels on the QIAcuity, please see the *QIAcuity User Manual* or the *QIAcuity User Manual Extension: Application Guide.*

[†] Volume might vary, depending on the concentration of the primer/probe mix used.

[‡] As a universal approach, the Q-Solution can be added with 1x concentration in the dPCR reaction. If necessary, the concentration range can be titrated from 0.25x to 2x.

[§] High concentrations of Q-Solution (e.g. >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding MgCl₂ to the reaction may be necessary for best performance starting with 3.4mM. If necessary the concentration range can be titrated from 0mM to 6.7mM.

Appropriate template amount depends on various parameters. Please see the QIAcuity User Manual Extension: Application Guide for details.

Table 2. Preparing the QIAcuity OneStep Advanced Probe PCR reaction mix

	Volume/reaction			
Component	Nanoplate 8.5k (24-well and 96-well)	Nanoplate 26k (8-well and 24- well)	Final concentration	
4x OneStep Advanced Probe Master Mix	3 µL	10 µL	1x	
100x OneStep Advanced RT Mix (Reverse Transcription)	0.12 μL	0.4 μL	1x	
20x primer-probe mix 1*	0.6 μL	2 μL	0.4 μM forward primer0.4 μM reverse primer0.2 μM probe	
20x primer-probe mix 2, 3, 4, 5* (for multiplex)	0.6 µL (each)	2 μL (each)	0.4 μM forward primer 0.4 μM reverse primer 0.2 μM probe	
Enhancer GC [†] (optional)	1.5 µL	5 µL	-	
5x Q-Solution	2.4 µL‡	8 µL‡	1x	
25mM MgCl2	Variable	Variable	OmM [§]	
Rnase-free water	Variable	Variable		
Template RNA¶	Variable	Variable		
Total reaction volume	12 µL	40 µL		

^{*} For respective dye recommendation, see the QIAcuity User Manual or the QIAcuity User Manual Extension.

[†] Enhancer GC is recommended for use with all Applied Biosystems TaqMan® assays, amplicons >150 bp in length, GC-rich amplicons, and RNA targets containing challenging secondary structures.

[‡] As a universal approach Q-Solution can be added with 1x concentration in the dPCR reaction. If necessary, the concentration range can be titrated from 0.25x to 2x.

[§] High concentrations of Q-Solution (e.g. >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding MgCl₂ to the reaction may be necessary for best performance starting with 3.4mM. If necessary, the concentration range can be titrated from 0mM to 6.7mM.

[¶] Appropriate template amount depends on various parameters.

Table 3. Preparing the QIAcuity EvaGreen® PCR reaction mix

	Volume/reaction		
Component	Nanoplate 8.5k (24-well and 96-well)	Nanoplate 26k (8-well and 24- well)	Final concentration
3x EvaGreen PCR Master Mix (FAM channel)	4 µL	13.3 µL	1x
10x primer mix	1.2 µL*	4 µL*	0.4 µM forward primer 0.4 µM reverse primer
Restriction Enzyme (optional)	Up to 1 µL	Up to 1 µL	0.025-0.25 U/µL
5x Q-Solution	$2.4~\mu L^{\dagger}$	8 µL†	1x
25mM MgCl ₂	Variable	Variable	OmM [‡]
Rnase-free water	Variable	Variable	
Template DNA or cDNA	Variable§	Variable§	
Total reaction volume	12 µL	40 µL	

^{*} Volume might vary, depending on concentration of the primer/probe mix used.

[†] As a universal approach, the Q-Solution can be added with 1x concentration in the dPCR reaction. If necessary, the concentration range can be titrated from 0.25x to 2x.

[†] High concentrations of Q-Solution (e.g. >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding MgCl₂ to the reaction may be necessary for best performance starting with 3.4mM. If necessary the concentration range can be titrated from 0mM to 6.7mM.

[§] Appropriate template amount depends on various parameters. Please see the *QlAcuity User Manual Extension:*Application Guide for details.

Table 4. Preparing the QIAcuity UCP Probe PCR reaction mix

Volume/reaction Nanoplate 8.5k Nanoplate 26k (24-well and (8-well and 24-Component 96-well) well) Final concentration 4x UCP Probe Master Mix 3 µL 10 µL 1x 20x primer-probe mix 1* 0.6 µL[†] $2 \mu L^{\dagger}$ 0.6 µM forward primer 0.6 µM reverse primer 0.2 µM probe 20x primer-probe mix 2, 3, 4, 5* 0.6 µL[†] $2 \mu L^{\dagger}$ 0.6 µM forward primer (for multiplex) 0.6 µM reverse primer 0.2 µM probe Restriction Enzyme (optional) Up to 1 µL Up to 1 µL 0.025-0.25 U/µL 5x Q-Solution 2.4 µL‡ 8 µL‡ 1x 25mM MgCl₂ Variable Variable $0mM^{\S}$ UCP PCR water Variable Variable Variable[¶] Variable[¶] Template DNA or cDNA

* For respective dye recommendation for the probe and available channels on the QIAcuity, please see the *QIAcuity User Manual* or the *QIAcuity User Manual Extension: Application Guide.*

40 pL

12 pL

- [†] Volume might vary, depending on the concentration of the primer/probe mix used. For TaqMan® probes, we suggest a final concentration of 0.8μM for each primer and 0.4 μM for each probe.
- [‡] As a universal approach, the Q-Solution can be added with 1x concentration in the dPCR reaction. If necessary the concentration range can be titrated from 0.25x to 2x.
- § High concentrations of Q-Solution (e.g. >1x) can lower the available concentration of Magnesium in the PCR reaction. Therefore, in applications requiring high levels of Q-Solution, adding MgCl₂ to the reaction may be necessary for best performance starting with 3.4mM. If necessary the concentration range can be titrated from 0mM to 6.7mM.
- [¶] Appropriate template amount depends on various parameters. Please see the *QlAcuity User Manual Extension:*Application Guide for details.

Total reaction volume

Document Revision History

Date

Changes

March 2024

Initial release.

Scan QR code for the QIAcuity User Manual.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, Sample to Insight®, Q-Solution®, QIAcuity®, TaqMan® (QIAGEN Group); EvaGreen® (Biotium, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

03/2024 HB-3559-001 © 2024 QIAGEN, all rights reserved.