

Investigator[®] Quantiplex[®] Pro FLX Handbook for Applied Biosystems 7500 and QuantStudio[™] 5 Real-Time PCR Systems

For quantification of human and male DNA in forensic samples

Sample to Insight

Table of Contents

Kit Contents	4
Shipping and Storage	5
Intended Use	5
Safety Information	6
Quality Control	6
Introduction	7
Principle and procedure	
Quantiplex Pro FLX Reaction Mix	10
Equipment and Reagents to Be Supplied by User	13
Equipment	
Material	
Reagents	
Important Notes	15
Selecting kits and protocols	
Contamination risks	
Controls	
Protocol: Setting Up Investigator Quantiplex Pro FLX Plates	18
Important points before starting	
Procedure: Preparing the optical plate for reaction setup	19
Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and	
QuantStudio 5 Real-Time PCR System	24
Important points before starting	
Procedure A: Calibration plate setup Procedure B: Calibration protocol for QuantStudio 5 Real-Time PCR System	
Procedure C: Adding the Quantiplex Pro dyes to QuantStudio Design and Analysis Soft-	20
ware (v1.4.3 or higher)	28
Protocol: Quantification of DNA Using the QuantStudio 5 Real-Time PCR System	30
Important points before starting	
Procedure A: Create an experiment	30

Procedure B: Run setup using a template file and a plate setup file Procedure C: Data analysis	
Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and Applied Biosystems 7500 Real-Time PCR System for Human Identification Important points before starting Procedure A: Calibration plate setup Procedure B: Calibration Protocol for Applied Biosystems 7500 Real-Time PCR Systems for Human Identification	
Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and Applied Biosystems 7500 Real-Time PCR System with 7500 Software v2.0.6 or Higher Important points before starting Procedure A: Calibration plate setup Procedure B: Calibration Protocol for Applied Biosystems 7500 Real-Time PCR Systems with 7500 Software v2.0.6 or higher	
Protocol: Quantification of DNA Using the Applied Biosystems 7500 Real-Time PCR System for Human Identification or Applied Biosystems 7500 Real-Time PCR System Important points before starting Procedure A: Creating an experiment Procedure B: Data analysis	81
Interpreting Data Using the QIAGEN Quantification Assay Data Handling Tool Procedure	93 94
General Interpretation of Results General considerations for data analysis Standard curve Internal control Quantification of unknowns Quantification of female/male mixtures Degradation status assessment	102 102 103 104 104
Troubleshooting Guide	106
Appendix: Alternative Standard Curves	110
Ordering Information	112
Document Revision History	114

Kit Contents

Investigator Quantiplex Pro FLX Kit Catalog number

Catalog number No. of 20 µL reactions	387516 576
QuantiPlex Pro FLX Plate	6
Male Control DNA M1 (50 ng/µL)	0.2 mL
QuantiTect® Nucleic Acid Dilution Buffer	1 vial
Quick-Start Protocol	1

Shipping and Storage

The Investigator Quantiplex Pro FLX Kit is shipped at 2–8°C. The Quantiplex Pro FLX plates can be stored at room temperature ($15-25^{\circ}$ C), protected from light in the aluminum bags. Partially used plates can be put back into their aluminum bag, including the desiccant, and stored for up to 4 weeks until being used up completely. The QuantiTect Nucleic Acid Dilution Buffer and the Control DNA M1 should be stored at 2–8°C. Under these conditions, the components are stable until the expiration date indicated on the kit.

Intended Use

The Investigator Quantiplex Pro FLX Kit is intended for molecular biology applications in forensic, human identity, and paternity testing. This product is not intended for the diagnosis, prevention, or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend that all users of QIAGEN[®] products adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

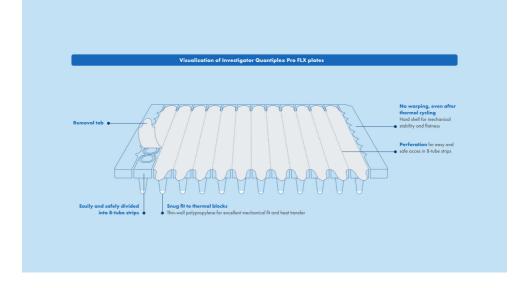
Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety**, where you can find, view, and print the SDS for each QIAGEN kit and kit component.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of Investigator Quantiplex Pro FLX Kits is tested against predetermined specifications to ensure consistent product quality. The Investigator Quantiplex Pro FLX Kit meets ISO 18385 requirements.

Introduction


Human identification is commonly based on the analysis of short tandem repeats (STRs), or single nucleotide polymorphisms (SNPs), depending on the demands of an examination or on the sample quality. These multiplex assays used for human identification are complex systems that require a defined range of template input.

The Investigator Quantiplex Pro FLX Kit provides quantification of human genomic DNA, male DNA, and the integrity of DNA in a sample using quantitative real-time PCR. The kit is designed to confirm whether a sample contains sufficient DNA to enable DNA fingerprinting analysis (such as STR or SNP analysis). Furthermore, the kit may help in establishing if a sample contains inhibitors that may interfere with such applications, thus necessitating further sample purification. In addition, the DNA degradation system allows for a more precise assessment of the degradation status of the DNA.

The Investigator Quantiplex Pro FLX Kit uses a hot-start DNA polymerase enzyme and QuantiNova Guard additive. These unique components further improve the stringency of the antibody-mediated hot-start.

The kit also features a built-in control for visual identification of correct pipetting and Q-Bond[®], an additive in the buffer that enables short cycling steps without loss of PCR sensitivity and efficiency.

The assay comes in a lyophilized 96-well plate format, which provides a high sample input flexibility of $1-18 \ \mu$ L, and up to approximately 10x higher sensitivity when using the maximum input. Breakable plates allow to adapt to individual throughput needs. Setup of reactions is fast and simple, and plates can be stored at room temperature before use.

Figure 1. Features of the Investigator Quantiplex Pro FLX plate.

Principle and procedure

The Investigator Quantiplex Pro FLX Kit is a ready-to-use system for the detection of human and male DNA and parallel assessment of DNA degradation using quantitative real-time PCR. The kit provides fast and accurate quantification of human DNA in forensic database and casework samples.

Detection of amplification is performed using TaqMan[®] probes and a fast PCR chemistry. The dual-labeled probes contain a fluorescent reporter and a quencher at their 5' and 3' ends, respectively. During the extension phase of PCR, the 5' and 3' exonuclease activity of the DNA polymerase cleaves the fluorophore from the quencher. This results in detectable fluorescence that is proportional to the amount of accumulated PCR product.

Target regions

The target region for human DNA quantification (4NS1C[®]) is a 91 bp proprietary region present on several autosomes of the human genome. It was selected to give high sensitivity and is detected using the FAM[™] dye channel on Applied Biosystems instruments.

Furthermore, the kit detects a longer autosomal amplification product (353 bp) targeting the same locus as the 91 bp 4NS1C autosomal target. Due to the differently sized autosomal targets, the longer autosomal target is more susceptible to DNA degradation, allowing for a precise assessment of the degradation status of the DNA. The larger 353 bp autosomal quantification target region is detected using the ATTO 550 dye channel on Applied Biosystems instruments.

The target region for male DNA quantification was selected in order to give high sensitivity in the presence of mixed female/male DNA samples. It is detected as an 81 bp fragment using the ATTO 647N dye channel on Applied Biosystems instruments.

Internal Control

The Investigator Quantiplex Pro FLX Kit also contains a balanced internal amplification control that is used to test successful amplification and identify the presence of PCR inhibitors. This heterologous amplification system is detected as a 434 bp internal control (IC) in the JOETM dye channel on Applied Biosystems instruments. The IC is designed to be more sensitive to inhibitors than the human and the male quantification targets. The comparison of the C_T values of the IC system for DNA standards with the C_T values of the IC system for unknown samples. Therefore, even if the IC system reports the presence of inhibitors in the sample, the DNA quantification will typically provide a reliable result. The presence of inhibitors in the sample may affect the downstream application and must be considered.

Laboratory validation with relevant inhibitors should be performed to determine criteria for detecting inhibition.

Target	Amplicon length (bp)	Channel	Ploidy	Copy number
Human target, small autosomal (Human)	91	FAM	Diploid	Multi-copy
Human target, large autosomal (Degrad- ation)	353	ATTO 550/TAMRA	Diploid	Multi-copy
Human male target (Male)	81	ATTO 647N/CY5	Haploid	Multi-copy
Internal PCR control	434	JOE	n/a	Synthetic frag- ment

Table 1. Targets, amplicon lengths, and channels for Investigator Quantiplex Pro FLX Kit

Quantiplex Pro FLX Reaction Mix

The Quantiplex Pro FLX Reaction Mix contains a hot start DNA polymerase and Quantiplex Pro reaction buffer. The DNA polymerase is provided in an inactive state and has no enzymatic activity at ambient temperatures. The antibody-mediated hot-start mechanism prevents the formation and extension of nonspecific PCR products and primer-dimers during reaction setup and the first denaturation step. Therefore, this mechanism allows higher PCR specificity and accurate quantification. At low temperatures, the DNA polymerase is kept in an inactive state by the antibody and QuantiNova Guard, which stabilize the complex and improve the stringency of the hot start. After raising the temperature for 3 minutes to 98°C, the antibody and QuantiNova Guard are denatured and the DNA polymerase is activated, enabling PCR amplification. The hot start enables rapid and convenient room-temperature setup.

