June 2018

GeneRead[™] QIAact AIT DNA UMI Kit Handbook

\S_{24}

For constructing targeted, molecularly bar-coded libraries from DNA for digital sequencing with next-generation sequencing (NGS)

181911

QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden

For Research Use Only. Not for use in diagnostic procedures.

Contents

Kit Contents	4
Storage	6
Intended Use	6
Safety Information	6
Quality Control	.7
Introduction	8
Principle and procedure	8
Equipment and Reagents to Be Supplied by User1	2
Important Notes	3
DNA preparation1	3
DNA quantification1	5
Protocol: Fragmentation, End-repair and A-addition1	6
Protocol: Adapter Ligation1	8
Protocol: Cleanup of Adapter-ligated DNA with QIAact Beads	20
Protocol: Target Enrichment PCR2	23
Protocol: Cleanup of Target Enrichment PCR with QIAact Beads	25
Protocol: Universal PCR Amplification2	27
Protocol: Cleanup of Universal PCR with QIAact Beads	29
Troubleshooting Guide	31
Symbols3	32
Appendix A: Analyze the Library Using QIAxcel Advanced	33
Appendix B: Analyze the Library Using the Agilent 2100 Bioanalyzer	34

Ordering Information	5
----------------------	---

Kit Contents

GeneRead QIAact AIT DNA UMI Kit	
Catalog no.	181911
Number of reactions	24
GeneRead QIAact DNA Library Prep and Target Enrichment Reagents (Kit Box 1)*	
QIAact AIT DNA UMI Target Enrichment Kit and QIAact Adapters (Kit Box 2)*	

* Kit boxes 1 and 2 are components of the GeneRead QIAact AIT DNA UMI Kit.

GeneRead QIAact DNA Library Prep and Target Enrichment Reagents*		
Number of reactions	24	
Fragmentation buffer, 10x	65 µl	
Fragmentation Enzyme Mix	130 µl	
FERA Solution	20 µl	
Ligation buffer, 5x	260 µl	
Ligation Solution	200 µl	
DNA Ligase	130 µl	
Nuclease-Free Water	2 x 2 ml	
TEPCR buffer, 5x	220 µl	
UPCR buffer, 5x	220 µl	
HotStarTaq® DNA Polymerase	2 x 50 µl	
One bottle containing QIAact Beads (provided in separate cold-packed shipment)	10 ml	

* Not for individual sale; to order reagents, see cat. no. 181911.

QIAact AIT DNA UMI Target Enrichment Kit and QIAact Adapters *	
Number of reactions	24
GeneRead QIAact AIT DNA UMI Kit Forward Primers	30 µl
GeneRead QIAact AIT DNA UMI Kit Reverse Primers	30 µl
QIAact Adapters (contains 12 tubes with each tube corresponding to one - specific 9 bp sample bar code; each tube can process up to 2 samples)	12 µl
GeneReader TE-PCR Primer	40 µl
GeneReader Universal PCR Primer A	40 µl
GeneReader Universal PCR Primer B	40 µl
Water for sample dilution	1.9 ml

* Not for individual sale; to order products, see cat. no. 181931.

Storage

The GeneRead QIAact AIT DNA Kit, QIAact Library Prep and Target Enrichment Reagents (except QIAact Beads) are all shipped on dry ice and should be stored at -15° C to -30° C upon arrival. QIAact Beads are shipped on cold packs and should be stored at 4° C. When stored properly, all reagents are stable for up to 3 months after delivery.

Intended Use

The GeneRead QIAact AIT DNA UMI Kit, GeneRead QIAact Library Prep and Target Enrichment Reagents are intended for Research Use Only and are not for use ing diagnostic procedures.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety** where you can find, view and print the SDS for each QIAGEN[®] kit and kit component.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of the GeneRead QIAact AIT DNA UMI Kit is tested against predetermined specifications, to ensure consistent product quality.

Introduction

DNA sequencing is a useful tool to detect genetic variations, including somatic mutations, single nucleotide variants (SNVs), copy number variation (CNVs) and small insertions and deletions (inDels). Targeted enrichment technology enables next-generation sequencing (NGS) platform users to sequence specific regions of interest instead of the entire genome, effectively increasing sequencing depth and throughput with lower cost. Existing target enrichment methods, library preparation and sequencing steps all utilize enzymes and amplification processes, which introduce substantial bias and artifacts. These biases and artifacts lead to background artefactual errors that greatly limit the detection of true low-frequency variants in heterogeneous samples such as tumors.

The GeneRead QIAact AIT DNA UMI Kit integrates unique molecular index (UMI) technology into a gene-specific, primer-based target enrichment process, enabling sensitive variant detection of targeted genomic regions by NGS on the GeneReader system.