Furthermore, the Quantiplex Reaction FLX Mix contains the additive Q-Bond, which allows short cycling times on standard cyclers and on fast cyclers with rapid ramping rates. Q-Bond increases the affinity of the DNA polymerase for short, single-stranded DNA, reducing the time

required for primer-probe annealing to a few seconds. In addition, the unique composition of the buffer supports the melting behavior of DNA, enabling short denaturation and annealing/extension times that result in an overall PCR run time of approximately 60 minutes.

The Quantiplex Pro FLX Reaction Mix is also based on the unique QIAGEN PCR buffer system. The buffer contains a balanced combination of KCl and NH₄Cl, which promotes a high ratio of specific to nonspecific primer binding during the annealing step of each PCR cycle. This creates stringent primer annealing conditions, leading to increased PCR specificity.

Male Control DNA M1 and standard curve

DNA quantification standards are critical for accurate analysis. We strongly recommend a 27-fold dilution series with 4 concentration points in the standard curve for each assay. The Control DNA contains pooled male DNA at a concentration of 50 ng/µL. To ensure pipetting accuracy, the minimum input volume of DNA for dilutions should be 5 µL. The standard curve is designed to be easily set up using a convenient 1:27 dilution series. If using QuantiTect Nucleic Acid Dilution Buffer to dilute the Control DNA, the dilutions are stable for at least 1 week at 2–8°C.

Important: Male Control DNA M1 is optimized for use with the Investigator Quantiplex kits only.

Templates for routine work

In order to streamline the instrument setup and the analysis of the results on the QuantStudio 5 Real-Time PCR System, Applied Biosystems 7500 Real-Time PCR System for Human Identification, and the Applied Biosystems 7500 and 7500 Fast Real-Time PCR Systems, QIAGEN has developed a set of template files. Download the template files from the **Resources** tab of the product page.

Description of protocols

Protocols for the following cyclers are provided in this handbook.

- QuantStudio 5 Real-Time PCR System
- Applied Biosystems 7500 Real-Time PCR System for Human Identification
- Applied Biosystems 7500 Real-Time PCR System

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

Equipment

- Microplate Vortex Mixer
- Real-time thermal cycler
 - QuantStudio 5 Real-Time PCR System
 - Applied Bioystems 7500 Real-Time PCR System for Human Identification
 - Applied Biosystems 7500 Real-Time PCR System

Material

- Pipettes and pipette tips
- qPCR adhesive plate foil, perforated (100) (cat. no. 386055)
- qPCR adhesive plate foil (100) (cat. no. 209003)
- Optical film compression pad (e.g., VWR cat. no. 76637-856)

Reagents

- Nuclease-free (RNase/DNase-free) consumables: special care should be taken to avoid nuclease contamination of all reagents and consumables used to set up PCR for sensitive detection of human DNA
- Nuclease and DNA-free water (e.g., PCR Water (10 x 1 mL), cat. no. 17000-10)

Investigator Quantiplex Pro Calibration Kit (cat. no. 387416)

 Calibration Standard FAM, Calibration Standard JOE, Calibration Standard ATTO 550, Calibration Standard ROX, Calibration Standard ATTO 647N, Quantiplex Pro Calibration Buffer

Important Notes

Selecting kits and protocols

This handbook contains protocols and recommendations for DNA quantification using the instruments listed in Table 2. Real-time cyclers other than these have not been validated by QIAGEN for DNA quantification using the Investigator Quantiplex Pro FLX Kit.

Table 2. Protocols for the Investigator Quantiplex Pro FLX Kit with different real-time thermal cycler

Real-time thermal cycler	Protocol for cycler cal- ibration	Protocol for quan- tification
QuantStudio 5 Real-Time PCR System	on page 24	on page 30
Applied Biosystems 7500 Real-Time PCR System for Human Identification	on page 50	on page 80
Applied Biosystems 7500 Real-Time PCR System	on page 66	on page 80

Contamination risks

All reaction mixtures should be set up in an area separate from that used for DNA isolation and PCR product analysis (post-PCR) in order to minimize the potential for crosscontamination. In addition, use disposable tips containing hydrophobic filters to minimize cross-contamination.

Do not remove the seal on the reaction plates once the amplification is complete. Removing the plate seal increases the risk of contaminating subsequent reactions with amplified product.

Controls

No-template control (NTC)

Replicates of NTC reactions should be included in each quantification run in order to detect contamination. NTCs should contain all the components of the reaction, except for the template. Quantification using the Investigator Quantiplex Pro FLX Kit is highly sensitive; despite the fact that the reagents contained in the Quantiplex Pro FLX Kit undergo strict quality controls to assess that they are free of human DNA contamination, background DNA may be detected in rare cases due to the high assay sensitivity. Take great care to avoid contamination when pipetting the NTC.

We recommend performing NTC reactions at least in duplicate.

Internal positive control

An internal, positive control (detected using a TaqMan probe) is used to test for successful amplification and for the presence of PCR inhibitors. Primers, TaqMan probe, and template for the internal control are all contained in the Quantiplex Pro FLX plate.

Calibration of PCR Systems

When using the QuantStudio 5 Real-Time PCR System, or the Applied Biosystems 7500 Real-Time PCR System with Investigator Quantiplex Pro FLX, custom dye calibration for FAM, JOE, ATTO 550, ROX, and ATTO 647N is needed. To achieve optimal performance, calibrate with the Investigator Quantiplex Pro Calibration Kit (cat. no. 387416). However, standard system dye calibrations for FAM, JOE, TAMRA, ROX, and Cy[®]5 might be used. In this situation, use TAMRA for the Degradation target and Cy5 for the Male target. Refer to the instrument user manual for additional information on correct setup.

General guidelines for automation

Stick to the logic of the manual procedure described in this handbook:

- Open the seals of the plate just before starting a run.
- Do not operate the system in very humid areas (>60%), as lyophilized cakes rehydrate and resolution is problematic.
- Always apply the higher volume first to dissolve the cake.
- Do not move pipette tips into the cake during setup. Adjust z-heights to be above the cake for the first liquid addition. This height must accommodate for loosened cakes that may be upside down in the plate.
- Always vortex the finished plate after sealing. Do not fully rely on automated mixing during setup, as there might be spots of lyophilized material at the side of the walls.

Protocol: Setting Up Investigator Quantiplex Pro FLX Plates

This protocol describes the preparation of reactions in the Investigator Quantiplex Pro FLX plate.

Important points before starting

- Do not open plates in advance. Remove seals just before starting setup.
- Before removing the seals from the plate, make sure lyophilized cakes do not stick to the seals. Tap the plates on the bench to bring all cakes down.
- Loosened cakes, spots on the tube wall, or cakes with slightly varying appearance do not have impact on the performance of the assay.
- Avoid high humidity in the laboratory. We do not recommend opening plates in an environment with over 60% humidity.
- We strongly recommend to always start with the addition of the higher volume during setup. If using >9 µL sample input, add sample first to dissolve the lyophilized cake, and then fill up to the final volume with water. Pipette above the cake surface.
- Set up all reaction mixtures in an area separate from that used for DNA isolation and PCR product analysis (post-PCR).
- Use disposable tips containing hydrophobic filters to minimize cross-contamination.
- Dilutions of DNA quantification standards in QuantiTect Nucleic Acid Dilution Buffer can be stored between 2–8°C for at least 1 week.
- Reaction setup can be done at room temperature (15-25°C).

Procedure: Preparing the optical plate for reaction setup

 Prepare fresh serial dilutions of the Male Control DNA M1. Vortex for at least 5 s, and centrifuge each dilution briefly before removing an aliquot for the next dilution. Use a new pipette tip for each dilution. Make sure not to introduce cross-contamination.

Table 3. Serial dilution of Control DNA M1					
Serial dilution of Control DNA M1 (ng/µL)	Control DNA (µL)	QuantiTect Nucleic Acid Dilution Buffer (µL)			
50	Undiluted DNA	-			
1.8519	5	130			
0.0686	5	130			
0.0025	5	130			

Note: Alternative standard curves are listed in "Appendix: Alternative Standard Curves" on page 110.

- 2. Thaw samples for quantification if they were stored frozen.
- When not using the entire plate, break the desired number of 8-tube strips from the plate ("Breaking of Investigator Quantiplex Pro FLX Plates." on page 22).

Note: The unused part of the sealed PCR plate should be stored in the aluminum bag with desiccant and used up within 4 weeks.

- 4. Peel the perforated seals from the plate, or groups of 8-tube strips ("Peeling of Investigator Quantiplex Pro FLX 8-tube strips." on page 23). When using the entire plate, seals can be removed with the help of 1/3 of an adhesive foil ("Peeling of the entire Investigator Quantiplex Pro FLX Plate." on page 23). Start setting up reactions immediately.
- 5. If using less than 9 µL sample input, start the setup with adding the volume of water required to give a final volume of 18 µL added to the cake.
- 6. Add 18 µL water or Nucleic Acid Dilution Buffer to the NTC (No Template Control) wells.

 Add 16 µL water or Nucleic Acid Dilution Buffer and 2 µL control DNA M1 dilutions to the individual wells of the standard row. It is required to run duplicates of the control DNA dilutions for each assay and on each reaction plate.

	1	2	3	4	5	6	7	8	9	10	11
Α	50	NTC	UNK								
В	50	NTC	UNK								
с	1.8519	UNK									
D	1.8519	UNK									
Е	0.0686	UNK									
F	0.0686	UNK									
G	0.0025	UNK									
н	0.0025	UNK									

Table 4. Example plate setup of reactions

Well contents

All content in ng/mL. NTC, no-template control; UNK, unknown sample.