The GeneRead QIAact AIT DNA UMI Kit has been optimized in combination with a specially formulated enrichment chemistry to achieve highly efficient enrichment on both regular and GC-rich regions at high multiplex levels.

Principle and procedure

The GeneRead QIAact AIT DNA UMI Kit relies on gene-specific primer enrichment and UMIs for uniform coverage and sensitive variant detection.

Unique molecular index

The concept of unique molecular indexing is that prior to any amplification, each original DNA molecule is attached to a unique sequence index. This attachment is accomplished by the ligation of fragmented DNA with a QIAact adapter containing a UMI with eight (8) random bases.

The DNA molecules are then amplified by PCR for target enrichment and library amplification. Due to intrinsic noise and sequence-dependent bias, DNA molecules with UMIs may be amplified unevenly across the target regions. Even target region coverage can be achieved by counting the number of UMIs in the reads rather than counting the number of total reads for each region. Sequence reads with varying UMIs represent different original molecules, while sequence reads with the same UMI are the result of PCR duplication from one original molecule.

PCR amplification and the sequencing process generate biases and artefacts which lead to the recording of false-positive DNA variants in the sequencing reads. These false-positive variants may mask the detection of true low-frequency variants in heterogeneous samples such as tumors. To reduce the number of false-positive variants, call variants across all reads within a UMI versus only calling variants from the original sequencing read (Figure 1).

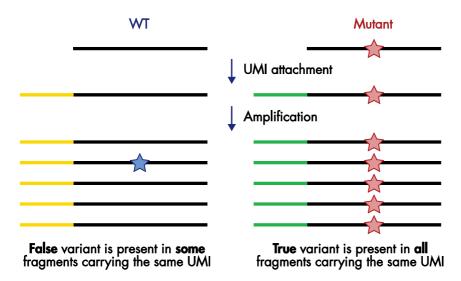


Figure 1. Principle of variant detection with UMI. Each original molecule is tagged by a UMI. True variants are those mutations present in the majority of reads within a UMI, while errors are mutations present in only one or a few reads within a UMI. Description of the variant calling algorithm can be found at **www.qiagen.com**.

Procedure

The GeneRead QIAact AIT DNA UMI Kit is provided as two primer mix tubes, with approximately 500 primers per tube. The GeneRead QIAact AIT DNA UMI Kit is designed to enrich specific target regions in select genes (AKT1, ALK1, BRAF, CTNNB1, DDR2, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, HRAS, KIT, KRAS, MAP2K1, MAP2K2, MET, NOTCH1, NRAS, PDGFRA, PIK3CA, RAF1, SMAD4, STK11) using 40-160 ng of DNA.

Genomic DNA samples are first fragmented, end-repaired and A-tailed using a single, controlled multi-enzyme reaction. The prepared DNA fragments are then ligated at their 5' ends to a GeneReader specific adapter containing a UMI and a 9 base-pair (bp) sample-specific bar code.

Ligated DNA molecules are subject to limited cycles of target enrichment PCR, with one genespecific primer targeting a region and one universal forward primer complimentary to an adapter sequence. This reaction ensures that intended targets and UMIs are enriched sufficiently to be represented in the final library. A universal PCR with GeneReader specific sequences is then carried out to amplify the targets and complete the library.

Once the library is sequenced, results can be analyzed using the GeneRead QIAact AIT DNA UMI Kit workflow, which will automatically perform all steps necessary to generate a DNA sequence variant report from your raw NGS data. All detected variants can be further interpreted by QIAGEN Clinical Insight (QCI[™]) analysis.

Recommendation for multiplexing and clonal amplification input

More than one DNA sample can be sequenced in one flow cell and this is made possible by the addition of a 9 bp sample-specific bar code that is added during library preparation (see "Protocol: Adapter Ligation", page 18). The sequencing libraries prepared from the corresponding samples must be pooled prior to clonal amplification to allow them to be sequenced together in one flow cell (see "Protocol: Library Concentration Normalization and

Pooling" in the QIAGEN GeneRead Clonal Amp Q Handbook for more information). Based on the total number of amplicons that are produced by the GeneRead QIAact AIT DNA UMI Kit, we recommend a multiplex maximum of 8 samples for FFPE. To allow for loss of volume during solution transfer, we have suggested protocols which contain 9x the amount of each product required when preparing an 8-plex batch of samples.

After target enrichment and library preparation, use 625 pg pooled DNA in the clonal amplification process (see "Preparing Libraries for Emulsion Making" in the QIAGEN GeneRead Clonal Amp Q Handbook for more information).

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

In addition to the QIAact Library Prep and Target Enrichment Reagents and GeneRead QIAact AIT DNA UMI Kit, the following supplies are required:

For DNA isolation:

• See "Recommended DNA preparation methods", page 14

For library construction and targeted enrichment:

- High-quality, nuclease-free water: **Do not use DEPC-treated water**
- 80% ethanol, made fresh
- Microcentrifuge
- 1.5 ml LoBind tubes (Eppendorf®)
- 0.2 ml PCR tubes, 96-well PCR plates or PCR strips and caps
- Thermal cycler (e.g., Bio-Rad[®] C1000[™])
- Multichannel pipettor
- Single-channel pipettor
- DNase-free pipet tips and tubes
- QIAxcel® Advanced instrument (for information, visit **www.qiagen.com**)
- QIAxcel DNA High Resolution Kit (QIAGEN cat. no. 929002)
- QX DNA Size Marker 50–800 bp (50 µl) (QIAGEN cat. no. 929561)
- QX Alignment Marker 15 bp/3 kb (1.5 ml) (QIAGEN cat. no. 929522)

- QX Nitrogen Cylinder (x 6) (QIAGEN cat. no. 929705)
- Qubit[®] 3.0 Fluorometer (Thermo Fisher Scientific™ cat. no. Q33216) or equivalent
- Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific cat. no. Q32851)
- Qubit assay tubes (e.g., Thermo Fisher Scientific cat. no. Q32856)
- DynaMag[™]-2 Magnet (Thermo Fisher Scientific cat. no. 12321D)

Optional

- QIAxpert[®] System (for information, visit **www.qiagen.com**)
- Agilent[®] 2100 Bioanalyzer[®]
- Agilent High Sensitivity DNA Kit (Agilent cat. no. 5067-4626)

Important Notes

DNA preparation

Maximizing DNA quality is essential for obtaining good sequencing results

The most important prerequisite for sequence analysis is maximizing the DNA quality of every experimental sample. Therefore, sample handling and DNA isolation procedures are critical to the success of the experiment.

Residual traces of proteins, salts or other contaminants may either degrade the DNA or decrease the efficiency of (if not block completely) the enzyme activities necessary for optimal targeted genome amplification.

Recommended DNA preparation methods

The QIAGEN QIAamp[®] DNA Mini Kit (cat. no. 51304), GeneRead DNA FFPE Kit (cat. no. 180134), or QS GeneRead DNA FFPE Treatment Kit (cat. no. 185306) in combination with the QIAsymphony DSP DNA Mini Kit (cat. no. 937236) are highly recommended for the preparation of genomic DNA samples from different sample types. **Do not** omit the recommended RNase treatment step to remove RNA.

For best results, all DNA samples should be resuspended in the recommended buffer or DNase-free 10 mM Tris* buffer pH 8.0. **Do not use DEPC-treated water**.

DNA quantification

For best results, all DNA samples should also demonstrate consistent quality according to the following criteria:

DNA purity determined by UV spectrophotometry

The purity of DNA should be determined by measuring absorbance in a spectrophotometer such as the QIAxpert System. Prepare dilutions and measure absorbance in 10 mM Tris·Cl* buffer pH 8.0. The spectral properties of nucleic acids are highly dependent on pH.

 A_{260}/A_{280} ratio should be greater than 1.8.

DNA concentration

The concentration of DNA should be determined by fluorometric quantitation using the Qubit 3.0 Fluorometer (Thermo Fisher Scientific cat. no. Q33216). DNA input of 40-160 ng is recommended for the GeneRead QIAact AIT DNA UMI Kit. For high-quality DNA from reference cell lines, DNA input of 40 ng is recommended. For unknown or lower quality FFPE DNA, DNA input of 160 ng is recommended. For FFPE DNA, lower input amounts down to 40 ng are possible, however this will lead to fewer sequenced UMIs and depending on the DNA quality may lead to reduced variant detection sensitivity.

^{*} When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs), available from the product supplier.

Protocol: Fragmentation, End-repair and Aaddition

Important points before starting

- Ensure input DNA is in 10mM Tris, for example QIAGEN's Buffer EB, QIAGEN's Buffer ATE or low TE (0.1x TE, 0.1mM EDTA).*
- Pre-chill thermal cycler to 4°C.