8. Add samples to reaction wells (variable input volumes from 1–18 µL).

Table 5. Reaction setup

Component	1 reaction
Quantiplex Pro FLX Reaction Mix and Primer Mix	Lyophilized cake
Sample	Variable (1–18 µL)
Water	Fill up to 18 µL
Total reaction volume	20 µL*

* Lyophilized cake + 18 µL input volume will yield a final PCR reaction volume of 20 µL.

Note: If your sample input volume is not 2 μ L, a correction factor needs to be applied to your sample concentration. You can also use the QIAGEN Quantification Assay Data Handling Tool for automated concentration correction calculation.

Sample input volume (µL)	Concentration correction factor (calculated concentration divided by)
1	0.5
2	-
3	1.5
4	2
5	2.5
6	3
7	3.5
8	4
9	4.5
10	5
11	5.5
12	6
13	6.5
14	7
15	7.5
16	8
17	8.5
18	9

Table 6. Correction factors for calculations of sample concentrations

The concentration correction factor can be obtained by dividing the sample input volume by 2.

- Add water where still needed to all samples or controls to result in a total liquid volume of 18 μL. Never run reactions with less than 18 μL.
- 10. Seal the plate or the 8-tube strips with the qPCR adhesive plate foil and vortex for 5 s.
- 11. Centrifuge briefly.
- 12. Continue with the amplification and analysis as described for the corresponding thermal cycler.

Note: Always use a compression pad if using the entire plate. If using 8-tube strips, please follow the PCR cycler manufacturer's recommendation for the use of strips.

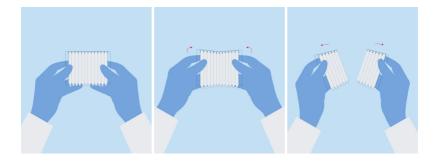


Figure 2. Breaking of Investigator Quantiplex Pro FLX Plates.

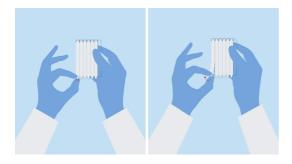


Figure 3. Peeling of Investigator Quantiplex Pro FLX 8-tube strips.

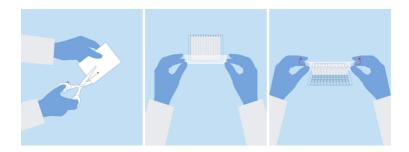


Figure 4. Peeling of the entire Investigator Quantiplex Pro FLX Plate.

Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and QuantStudio 5 Real-Time PCR System

This protocol is optimized for use of the Investigator Quantiplex Pro Calibration Kit on the QuantStudio 5 Real-Time PCR System using QuantStudio Design and Analysis Software (v1.4.3 or higher).

For general instructions on instrument calibration, refer to the *QuantStudio 5 Real-Time PCR Instrument User Guide*.

Important points before starting

- Set up calibration plate in an area separate from that used for DNA isolation and PCR product analysis (post-PCR).
- Use QuantStudio 5 Real-Time PCR System-related consumables (optical 96-well reaction plates and optical adhesive films).
- Use disposable tips containing hydrophobic filters to minimize cross-contamination.
- Repeat-dispenser pipettes can be used to dispense 20 μL into all 96 wells of a plate assigned for one dye.
- For repeat dispensers, use disposable, sterile, separately wrapped repeat-dispenser tips.
- Always wear a suitable lab coat, disposable gloves, and protective goggles. Avoid touching plate wells, optical adhesive films, and bottoms of the plates.
- We strongly recommend performing the Region-of-Interest (ROI) calibration and background calibration before you perform the custom dye calibration with the Investigator Quantiplex Pro Calibration Kit. Further details on how to perform ROI calibration and

background calibration can be found in the *QuantStudio 5 Real-Time PCR Instrument User Guide*.

Procedure A: Calibration plate setup

- 1. Thaw kit components if required. Mix all kit components before use.
- 2. Vortex each calibration standard for at least 5 s before removing an aliquot.
- 3. Dilute each Investigator Quantiplex Pro Calibration Kit standard in a separate tube (e.g., a 5 mL reaction tube), as described in Table 7.

Component					
Calibration Standard FAM	23	-	-	-	-
Calibration Standard JOE	-	23	-	-	-
Calibration Standard ATTO 550	_	-	23	_	-
Calibration Standard ROX	-	-	-	23	-
Calibration Standard ATTO 647N	-	-	-	_	23
Quantiplex Pro Calibration Buffer	2277	2277	2277	2277	2277
Total volume	2300	2300	2300	2300	2300

Table 7. Dilution scheme for Investigator Quantiplex Pro Calibration Kit standards

- 4. Mix each calibration standard by vortexing for at least 5 s.
- 5. Assign and label one separate optical 96-well reaction plate for each Investigator Quantiplex Pro Calibration Kit standard (5 in total).
- Dispense 20 µL of diluted Investigator Quantiplex Pro Calibration Kit standard FAM into the assigned dye-specific optical 96-well reaction plate.
- 7. Close the plate with an optical adhesive film.

- 8. Repeat these steps for each of the other remaining Investigator Quantiplex Pro Calibration Kit standards (JOE, ATTO 550, ROX, and ATTO 647N).
- 9. Centrifuge plates briefly. Always protect plates from light.
- 10. After calibration, store the calibration plates at -30° C to -15° C in a constant-temperature freezer, protected from light. Calibration plates can be stored and reused for up to 3 months.

Procedure B: Calibration protocol for QuantStudio 5 Real-Time PCR System

- 1. Start cycler and enter Settings menu on the Home screen. Select Maintenance and Service.
- 2. Click Calibrations, then Custom, and Custom Dye.
- 3. Select Add Custom Dye.
- 4. Enter **QPP_FAM** as a new dye name, confirm that **Reporter** is selected, and click **Save**.
- 5. Load the **QPP_FAM** plate prepared in Procedure A into the instrument.
- 6. Enter "60°C" for the calibration temperature.
- 7. Press Start.

 When the calibration is complete, the screen will display "Calibration Complete". Press View Results to review details. The QPP_FAM calibration spectra should show the highest signals in filter x1-m1. For other QPP dyes see Table 8.

Tuble 6. Calibrated uye filler signal	
Custom dye	Highest signal in filter
QPP_FAM	xl-ml
QPP_JOE	x2-m2
QPP_ATTO550	x3-m3
QPP_ROX	x4-m4
QPP_ATTO647N	x5-m5

Table 8. Calibrated dye filter signal

- 9. Repeat steps 1 to 8 to calibrate for the following dyes:
 - QPP_JOE
 - QPP_ROX
 - QPP_ATTO550
 - QPP_ATTO647N

Procedure C: Adding the Quantiplex Pro dyes to QuantStudio Design and Analysis Software (v1.4.3 or higher)

1. Open the QuantStudio Design and Analysis Software and select **Tools** > **Dye Library**.

File Edit Analysis To	ols Help
Properties Meth-	Dye Library_ Sam Manage dies
Select an Optio	SNP Assay Library
	Analysis Settings Library Security Preferences

- 2. Click New and add all QPP dyes:
 - QPP_FAM
 - QPP_JOE
 - QPP_ROX
 - QPP_ATTO550
 - QPP_ATTO647N

Important: Dye names entered in the Dye Library must match exactly the dye names entered on the QuantStudio 5 during custom dye calibration.

Name	Creation	Туре	Wavelength (nm)	New Dye		
	Deraut	rieporter		Name:	QPP_FAM	
PP_ATTO550	Custom	Reporter			4. · · 2. · · · · ·	
PP_ATTO647N	Custom	Reporter		Wavelength (Optional):		nm
IPP_FAM	Custom	Reporter		Reporter		
IPP_JOE	Custom	Reporter		 Quencher Both 		
PP_ROX	Custom	Reporter				
OX	Default	Reporter			Cancel	Save

Confirm that **Reporter** is selected for each dye and then click **Save**.

Protocol: Quantification of DNA Using the QuantStudio 5 Real-Time PCR System

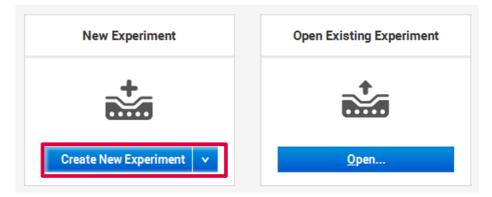
This protocol is optimized for use of the Investigator Quantiplex Pro FLX Kit on the QuantStudio 5 Real-Time PCR System using QuantStudio Design and Analysis Software (v1.4.3 or higher).

For general instructions on instrument setup and other software versions, refer to the *QuantStudio 5 Real-Time PCR Instrument User Guide*.

Important points before starting

- When using the QuantStudio 5 Real-Time PCR System with Investigator Quantiplex Pro, custom dye calibration for FAM, JOE, ATTO 550, ROX, and ATTO 647N is needed. To achieve optimal performance, calibrate with the Investigator Quantiplex Pro Calibration Kit.
- Use the cycling conditions specified in the protocol. The cycling is optimized for this assay.
- Optimal analysis settings are a prerequisite for accurate quantification data. Readjust the analysis settings (e.g., baseline settings and threshold values) for analysis of every reporter dye channel in every run.

Procedure A: Create an experiment


- 1. Open the QuantStudio Design and Analysis Software (v1.4.3 or higher).
- 2. Several options to set up a run are described:
 - If you are using a template file and doing a manual plate setup, proceed to step 18 to define DNA sample names and assign to the plate layout. Then proceed to step 23 to

start the run.

- If you are using a template file and also use a **.txt** setup file for plate setup, proceed to "Procedure B: Run setup using a template file and a plate setup file" on page 44.
- If you are not using a template file, proceed with step 8 on page 36.

The template file loads all of the settings needed to start an Investigator Quantiplex Pro FLX run, including the standard curve settings, the cycling profile, and the targets needed for fluorescence acquisition. Download the template files from the **Resources** tab of the product page.

3. If you are not using a template file, select Create New Experiment.

- 4. In the **Properties** tab, confirm the following settings in **Experiment Properties**:
 - Instrument type: QuantStudio™ 5 System
 - Block type: 96-Well 0.2 mL Block
 - Experiment type: Standard Curve
 - Chemistry: TaqMan[®] Reagents
 - Run mode: Standard

And then, click **Next**.

xperiment Prop	erties			□ _ಫ Save
lame	2023-12-01_142606		Comments - optional	
arcode	Barcode - optional			
lser name	User name - optional			
nstrument type	QuantStudio™ 5 System	~		
llock type	96-\Well 0.2-mL Block	×		
xperiment type	Standard Curve	~		
hemistry	TaqMan® Reagents	•		

 In the Method tab, adjust thermal profile by changing the holding times to those in Table 9. Change Volume to 20 µL.

Data acquisition should be performed during the combined annealing/extension step. Clicking the camera symbol enables data acquisition for the step.

Click Next.

xperiment	t Method			🖉 Action 🖌 🗆	Save
	Volume	Cover			
	20 µL	105.0 °C			
	Hold Stage	PCR	Stage		
\langle	98.0 °C 03:00 0 • • • • • • • • • • • • • • • • • •	98.0 °C 1.6 °C/s 00:05	1.6°C/s 65.0°C 0035 i ✿ Ⅲ		(>
	Step1	Step1	Step2		
		40	÷ x		

Table 9. Cycling protocol using QuantStudio 5 Real-Time PCR System

Step	Temperature (°C)	Time	No. of cycles	Remarks
Initial PCR activation step	98	3 min	-	PCR requires an initial incubation at 98°C to activate the DNA poly- merase
Denaturation	98	5 s		-
Combined annealing/extension	65	35	40	Perform fluorescence data collection

Note: Always use a compression pad if using the entire plate. If using 8-tube strips, please follow the PCR cycler manufacturer's recommendation for the use of strips.

6. In the **Plate** tab, select **Quick Setup**. And then, in **Plate Attributes** > **Passive Reference**, select **QPP_ROX**.

ssign Targets and	Samples									Action	*	o _t s	Save
Quick Setup Adv	vanced Setup		\$	View	~					e	Q		
Well Attributes			4	1 2	3 4	5	6	7	8	9	10	11	12
Sample	New Sample	*	A										
Target	New Target	۷	в										
Well Comments	Well Comments		c										
Plate Attributes			D										
Passive Reference	ROX	×	:										
	QPP_ATTO550		ε										
	QPP_ATTO647N												
	QPP_FAM		F										
	QPP_JOE												
	QPP_ROX		G										
	SYBR												
	TAMRA		н										

 Still in the Plate tab, select Advanced Setup. Click Add 3 times, and then add the targets listed in Table 10 below.

siyi	n Targets an	d Samples													Ø	Action	*	□ _å S	ave
Quid	k Setup	dvanced Setup					<	6	View	~						(J. Q.	Ð	
_	Targets		+ Add	E.	Action		>	1	2	3	4	5	6	7	8	9	10	11	12
-	-					•													
_	Name	Reporter	Quenche:		Quantity				1										
	Human	QPP_FAM	None			×		в											
	Male	QPP_ATT0647N	None			×													
	Degradation	QPP_ATT0550	None	-		×		с											

Table 10. Assign targets and samples

Name	Reporter	Quencher
Human	QPP_FAM	None
Male	QPP_ATTO647N	None
Degradation	QPP_ATTO550	None
IC	QPP_JOE	None

8. Select the wells in use and assign all 4 targets by marking the boxes on their left.

Important: Do not highlight the wells that are not in use (i.e., those without reaction mix). Including unused wells will significantly impact the scale of the x and y axes when viewing the data.

ign T	argets a	nd Samp	oles													Ø	Action	×	0, 3	Save
Quick S	etup	Advanced S	Setup					<	۲	View	*							Q , C	0	
- т	argets			+ Add	Ø	Action	۷	1	1	2	3	4	5	6	7	8	9	10	11	12
	Name	Reporter	Quencher	Comments	Task	Quantity		1			U	U	U	U	U	U	U	U	U	U
2	Human	QPP_FAM	None		•		×			Ū	Ū	Ū	U	Ū	U	U	Ū	Ū	U	Ū
2	IC	QPP_JOE	None		•		×		2											
2	Degradat	ATTO_550	None		•		×	0		U	U	U	U	U	U	U	U	U	U	U
7	Male	QPP_ATT	None		•		×			Ŭ	Ŭ	Ū	U		Ū	Ŭ	Ū	Ü	Ü	Ū
								1	2											
								8	D	Ū	Ŭ	Ŭ	U	U	U	U	Ŭ	Ū	Ŭ	Ŭ
									D	U	U						U		U	U
+ s	amples							•		U	U	U	U	U	U	U	U	U	U	U
	siological R	eplicate Gr	roups					,		U	U	U	U	U	U	U	U	U	U	U

 While in Advanced Setup, open the Samples section and click Add to enter the sample names for the standards (e.g., Standard -1, Standard -2, etc.; or Std1, Std2, etc.) and NTCs.

Note: Precise naming of standards is required for proper subsequent analysis with the QIAGEN Quantification Assay Data Handling Tool.

Important: If replicates are needed, they should be assigned before you proceed to the next step. Define replicates by using the same sample name for 2 or more wells or by using the **Biological Replicate Groups** panel.¹

sign	T	argets a	nd Samples															Z	Action	1 V	0;	Save
Quic	k Se	rtup	Advanced Setup							<	۲	View	×							0, 6	20	
-	Т	argets		+	Add		Ø	Action	*	1	1	2	3	4	5	-	7	8		10	11	12
		Name	Reporter	Quencher	Cont.	Tas	k	Quantity			A 🛄				U	U	U	U			Ū	Ū
		Human	QPP_FAM	None		U	~		×													
V		Male	QPP_ATT0647N	None		U	v		×													
		Degradat	QPP_ATT0550	None		U	~		×		c 📮											
		IC	QPP_JOE	None		U	×		×													
-	S	amples		Đ	Add	٦	Ø	Action	v	1					_			-				
			Sample Name		Con	nments					:	Ū		U	U	U	U	U				U
		Standard	i-1						×		. 📑											
		Standard	1-2						×									-				
		Standard	i-3						×		G 📮											
		Standard	1-4						×													
+	_		eplicate Groups									_ 🛄										

¹Instructions for using the Biological Replicate Groups panel are not covered by this handbook.

 Select the wells for the no-template controls (NTC) and flag them as negative control in Task by selecting the gray N button.

Note: Leave the **IC** (**QPP_JOE**) task for NTC reactions set to **U** ("unknown"). In **Samples**, select the sample name **NTC**.

Quick Set		Advanced Setup																		
- Tar								<	۲	View	*							0 , C	20	
	rgets		+	Add	Ø	່ງ Action	*	1	1	2	3	4	5	6	7	8		10	11	12
	Name	Reporter	Quencher	Cont	Task	Quantity		A					U	U	U	U				
	Human	QPP_FAM	None		N ~		×	в												
	Male	QPP_ATT0647N	None		N ~		×								-					
	Degradat	QPP_ATT0550	None		N ~		×	0							U					
	IC	QPP_JOE	None		U ~		×	0												
- Sar	mples		+	Add		Action	v													
		Sample Name	-1	Comm	nents	•		ε					U	U	U	U	Ū			
	NTC						×	F												
	Standard	i-1					×													

11. Select the wells for the standard curve and flag them in the **Task** column as standard by selecting the orange **S** button.

File Edit Analysis Tools Help Properties Method Plate Run Results Export Assign Targets and Samples Action 🗸 🗆 Save 🗸 < Quick Setup Advanced Setup Q Q 0 !!!! ≡ 12 11 Targets + Add 📝 Action 🗸 5 8 U 5 8 8 8 5 8 Task **S** ~ Degradat OPP_ATTO550 None × U U U U U U в S × QPP_FAM U U U U Ū U U U U U <mark>s</mark> ~ Mole QPP_ATT0647N None × U × IC QPP_JOE None U U U Ū U U U Ū D Samples + Add 📝 Action _ v U U U U U U U U U Е Sample Nar ÷1 . NTC × U U U U U U U U U U F Standard -1 × Ū U Ū U U U Standard - 2 × G Standard -3 × U **Biological Replicate Groups** + Wells: 🚺 96 🛐 8 🔝 2 0 Empty

Note: Leave the IC (QPP_JOE) task for standard reactions set to U ("unknown").