Procedure

- If using 40 ng of DNA as input (i.e., for high quality DNA), dilute DNA to 2.5 ng/μl with nuclease-free water in a LoBind tube. Use 16 μl of diluted DNA for fragmentation.
 Note: if using 160 ng of DNA as input (i.e., for unknown or lower quality FFPE DNA), dilute DNA to 40 ng/μl with nuclease-free water in a LoBind tube.
- 2. Prepare a reaction mixture for fragmentation, end-repair and A-addition according to Table 1, dispensing the reagents into a 0.2 ml PCR tube on ice. It is important to keep the mixture on ice and mix the components well by pipetting up and down 10 times with a pipet set to $20 \mu l$.

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs), available from the product supplier.

Component	1 x Volume (µl)	8 x Volume (µl)
DNA	16	
Fragmentation buffer, 10x	2.5	21.25
FERA Solution	0.75	6.38
Nuclease-Free Water	0.75	6.38
Total volume	20	34

Table 1. Preparation of mixture for fragmentation, end-repair and A-addition

 Add 5 µl Fragmentation Enzyme Mix to each reaction and ensure that the reaction solution is mixed well by pipetting up and down 10 times with a pipet set to 4 µl volume.
 IMPORTANT: Do not vortex.

IMPORTANT: It is critical to keep the PCR tube or plate on ice for the entire time during reaction setup.

 Program a thermal cycler according to Table 2. Be sure to use the instrument's heated lid (e.g., set to 103°C).

Time	Temperature	Number of cycles
1 minutes	4°C	1
24 minutes	32°C	1
30 minutes	72°C	1
∞* 	4°C	Hold

Table 2. Thermal cycler conditions

* Samples should not remain at 4°C for a prolonged period of time.

- 5. Start the program, then pause it when the thermal cycler block reaches 4°C.
- 6. Transfer the PCR tube to the pre-chilled thermal cycler and resume the cycling program.
- When the thermal cycler program is complete and the sample block has returned to 4°C, remove the samples and place them on ice.
- 8. Immediately proceed to the next protocol, "Adapter Ligation", page 18.

Protocol: Adapter Ligation

Procedure

1. Prepare the following ligation reaction master mix on ice and mix well by pipetting up and down 10 times with a pipet set to $25 \mu l$ (Table 3).

Component	1x Volume (µl)	8x Volume (µl)
Ligation buffer, 5x	10	85
DNA Ligase	5	42
Ligation Solution (PEG6000, 50%)	7.2	61.2
Total volume	22.2	188.7

Table 3. Reaction setup for adapter ligation

 Each QIAact Adapter has a different 9 bp sample-specific bar code. Transfer 2.8 µl of one QIAact Adapter for each sample being prepared into a separate 0.2 ml PCR tube(s).

Note: Only one single QIAact Adapter should be used per ligation reaction. Open only one adapter tube at a time to avoid cross-contamination. It is also recommended to change gloves between each adapter addition to avoid cross-contamination.

- 3. Transfer 25 μ l of each Fragmentation, End-repair and A-addition product, into each 0.2 ml PCR tube(s) which contains an adapter.
- Add 22.2 μl of ligation master mix to each 0.2 ml PCR tube(s) and mix gently by pipetting up and down 7 times with a pipet set to 25 μl, centrifuge briefly (10-15 seconds), and then place on ice.

Note: The final ligation reaction volume may be less than 50 μ l. It is important to measure the ligation reaction volume "Protocol: Adapter Ligation". If the volume is less than 50 μ l, add the appropriate volume of nuclease-free water to bring the final volume to 50 μ l.

- 5. Program the thermal cycler to 20°C.
- Transfer tube(s) to the thermal cycler and incubate reaction for 15 minutes at 20°C.
 IMPORTANT: Do not use the heated lid. If it is not possible to disable the heated lid on the thermocycler then leave the lid open.
- 7. After the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Adapter-ligated DNA with QIAact Beads".

Note: If reactions are to be stored after ligation, transfer them to a -20° C freezer. Samples are stable for 3 days.

Protocol: Cleanup of Adapter-ligated DNA with QIAact Beads

Procedure

1. Let the QIAact Beads come to room temperature for at least 30 minutes and vortex thoroughly before use.

Recommendation: vortex for 1 minute at maximum speed.

 Transfer 50 µl ligation reaction from "Protocol: Adapter Ligation", to a 1.5 ml LoBind tube. Add nuclease-free water to bring the volume to 100 µl.

Note: The final ligation reaction volume may be less than 50 μ l due to evaporation. It is important to measure the ligation reaction volume from "Protocol: Adapter Ligation" and then add the appropriate volume of nuclease-free water to bring the final volume to 100 μ l.