Next

 Enter the concentration and select a sample name for each standard. Enter the quantity of DNA in the wells according to "Protocol: Setting Up Investigator Quantiplex Pro FLX Plates" on page 18.

sign '	Targets a	nd Samples									Ø	Action	~	0,	Save
Quick	Setup	Advanced Setup					<	۲	View 🗸				€	10	
- 1	Targets		+ /	Add	Action	*			3 4 5	6 7	8	9	10	11	12
	Name	Reporter	Quencher	Com Ta	isk Quantity	1		5							
2	Human	QPP_FAM	None	S	50.0	×	в	U	Target: Degradation Task: Standard						
	Male	QPP_ATT0647N	None	S	50.0	×			Dye: QPP_ATTO550-Non Quantity: 50.000	e					
	Degradat	QPP_ATT0550	None	S	50.0	×	c	U	Target: Human		U	U			
	IC	QPP_JOE	None	U		×	D	-	Task: Standard Dye: QPP_FAM-None						
- :	Samples		+ /	Add	Action	*	1		Quantity: 50.000			\sim		1	
		Sample Name	A1 0	omments			ε		Target: IC Task: Unknown		U			U	
	NTC					×	F		Dye: QPP_JOE-None						
	Standar	d - 1				x			Target: Male Task: Standard			1			
	Standar	d - 2				×	G	U	Dye: QPP_ATTO647N-No Quantity: 50.000	ne 🗾	U	U			
	Standar	d - 3				×	н		Sample: Standard -1						
+	Biological R	eplicate Groups						H			H		–		–

13. In the **Samples** section, click **Add** to enter the names of the DNA samples.

Assign DNA samples to the plate layout by clicking on the wells and checking the appropriate box on the left **Samples** panel.

ign	Targets a	nd Samples														Z	Action	ı v	0,	Save
Quick	Setup	Advanced Setup						<	۲	View	v							⊙, ∈	20	
_	Targets		+	Add	Z	Action	v	14	1	2	3	4	5	6	7	8	9	10		-
	Name	Reporter	Quencher	Co	Task	Quantity		A												
2	Human	QPP_FAM	None		U ~		×	в												
2	Male	QPP_ATT0647N	None		U ~		×	0												
2	Degradat	QPP_ATTO550	None		U ~		×	c												
2	IC	QPP_JOE	None		U v		×													
_	Samples		+	Add	Z	Action	×	1												
		Sample Name	-1 C	omme	_			ε							U		Ū			
	NTC						×	F												
2	Sample	I.					×		-											
	Sample 2	2					×	G									U			
	Sample 3	3					×	н												
		eplicate Groups						1												

14. At the top toolbar, select **Analysis > Analysis Settings**.

Edit	لسخصا	Tools Help															
opertie	Analysi	is Settings	Bun		Results	Export											
pertie	Analyze	· 🔨			ricourto	Coport											
	Overrid	le Calibration	>														
ssian	Targets	and Samples											Z	Action	v		Save v
oongin	rugeto	and Samples											2		• • • •	-,	
-	-						<						E			-•	
-	k Setup	Advanced Setup					×	S View	¥								
Quick	k Setup		_	Add	R	Action v	\$	View L Z	¥ 3	+	5	6 7	0	9		-•	
-	-		+	Add	Ø	Action V	\$	L Z	3				0	9	30 30	-• 1	LZ
Quick	k Setup		_			Action v Quantity ¹	× >	-		•		۰ ، ۲ ۱			0. 0		

15. In the **CT Settings** tab, under **Default CT Settings**, select the first Target. At the leftmost side of the window, uncheck the boxes beside **Default Settings** and **Automatic Threshold**. Do the same for the rest of the targets.

Data Step Selection Select the step and stage to PCR Stage/Step Stage		binations for which data suitable for C_{T} a	nalysis have been collected are displayed.	Algorithm Settings Baseline Threshold
	d to calculate the Cr for targets without cu eline Start Cycle: AUTO Baseline E			
Target	Threshold	Baseline Start	Baseline End	CT Settings for Male
egradation	0.125	AUTO	AUTO	Automatic Threshold
uman	0.2	AUTO	AUTO	Threshold: 0.5
	0.05	AUTO	AUTO	Baseline Start Cycle: 3 C End Cycle: 15 C
ale	0.5	AUTO	AUTO	
	_			

16. Enter the following settings for each target (Table 11), and then click Apply:

Table 11. CT settings		
Target	Threshold	Baseline
Degradation	0.125	Auto
Human	0.2	Auto
IC	0.05	Auto
Male	0.5	Auto

Important: Verify that option for **Automatic Threshold** is deselected for all targets. Setting the appropriate threshold value may require further internal validation in your facility.

gradation 0.125 AUTO AUTO Automatic Threshold iman 0.2 AUTO AUTO Threshold 0.05 AUTO AUTO Baseline Baseline Start Cycle: 3.2 End cycle: 3.2 End cycle:	Target	Threshold	Baseline Start	Baseline End	CT Settings for Male CT Settings to Use: Default Settings
name 0.2 AUTO AUTO 0.05 AUTO AUTO Baseline Start Cyrole: 3 (\$) End Cyrole: 3	radation	0.125	AUTO	AUTO	
0.05 AUTO AUTO Baseline Start Cycle: 3 C End Cy	nan	0.2	AUTO	AUTO	
		0.05	AUTO	AUTO	Baseline Start Cycle: 3 C End Cycle: 15
	e	0.5	AUTO	AUTO	
					-

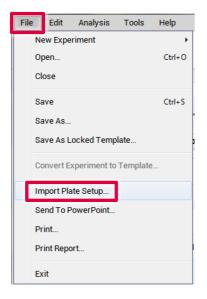
17. **Optional**: Before running the reaction plate, you can save the setup as an EDT template file:

- a. Click File > Save as.
- b. Enter a name for the template document.
- c. Click Save again.

If you do not want to save the setup as a template, proceed to the next step.

- Load the plate into the instrument. Ensure that position A1 on the plate is on the top-left side of the tray.
- 19. Select the **Run** tab, and then click **Start Run**.

File Edit Analysis Tools	Help									
Properties Method	Plate	Run	Results	Export						
Run Control						ART RUN	v	D _å	Save	v
None Not Started										


Procedure B: Run setup using a template file and a plate setup file

1. Open the QuantStudio Design and Analysis Software (v1.4.3 or higher). Select Open.

2. Select the EDT template file.

3. Click File > Import Plate Setup, select the plate setup .txt file, and then click Apply.

- 4. After successfully importing the plate setup, load the plate into the instrument. Ensure that position A1 of the plate is on the top-left side of the tray.
- 5. Select the **Run** tab, and then click **Start Run**.

Procedure C: Data analysis

Optimal analysis settings are a prerequisite for accurate quantification data. Check and readjust the analysis settings (i.e., threshold values) if needed for analysis of every reporter dye channel in every run.

- 1. Open the run file using the QuantStudio Design and Analysis Software (v1.4.3 or higher).
- 2. Before a standard curve can be created, standards must first be defined.

Note: If standards had been defined before the run was started, proceed to step 4, below.

- Go to Plate and select Advanced Setup. Define the wells that contain DNA standards as explained in steps 10 and 11 of "Procedure A: Create an experiment" (starting).
- Select Analysis > Analysis Settings from the top toolbar and confirm that settings are set as described in Table 8.
- 5. Click the **Results** tab, select the wells to be analyzed, and click **Analyze**.

File Edit Analysis Tools H	lelp		
Properties Method F	Plate Run	Results	Export Analyze @
Results			[⊉] Action v □ ₄ Save v

6. To view the standard curve, select **Amplification Plot** > **Standard Curve** from the drop down menu.

Results										Ø 40	tion v	0,	Save 🗸
이, 이, 🖑 등 🗊 📭 😨 🎦 🛞 All Target 🔻	Amplification Plot		D Vi	ew v							0	Q. ()	
10 Amplification Plot	Amplification Plot Multicomponent Plot Raw Data Plot		1	2	3		ļ	7	8		10	11	12
, A	Standard Curve	•											

7. Review standard curves for each target by selecting All Target.

View the C_T values for the quantification standard reactions, and the calculated regression line, slope, y-intercept, and R^2 values.

Results										R Ac	tion 🗸	0,	Save 👻
🔍 🔍 👑 🖨 🗊 📭 🐻 🔚 🕼 🖬 🖉	Amplification Plot	۲	View	,							•	ର୍ ୍	
All Target		1	2	3	4	5	6	7	8	9	10	11	12
Amj t				-		-	-	-			-		
Human	are	^											
Male	1 total	. 🗄		8	8		8		8	8	8	8	
Mare	ATTO	° 📮				8							
1	// // ///	-	-	-	-	-	-	-	-	-	-	-	-

8. To export and save the results report, go to **Export** in the top bar. Ensure that the **Results** box is checked under **Content**. Click **Customize**.

File Edit Analysis Tool:	s Help						
Properties Method	Plate Run Results	Export					
Export				Auto Export	Export	□ _å Save	•
File Name	2019-10-01_1234		Content		Raw Data		
File Type	QuantStudio	v	Amplification Data	Multicomponent Data			
	劉 (*əds)	v	Results Melt Curve Result		Reagent Informati		
Location	C:\Users\cornelis\Desktop	Browse	Customize Customize w	what is exported within each it	em above.		
	Open exported files when complete (for manual export only)		Options Unify the above content into Split the above content items				

9. Ensure All Fields are selected for export. Click Close.

Select Content ☑ All Fields	Well	Well Position	Sample Name	Sample Color	Biogroup Name	Biog
☑ Well	1	A1	Standard -1	RGB(176,23,31)		
Well Position	1	A1	Standard -1	RGB(176,23,31)		
Sample Name	1	A1	Standard -1	RGB(176,23,31)		
Z Sample Color	-		Standard 1	1000(110,20,01)		
Biogroup Name	1	A1	Standard -1	RGB(176,23,31)		
Biogroup Color	2	A2	Standard -1	RGB(176,23,31)		
Target Name						
Target Color	2	A2	Standard -1	RGB(176,23,31)		
7 Task	2	A2	Standard -1	RGB(176,23,31)		
Reporter	2	A2	Standard -1	RGB(176,23,31)		
Quencher	2	A3	Standard -2	RGB(176,23,31)		
Quantity		AJ	Standard -2	NOD(110,23,31)		
Comments	3	A3	Standard -2	RGB(176,23,31)		
	3	A3	Standard -2	RGB(176,23,31)		

?