- Add 100 µl (1.0x volume) QlAact Beads to 100 µl diluted DNA solution. Mix well by pipetting up and down 10 times with a pipet set to 100 µl. Use a fresh tip for every sample.
- 4. Incubate for 5 minutes at room temperature.
- Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. After the solution is clear, carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 6. Completely remove residual supernatant (it is recommended to use a 10 μ l tip to aspirate the trace amount of residual supernatant after the first aspiration).
- Add 200 µl freshly made 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads. Once complete wait until solution is clear (2–3 minutes). Completely remove ethanol.

- 8. Repeat previous step once.
- 9. After completely removing the ethanol close the tube lid.
- 10. Remove tube from the magnetic rack and centrifuge briefly (10-15 seconds).
- 11. Replace tube on the magnetic rack and wait until solution is clear (2–3 minutes). Open lid and then use a 10 µl tip to remove any residual ethanol, keep tube lid open and air dry the beads for up to 10 minutes on the rack.

Note: Avoid over drying the beads. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads are no longer shiny but do not appear cracked

Note: As the beads in different tubes may dry at different rates, once beads are dry close tube lid to avoid over drying.

- 12. Elute DNA from beads into 52 µl nuclease-free water. Mix well by pipetting up and down 10 times using a pipet set to 25 µl. Use a fresh tip for every sample. Place tube on the rack until solution is clear (5–10 minutes).
- 13. Transfer 50 µl supernatant to a clean 1.5 ml tube.
- 14. Add 50 μl (1.0x volume) QIAact Beads to 50 μl DNA solution from previous step. Mix well by pipetting up and down 10 times with a pipet set to 50 μl. Use a fresh tip for every sample.
- 15. Incubate for 5 minutes at room temperature.
- 16. Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. After the solution is clear, carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 17. Completely remove residual supernatant (it is recommended to use a 10 μ l tip to aspirate the trace amount of residual supernatant after the first aspiration).
- Add 200 µl freshly made 80% ethanol to the tube while it is on the magnetic rack.
 Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet,

to wash the beads. Once complete wait until solution is clear (2–3 minutes). Completely remove ethanol.

- 19. Repeat previous step once.
- 20. After completely removing the ethanol close the tube lid.
- 21. Remove tube from the magnetic rack and centrifuge briefly (10-15 seconds).
- 22. Replace tube on the magnetic rack and wait until solution is clear (2–3 minutes). Open lid and then use a 10 µl tip to remove any residual ethanol, keep tube lid open and air dry the beads for up to 10 minutes on the rack.

Note: Avoid over drying the beads. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads are no longer shiny but do not appear cracked. Ethanol carryover can affect enrichment PCR efficiency in the next protocol, "Target Enrichment PCR".

Note: As the beads in different tubes may dry at different rates, once beads are dry close tube lid to avoid over drying.

- 23. Elute DNA from beads in 22 µl nuclease-free water. Mix well by pipetting up and down 10 times with a pipet set to 15 µl. Use a fresh tip for every sample. Place tube on the magnetic rack until solution is clear (5–10 minutes).
- 24. Prepare two sets of 0.2 ml PCR tubes, one for the forward target enrichment PCR and one for the reverse target enrichment PCR.
- 25. From each 1.5 ml LoBind tube transfer 9.4 μl supernatant to each of two PCR tubes, one for the forward target enrichment PCR and one for the reverse target enrichment PCR. Proceed to the next protocol, "Target Enrichment PCR".

Note: If reactions are to be stored following the QIAact Beads Cleanup protocol, transfer them to a -20° C freezer. Samples are stable for up to 3 days.

Protocol: Target Enrichment PCR

Procedure

 Prepare the following master mixes as indicated in Tables 4 and 5 in separate 1.5 ml LoBind tubes. Mix well by vortexing.

Table 4. Reaction co	omponents for fo	orward taraet (enrichment PCR
Table 4. Reacher c	simponionis tot te	or mara ranger .	

Component	1 x Volume (µl)	8 x Volume (µl)
DNA library (from "Protocol: Cleanup of Adapter-ligated DNA with QIAact Beads")	9.4	-
TEPCR buffer, 5x	4	34
GeneRead QIAact AIT DNA UMI Kit Forward Primers	1.25	10.63
Water for sample dil	3.75	31.88
GeneReader TE-PCR Primer	0.8	6.8
HotStarTaq DNA Polymerase	0.8	6.8
Total volume	20	90.11

Table 5. Reaction components for reverse target enrichment PCR

Component	1 x Volume (µl)	8 x Volume (µl)
DNA library (from "Protocol: Cleanup of Adapter-ligated DNA with QIAact Beads")	9.4	-
TEPCR buffer, 5x	4	34
GeneRead QIAact AIT DNA UMI Kit Reverse Primers	1.25	10.63
Water for sample dil	3.75	31.88
GeneReader TE-PCR Primer	0.8	6.8
HotStarTaq DNA Polymerase	0.8	6.8
Total volume	20	90.11

- Add 10.6µl of master mix from either Table 4 or 5 to the corresponding 0.2 ml PCR tube(s) containing the purified DNA library from the previous section. Mix gently by pipetting up and down 7 times with a pipet set to 10 µl, centrifuge briefly (10-15 seconds).
- Set up the thermal cycler using the cycling conditions provided in Table 6.
 IMPORTANT: Ensure the heated lid on the thermal cycler is turned on for the PCR.

Time	Temperature	Number of cycles
13 minutes 2 minutes	95℃ 98℃	1 (initial denaturation)
15 seconds 10 minutes	98℃ 68℃	8
5 minutes	72°C	1
5 minutes*	4°C	1
∞	4°C	Hold

Table 6. Cycling conditions for target enrichment PCR

* Samples must be held at 4°C for at least 5 minutes.

4. When the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Target Enrichment PCR with QIAact Beads".

Note: If reactions are to be stored after Target Enrichment PCR protocol, transfer them to a -20° C freezer. Samples are stable for up to 3 days.

Protocol: Cleanup of Target Enrichment PCR with QIAact Beads

Procedure

1. Let the QIAact Beads come to room temperature for at least 30 minutes and vortex thoroughly before use.

Recommendation: vortex for 1 minute at maximum speed.

 Pulse-centrifuge the Forward and Reverse PCR reactions from "Protocol: Target Enrichment PCR", page 23, and combine them in a 1.5 ml LoBind tube and add nuclease-free water to bring the volume to 100 μl.

Note: The combined PCR reaction volume may be less than 40 μ l due to evaporation. It is important to measure the combined PCR reaction volume from "Protocol: Target Enrichment PCR" and then add the appropriate volume of nuclease-free water to bring the final volume to 100 μ l.

- Add 100 µl (1.0x volume) QIAact Beads to 100 µl diluted PCR solution. Mix well by pipetting up and down 10 times with a pipet set to 100 µl. Use a fresh tip for every sample. Incubate for 5 minutes at room temperature.
- Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. Carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 5. Completely remove residual supernatant (it is recommended to use a 10 μ l tip to aspirate the trace amount of residual supernatant after the first aspiration).
- 6. Add 200 µl fresh 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads. Once complete wait until solution is clear (2–3 minutes). Completely remove ethanol with a 200 µl pipet tip.

- 7. Repeat previous step once.
- 8. After completely removing the ethanol close the tube lid.
- 9. Remove tube from the magnetic rack and centrifuge briefly (10-15 seconds).
- 10. Replace tube on the magnetic rack and wait until solution is clear (2–3 minutes). Open lid and then use a 10 µl tip to remove any residual ethanol, keep tube lid open and air dry the beads for up to 10 minutes on the rack.

Note: Avoid over drying the beads. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads are no longer shiny but do not appear cracked. Ethanol carryover can affect PCR efficiency in the next protocol, "Universal PCR Amplification".

Note: As the beads in different tubes may dry at different rates, once beads are dry close tube lid to avoid over drying.

11. Elute DNA from beads in 16 µl nuclease-free water. Mix well by pipetting up and down 10 times with a pipet set to 8 µl. Use a fresh tip for every sample. Place on the magnetic rack until solution is clear (5–10 minutes). Transfer 13.4 µl supernatant to a clean 0.2 ml PCR tube. Proceed to the next protocol, "Universal PCR Amplification".

Note: If reactions are to be stored, transfer them to a -20° C freezer. Samples are stable for up to 3 days.

Protocol: Universal PCR Amplification

Procedure

 Prepare the following master mix as indicated in Table 7 in a 1.5 ml LoBind tube. Mix well by vortexing.

Component	1 x Volume (µl)	8 x Volume (µl)
Enriched DNA (from "Cleanup of Target Enrichment PCR with QIAact Beads")	13.4	-
UPCR buffer, 5x	4	34
GeneReader Universal PCR Primer A	0.8	6.8
GeneReader Universal PCR Primer B	0.8	6.8
HotStarTaq DNA Polymerase	1	8.5
Total volume	20	56.1

Table 7. Reaction components for universal PCR amplification

- Add 6.6 µl of master mix from Table 7 to the 0.2 ml PCR tube(s) containing the enriched DNA from the previous section. Mix gently by pipetting up and down 7 times with a pipet set to 10 µl, centrifuge briefly (10-15 seconds).
- Set up the thermal cycler using the cycling conditions provided in Table 8.
 IMPORTANT: Ensure the heated lid on the thermal cycler is turned on for the PCR.