Close

- Edit Analysis Export Propertie Plate Export D₄ Save v Auto Export Export File Name 2019-10-01_1234 Content Sample Setup Raw Data Amplification Data Multicomponent Data File Type QuantStudio Results 💐 (*.xis) v Reagent Information Customize Location C:\Users\cornelis\Desktop Browse. each item above Open exported files when complete Open × (for manual export only) Look in: 🧧 Export v 👌 📁 📑 -Zuletzt verwende . Fok Ope Files of type: Cancel All Files
- 10. In Export, click Browse, choose where you want to save your file, then click Open.

11. Click **Export**. Save the file in *.xls format.

File Edit /	nalysis Tools	Help									
Properties	Method	Plate	Run	Results	Export						
Export							Auto Export	Export	D ₄ S	Save	*
File Name		2019-10-	01_1234			Content		Raw Data			

12. To interpret results, see "Interpreting Data Using the QIAGEN Quantification Assay Data Handling Tool" on page 93.

Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and Applied Biosystems 7500 Real-Time PCR System for Human Identification

This protocol is optimized for use of the Investigator Quantiplex Pro Calibration Kit on the Applied Biosystems 7500 Real-Time PCR System for Human Identification using HID Real-Time PCR Analysis Software v1.1 or 1.2.

For general instructions on instrument calibration, refer to the Applied Biosystems 7500 Real-Time PCR System for Human Identification User Manual.

Important points before starting

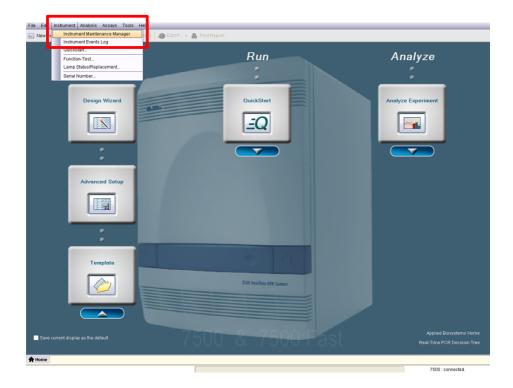
- Set up calibration plate in an area separate from that used for DNA isolation and PCR product analysis (post-PCR).
- Use Applied Biosystems 7500 Real-Time PCR System-related consumables (optical 96-well reaction plates and optical adhesive films).
- Use disposable tips containing hydrophobic filters to minimize cross-contamination.
- Repeat dispenser-pipettes can be used to dispense 20 μL into all 96 wells of a plate assigned for one dye.
- For repeat dispensers use disposable, sterile, separately wrapped repeat dispenser tips.
- Always wear a suitable lab coat, disposable gloves, and protective goggles. Take care to minimize touching plate wells, optical adhesive films, and bottoms of the plates.

• We strongly recommend performing the ROI calibration, background calibration, and optical calibration before you perform the custom dye calibration with the Investigator Quantiplex Pro Calibration Kit. Further details on how to perform ROI calibration, background calibration, and optical calibration can be found in the *Applied Biosystems* 7500 Real-Time PCR Systems Installation and Maintenance Guide.

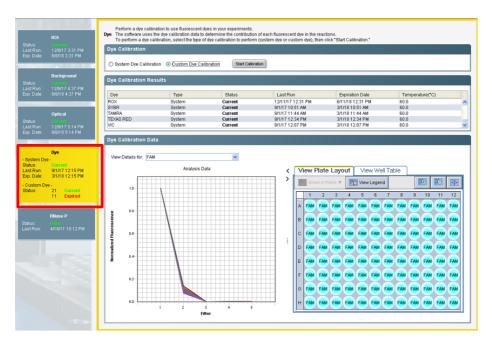
Procedure A: Calibration plate setup

- 1. Thaw kit components if required. Mix all kit components before use.
- 2. Vortex each calibration standard for at least 5 s before removing an aliquot.
- 3. Dilute each Investigator Quantiplex Pro Calibration Kit standard in a separate tube (e.g., a 5 mL reaction tube), as described in Table 12.

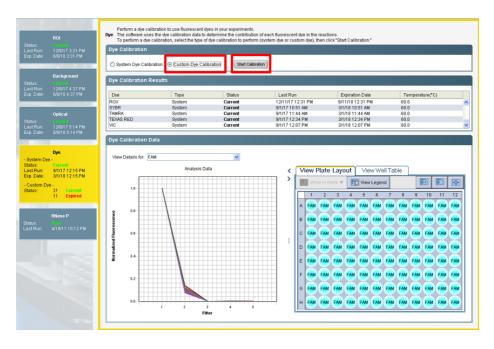
Component	Volume (µL)				
Calibration Standard FAM	23	-	-	-	-
Calibration Standard JOE	-	23	-	-	-
Calibration Standard ATTO 550	-	_	23	_	-
Calibration Standard ROX	-	-	-	23	-
Calibration Standard ATTO 647N	-	_	_	_	23
Quantiplex Pro Calibration Buffer	2277	2277	2277	2277	2277
Total volume	2300	2300	2300	2300	2300


Table 12. Dilution scheme for Investigator Quantiplex Pro Calibration Kit standards

- 4. Mix each calibration standard by vortexing for at least 5 s.
- 5. Assign and label one separate optical 96-well reaction plate for each Investigator Quantiplex Pro Calibration Kit standard (5 in total).


- 6. Dispense 20 µL of diluted Investigator Quantiplex Pro Calibration Kit standard FAM into the assigned dye-specific optical 96-well reaction plate.
- 7. Close the plate with an optical adhesive film.
- 8. Repeat these steps for each of the other remaining Investigator Quantiplex Pro Calibration Kit standards (JOE, ATTO 550, ROX, and ATTO 647N).
- 9. Centrifuge plates briefly. Always protect plates from light.
- After calibration, store the calibration plates at -30°C to -15°C in a constant-temperature freezer, protected from light. Calibration plates can be stored and reused for up to 3 months.

Procedure B: Calibration Protocol for Applied Biosystems 7500 Real-Time PCR Systems for Human Identification


 Open the HID Real-Time PCR Analysis Software v1.1 or 1.2 and select the Instrument Maintenance Manager from the instrument menu.

2. Click the **Dye** section on the left panel.

3. Select Custom Dye Calibration and then click Start Calibration.

4. Select New Dye in the Dye Calibration window.

Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup	Dye Calibration	
Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dye Increase Incre	Setun	Custom Dye Calibration Setup
 Custom dye calibration plate Powder-free gloves Safety gogies Centrifuge with plate adapter 2. Select a dye or create a new dye: Dye Name: OPP_FAM Dye Name: OPP_FAM Dye Name: 000 °C 3. Set the data collection temperature: Temperature: 000 °C 3. Prepare the custom dye plate into the instrument: Open the instrument drawer. Date the custom dye plate into the instrument: Close the instrument drawer carefully. 6. Select the checkbox to confirm the custom dye plate is loaded into the instrument: The custom dye plate is loaded into the instrument. 	Setup	関 Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dy
	Run	 1. Locate required materials: Custom dye calibration plate Powder-free gloves Safety goggles Centifuidy with plate adapter 2. Select a dye or create a new dye: Dye Name: OPP_FAM New Dye 3. Set the data collection temperature: Temperature: 60.0 °C 4. Prepare the custom dye plate: View Instructions 5. Load the custom dye plate into the instrument: a. Open the instrument drawer. b. Place the custom dye plate in the sample block with the A1 position at the back-left corner of the sample block. c. Close the instrument drawer carefully. 6. Select the checkbox to confirm the custom dye plate is loaded into the instrument: Image: Image: Imag
Cancel Previous Next Finish	L	

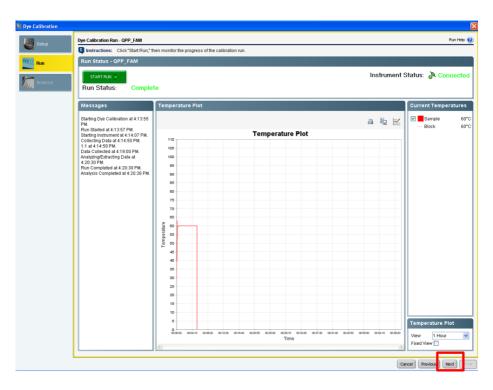
5. In the **Dye Library** window click **New**.

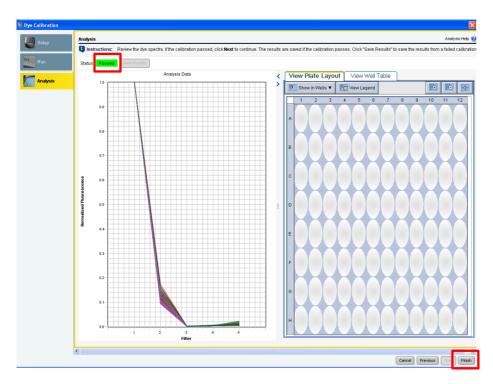
Dye Library				>
Name	Creation	Туре	Wavelength (nm)	
QP PRO JOE NEW	Custom	Reporter		~
QP PRO JOE OLD	Custom	Reporter		-
QP PRO ROX OLD	Custom	Reporter		
QP PRO TAMRA N	Custom	Reporter		
QP PRO TAMRA O	Custom	Reporter		
QPP_ATTO550	Custom	Reporter		
QPP_ATTO647N	Custom	Reporter		
QPP_FAM	Custom	Reporter		
QPP_JOE	Custom	Reporter		
QPPRO ATTO550	Custom	Reporter		
QPPRO ATTO550	Custom	Reporter		
QPPRO ATTO647	Custom	Reporter		
QPPRO Cy5 DYE	Custom	Reporter		
QPPRO FAM DYE	Custom	Reporter		~
	New	Delete		

6. Set names for the new custom dyes. To differentiate the new dyes from standard dyes, we recommend using the prefix QPP (for Quantiplex Pro). Enter "QPP_FAM" as a new dye name, select **Reporter**, and click **OK**.

🔋 New Dye		×
Perform custom costom costom costom costom	dye calibration with this dye before yo this dye.	ou run an
Name:	QPP_FAM	
Wavelength (Optional):		nm 🔽
_Туре		
 Reporter 		
O Quencher		
O Both		
	OK Cancel	

- 7. Repeat step 6 to set new dye names for:
 - QPP_JOE
 - QPP_ATTO550
 - QPP_ATTO647N

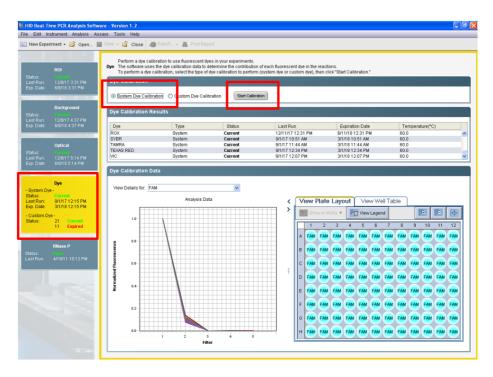

 Select QPP_FAM in the Custom Dye Calibration Setup window. Load the QPP_FAM plate prepared in Procedure A into the instrument. Confirm by checking the tick box for The custom dye plate is loaded into the instrument.


Dye Calibration	
Setup	Custom Dye Calibration Setup
Setup	🟮 Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dye
Run Analysis	Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dye Incate required materials: Custom dye calibration plate Powder-free glows Safety goggles Centrifuge with plate adapter Select a dye or create a new dye: Dye Nar OPP_FAM New Dye 3. Set the data collection temperature: Temperature: 60.0 °C 4. Prepare the custom dye plate into the instrument: a. Open the instrument drawer. b. Place the custom dye plate into the sample block with the A1 position at the back-left corner of the sample block. c. Coster the custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. A set the custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument.
	<>
	Cancel Previous Next Finish

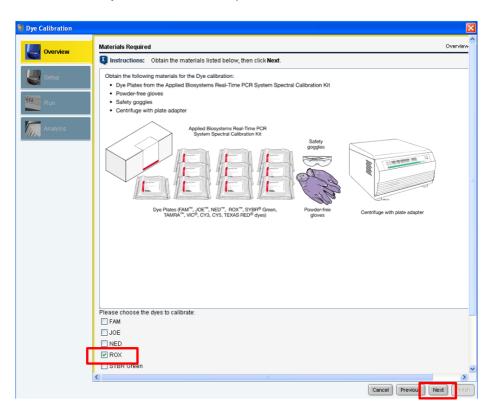
9. Click Next and then Start Run.

Setup	Dye Calibration Run - QPP_FAM									Run He
	Run Status - QPP_FAM	," then monitor the pro	gress of the call	bration run.						
Run										
Analysis	Ron Status. Idio							Inst	rument	Status: 🤌 Connect
	Messages	Temperature	Plot							Current Temperatur
								al	a 🗠	Sample
		110			Temperatu	re Plot				
		105								
		100								
		95								
		85								
		80								
		75								
		70								
		Temperature 03								
		45								
		35								
		30								
		25								
		15								
		10 -								
		6								Temperature Plot
		00:00:00	00:08:20	00:16:40	00:25:00 T	00:33:20 ime	00:41:40	00:50:00	00:58:20	View 1 Hour Fixed View
										ancel Previous Next

10. After the calibration run has finished, click **Next**.



11. The spectra and the status (e.g., "Passed") will be displayed. Click Finish.


- 12. Repeat steps 8 to 11 to calibrate for the following dyes:
 - QPP_JOE
 - QPP_ATTO550
 - QPP_ATTO647N

13. To calibrate ROX, open the **Dye** section and select **System Dye Calibration**. Click the **Start Calibration** button.

14. In the Overview window click Next.

15. In the Materials Required window select only ROX and click Next.

- 16. In the Preparing the Plate window, click Next.
- 17. The **Loading the Plate** window will open. Click **Next** and load the plate for Calibration Standard ROX into the instrument.
- 18. Click Start Run.

- After the calibration run has finished, click the Next button in the lower right corner. The spectrum and status of ROX (e.g., "Passed") will be displayed.
- 20. Click Next and then click Finish Calibrating ROX.
- 21. Confirm that the calibrated dyes provide the highest signals in the filter as shown in Table 13.

Table 13. Calibrated dye filter signal

Custom dye	Highest signal in filter
QPP_FAM	1
QPP_JOE	2
QPP_ATTO550	3
ROX	4
QPP_ATTO647N	5

Protocol: Cycler Calibration Using the Investigator Quantiplex Pro Calibration Kit and Applied Biosystems 7500 Real-Time PCR System with 7500 Software v2.0.6 or Higher

This protocol is optimized for use of the Investigator Quantiplex Pro Calibration Kit on the Applied Biosystems 7500 Real-Time PCR System with 7500 Software v2.0.6 or higher.

For general instructions on instrument calibration, refer to the Applied Biosystems 7500 Real-Time PCR System for Human Identification User Manual.

Important points before starting

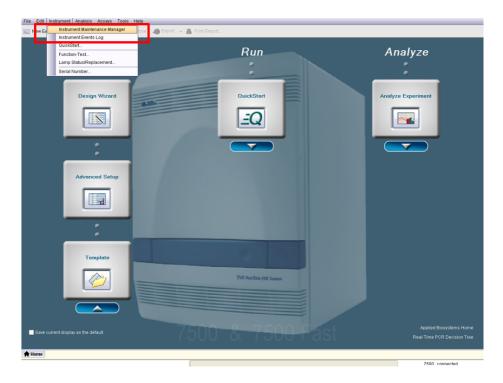
- Set up calibration plate in an area separate from that used for DNA isolation and PCR product analysis (post-PCR).
- Use Applied Biosystems 7500 Real-Time PCR System-related consumables (optical 96-well reaction plates and optical adhesive films).
- Use disposable tips containing hydrophobic filters to minimize cross-contamination.
- Repeat dispenser-pipettes can be used to dispense 20 μL into all 96 wells of a plate assigned for one dye.
- For repeat dispensers use disposable, sterile, separately wrapped repeat dispenser tips.
- Always wear a suitable lab coat, disposable gloves, and protective goggles. Take care to minimize touching plate wells, optical adhesive films, and bottoms of the plates.
- We strongly recommend performing the ROI calibration, background calibration, and optical calibration before you perform the custom dye calibration with the Investigator

Quantiplex Pro Calibration Kit. Further details on how to perform ROI calibration, background calibration, and optical calibration can be found in the *Applied Biosystems* 7500 Real-Time PCR Systems Installation and Maintenance Guide.

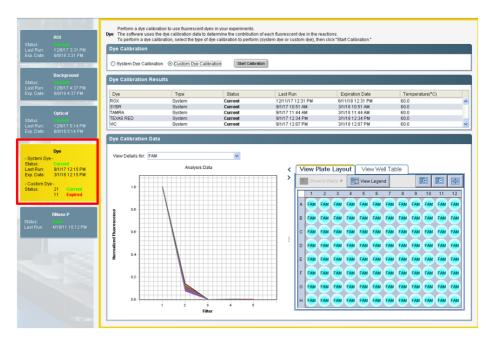
Procedure A: Calibration plate setup

- 1. Thaw kit components if required. Mix all kit components before use.
- 2. Vortex each calibration standard for at least 5 s before removing an aliquot.
- Dilute each Investigator Quantiplex Pro Calibration Kit standard in a separate tube (e.g., a 5 mL reaction tube), as described in Table 14.