Table 8. Cycling conditions for universal PCR amplification

Time	Temperature	Number of cycles
13 minutes 2 minutes	95℃ 98℃	1 (initial denaturation)
15 seconds 2 minutes	98°C 60°C	21
5 minutes	72°C	1
5 minutes*	4°C	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4°C	Hold

* Samples must be held at 4°C for at least 5 minutes.

4. When the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Universal PCR with QIAact Beads".

**Note**: If reactions are to be stored after universal PCR amplification, transfer them to a  $-20^{\circ}$ C freezer. Samples are stable for 3 days.

### Protocol: Cleanup of Universal PCR with QIAact Beads

#### Procedure

1. Let the QIAact Beads come to room temperature for at least 30 minutes and vortex thoroughly before use.

Recommendation: vortex for 1 minute at maximum speed.

 Transfer 20 μl PCR reaction from "Protocol: Universal PCR Amplification", to a 1.5 ml LoBind tube. Add nuclease-free water to bring the volume to 100 μl.

**Note**: The PCR reaction volume may be less than 20  $\mu$ l due to evaporation. It is important to measure the PCR reaction volume from "Protocol: Universal PCR Amplification" and then add the appropriate volume of nuclease-free water to bring the final volume to 100  $\mu$ l.

- Add 100 µl (1.0x volume) QIAact Beads to 100 µl diluted PCR solution. Mix well by pipetting up and down 10 times with a pipet set to 100 µl. Use a fresh tip for every sample. Incubate for 5 minutes at room temperature.
- Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. Carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

**IMPORTANT**: Do not discard the beads.

- 5. Completely remove residual supernatant (it is recommended to use a 10  $\mu$ l tip to aspirate the trace amount of residual supernatant after the first aspiration).
- 6. Add 200 µl fresh 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads. Once complete wait until solution is clear (2–3 minutes). Completely remove ethanol with a 200 µl pipet tip.
- 7. Repeat previous step once.

- 8. After completely removing the ethanol close the tube lid.
- 9. Remove tube from the magnetic rack and centrifuge briefly (10-15 seconds).
- 10. Replace tube on the magnetic rack and wait until solution is clear (2–3 minutes). Open lid and then use a 10 µl tip to remove any residual ethanol, keep tube lid open and air dry the beads for up to 10 minutes on the rack.

**Note**: Avoid over drying the beads. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads are no longer shiny but do not appear cracked. Ethanol carryover may affect downstream processing and sample assessment.

**Note**: As the beads in different tubes may dry at different rates, once beads are dry close tube lid to avoid over drying.

11. Elute DNA from beads in 30 µl nuclease-free water. Mix well by pipetting up and down
10 times with a pipet set to 20 µl. Use a fresh tip for every sample.
Place tube on the magnetic rack until solution is clear (5–10 minutes). Transfer 28 µl
supernatant to a clean LoBind 1.5 ml tube or PCR tube.

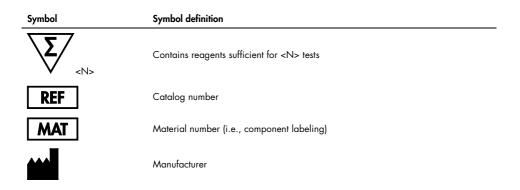
**Note**: Reactions can be stored after universal PCR amplification cleanup at -20°C for up to 6 months.

12. Assess the yield (ng) of PCR-enriched DNA library using a Qubit Fluorometer and Qubit dsDNA HS Assay Kit. Assess the product size (bp) using the QIAxcel Advanced instrument and the QIAxcel DNA High Resolution Kit 1200 (see "Appendix A: Analyze the Library using the QIAxcel Advanced", page 34). Typically, 3–20 ng/µl of PCR product will be obtained after purification.

Note: Dilute the sample 1:2 in QX DNA Dilution Buffer.

**Note**: It is not recommended to proceed to sequencing when the yield of the Universal PCR is less than 2 ng/µl as this may impact performance.

**Optional**: The DNA library assessment could also be performed on the Agilent 2100 Bioanalyzer with the Agilent High Sensitivity DNA Kit (see Appendix B: "Analyze the Library Using the Agilent 2100 Bioanalyzer", Page 35).


### Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: **www.qiagen.com/FAQ/FAQList.aspx**. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and/or protocols in this handbook or sample and assay technologies. For contact information, visit **www.qiagen.com**.

		Comments and suggestions				
Lib	Library preparation and target enrichment					
a)	No or low PCR product yield (<2 ng/µl) after Universal PCR	Concentration of DNA to be used for library preparation and target enrichment should be determined by fluorometric quantitation.				
b)	No or low PCR product yield (<2 ng/µl) after Universal PCR	Ensure that all reaction components are thoroughly mixed as described in this handbook before use. Ensure that all reaction components are correctly added at each stage and thoroughly mixed as described in this handbook.				
c)	No or low PCR product yield (<2 ng/µl) after Universal PCR	Increase DNA input used for library preparation. If 40 ng was used initially increase input to 160 ng. If 160 ng was used initially increase input to 250 ng.				
d)	No or low PCR product yield (<2 ng/µl) after Universal PCR from FFPE sample- derived DNA	When using DNA derived from FFPE samples, ensure that the DNA is of suitable quality.				

#### Comments and suggestions

# Symbols



### Appendix A: Analyze the Library Using QIAxcel Advanced

After the library is constructed and purified analyze using the QIAxcel Advanced, in combination with the QIAxcel DNA High Resolution Kit (cat. no. 929002), to check the fragment size and concentration. Typically, the peak height will be on average 350 bp* for DNA derived from FFPE tissue. The majority of the library fragments are between 200–800 bp in size (Figure 2). Amounts of DNA under the peak can be used to quantify libraries.

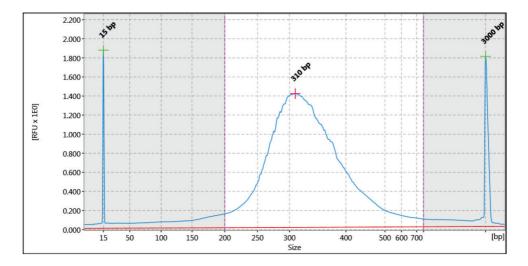



Figure 2. Sample QIAxcel Advanced image of a GeneRead QIAact AIT DNA UMI library. The majority of the library fragments are between 200–800 bp in size.

Note: Tor DNA derived from FFPE tissue, typically 60-70% of the peak will be between 200-400 bp in size.

* Data generated from DNA reference standards.

# Appendix B: Analyze the Library Using the Agilent 2100 Bioanalyzer

After the library is constructed and purified, a Bioanalyzer can be used to check the fragment size and concentration with the High Sensitivity DNA Kit. The majority of the library fragments are between 200–800 bp in size (Figure 3). Amounts of DNA under the appropriate peaks can be used to quantify libraries.

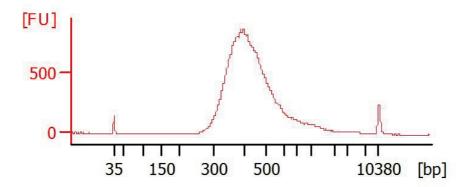



Figure 3. Sample Bioanalyzer image of a GeneRead QIAact DNA UMI library. The majority of the library fragments are between 200–800 bp in size.

# Ordering Information

Product	Contents	Cat. no.
GeneRead QIAact AIT DNA UMI Kit (24)	GeneRead QIAact Library Prepand Target Enrichment Reagents (24) and QIAact Target Enrichment Panel and QIAact Adapters (24)	181911
Related Products		
QIAamp DNA Mini Kit (50)	For 50 DNA preps: 50 QIAamp Mini Spin Columns, QIAGEN Proteinase K, Collection Tubes (2 ml), reagents and buffers	51304
GeneRead DNA FFPE Kit (50)	QIAamp MinElute® columns, Proteinase K, UNG, collection tubes (2 ml), buffers, Deparaffinization Solution, RNaseA	180134
QS GeneRead DNA FFPE Treatment Kit		185306
QIAsymphony DSP DNA Mini Kit		937236

#### Limited License Agreement for GeneRead QIAact AIT DNA UMI Kit

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- The product may be used solely in accordance with the protocols provided with the product and this handbook and for use with components contained in the kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this handbook, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.
- 3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

#### For updated license terms, see www.qiagen.com.

Trademarks: QIAGEN[®], Sample to Insight[®], QIAamp[®], QIAxcel[®], QIAxpert[®], GeneRead[™], HotStarTaq[®], MinElute[®], QCI[™] (QIAGEN Group); GeneReader[™] (Intelligent Bio-Systems, Inc.); Agilent[®], Agilent Technologies[®], Bioanalyzer[®] (Agilent Technologies, Inc.); BioRad[®], C1000[™] (Bio-Rad Laboratories, Inc.); Eppendorf[®] (Eppendorf AG); PAXgene[®] (PreAnalytiX GmbH); DynaMag[™], Qubit[®] (Thermo Fisher Scientific or its subsidiaries). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not be considered unprotected by Iaw. 06/2018 HB:2528:001

© 2018 QIAGEN all rights reserved.

Notes

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com