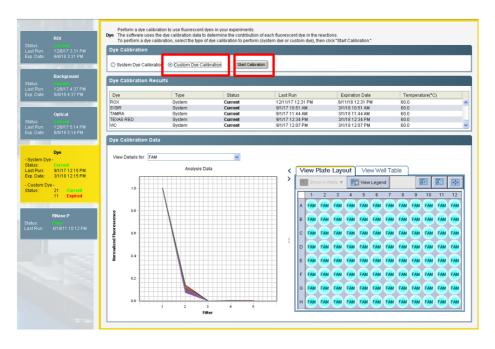
Component	Volume (µL)				
Calibration Standard FAM	23	_	-	-	_
Calibration Standard JOE	-	23	-	-	-
Calibration Standard ATTO 550	_	_	23	-	-
Calibration Standard ROX	-	-	-	23	-
Calibration Standard ATTO 647N	_	_	-	-	23
Quantiplex Pro Calibration Buffer	2277	2277	2277	2277	2277
Total volume	2300	2300	2300	2300	2300


Table 14. Dilution scheme for Investigator Quantiplex Pro Calibration Kit standards

- 4. Mix each calibration standard by vortexing for at least 5 s.
- 5. Assign and label one separate optical 96-well reaction plate for each Investigator Quantiplex Pro Calibration Kit standard (5 in total).
- 6. Dispense 20 µL of diluted Investigator Quantiplex Pro Calibration Kit standard FAM into the assigned dye-specific optical 96-well reaction plate.
- 7. Close the plate with an optical adhesive film.


- 8. Repeat these steps for each of the other remaining Investigator Quantiplex Pro Calibration Kit standards (JOE, ATTO 550, ROX, and ATTO 647N).
- 9. Centrifuge plates briefly. Always protect plates from light.
- 10. After calibration, store the calibration plates at -30° C to -15° C in a constant-temperature freezer, protected from light. Calibration plates can be stored and reused for up to 3 months.

Procedure B: Calibration Protocol for Applied Biosystems 7500 Real-Time PCR Systems with 7500 Software v2.0.6 or higher


 Open the 7500 Software v2.0.6 or higher and select the Instrument Maintenance Manager from the Instrument menu.

2. Click the **Dye** section in the left panel.

3. Select Custom Dye Calibration and then click Start Calibration.

4. Select **New Dye** in the **Dye Calibration** window.

Dye Calibration	
Setup	Custom Dye Calibration Setup
Setup	🔇 Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dy
Run Analysis	Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dy Custom dye calibration plate Powder-free gloves Safety goggles Centrifuge with plate adapter Select a dye or create a new dye: Dye Name: OPP_FAM New Dye Select addye or create a new dye: Dye Name: OPP_FAM New Dye Select the data collection temperature: Temperature: 60.0 °C Locat the custom dye plate into the instrument: 0. Open the instrument drawer. Divide the custom dye plate into the instrument: Collect the custom dye plate in the sample block with the A1 position at the back-left corner of the sample block. Collect the custom dye plate is loaded into the instrument: The custom dye plate is loaded into the instrument.
	Cancel Previous Next Finish

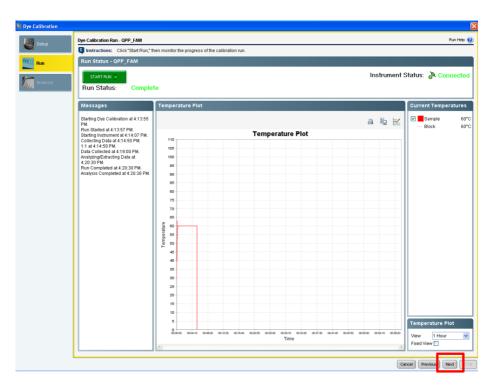
5. In the **Dye Library** window click **New**.

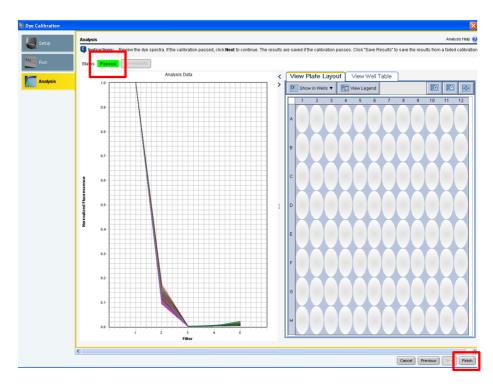
Name	Creation	Туре	Wavelength (nm)	
QP PRO JOE NEW	Custom	Reporter		~
QP PRO JOE OLD	Custom	Reporter		
QP PRO ROX OLD	Custom	Reporter		
QP PRO TAMRA N	Custom	Reporter		
QP PRO TAMRA O	Custom	Reporter		
QPP_ATTO550	Custom	Reporter		
QPP_ATTO647N	Custom	Reporter		
QPP_FAM	Custom	Reporter		
QPP_JOE	Custom	Reporter		
QPPRO ATTO550	Custom	Reporter		
QPPRO ATTO550	Custom	Reporter		_
QPPRO ATTO647	Custom	Reporter		
QPPRO Cy5 DYE	Custom	Reporter		
QPPRO FAM DYE	Custom	Reporter		×

6. Set names for the new custom dyes. To differentiate the new dyes from standard dyes, we recommend using the prefix QPP (for Quantiplex Pro). Enter "QPP_FAM" as a new dye name, select **Reporter**, and click **OK**.

🔋 New Dye		×
Perform custom costom costom costom costom	lye calibration with this dye before y this dye.	ou run an
Name:	QPP_FAM	
Wavelength (Optional):		nm 🔽
Туре		
 Reporter 		
O Quencher		
O Both		
[OK Cancel	

- 7. Repeat step 6 to set new dye names for:
 - QPP_JOE
 - QPP_ATTO550
 - QPP_ROX
 - QPP_ATTO647N


 Select QPP_FAM in the Custom Dye Calibration Setup window. Load the QPP_FAM plate prepared in Procedure A into the instrument. Confirm by checking the box for The custom dye plate is loaded into the instrument.


Dye Calibration	
Setup	Custom Dye Calibration Setup
Setup	🟮 Instructions: Locate the required materials, select or create a dye to calibrate, set the data collection temperature, prepare the custom dy
Run Analysis	Cluster development of the required materiais, select or create a dye to calibrate, set the data collection temperature, prepare the custom dye I Locate required materiais: Custom dye calibration plate Powder-free gloves Safety goggles Centrifuge with plate adapter 2. Select and the or create a new dwe: Dye Name: OPP_FAM New Dye 3. Set the data collection temperature: Temperature: 60.0 °C 4. Prepare the custom dye plate into the instrument: a. Open the instrument drawer. b. Place the custom dye plate into the instrument: c. Close the instrument drawer carefully. 6. Select the custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument. The custom dye plate is loaded into the instrument.
	Cancel Previous Next Finish

9. Click Next and then Start Run.

e Calibration										
Setup	Dye Calibration Run - QPP_FAM			had a second						Run Hel
	Run Status - QPP_FAM	, then monitor the pr	ogress of the cal	ibration run.						
Analysis								Inst	rument	Status: 👌 Connect
· •	Messages	Temperatur	e Plot							Current Temperatur
								а	• 🗠	Sample
		110			Гетрегаt	ure Plot				
		105								
		100								
		95								
		85								
		80								
		75								
		65								
		00 m								
		00 Detrature								
		는 50 45								
		40								
		35								
		30								
		20								
		15								
		10								
		0								Temperature Plot
		00:00:00	00:08:20	00:16:40	00:25:00	00:33:20 Time	00:41:40	00:50:00	00:58:20	View 1 Hour Fixed View
									Ce	Incel Previous Next

10. After the calibration run has finished, click **Next**.

11. The spectra and the status (e.g., "Passed") will be displayed. Click **Finish**.

- 12. Repeat steps 8 to 11 to calibrate for the following dyes:
 - QPP_JOE
 - QPP_ATTO550
 - QPP_ROX
 - QPP_ATTO647N

 Confirm that the calibrated dyes provide the highest signals in the filter as shown in Table 15.

Custom dye	Highest signal in filter
QPP_FAM	1
QPP_JOE	2
QPP_ATTO550	3
ROX	4
QPP_ATTO647N	5

Table 15. Calibrated dye filter signal

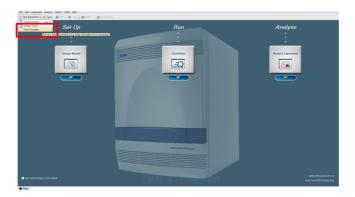
Protocol: Quantification of DNA Using the Applied Biosystems 7500 Real-Time PCR System for Human Identification or Applied Biosystems 7500 Real-Time PCR System

This protocol is optimized for use of the Investigator Quantiplex Pro FLX Kit on the Applied Biosystems 7500 Real-Time PCR System for Human Identification using HID Real-Time PCR Analysis Software v1.1 or v1.2 or the Applied Biosystems 7500 Real-Time PCR System using 7500 Software v2.0.6 or v2.3.

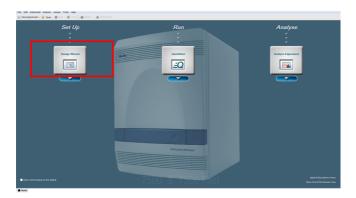
For general instructions on instrument setup and other software versions, refer to the Applied Biosystems 7500 Real-Time PCR System for Human Identification User Manual or Applied Biosystems 7500 Real-Time PCR System User Manual.

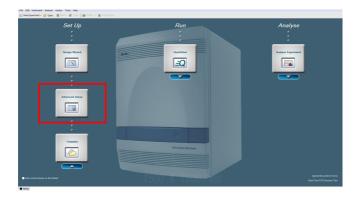
Important points before starting

- When using the Applied Biosystems 7500 Real-Time PCR System for Human Identification or the Applied Biosystems 7500 Real-Time PCR System with Investigator Quantiplex Pro FLX Kit, custom dye calibration for FAM, JOE, ATTO 550, ROX, and ATTO 647N is strongly recommended. To achieve optimal performance, calibrate with the Investigator Quantiplex Pro Calibration Kit (cat. no. 387416).
- Use the cycling conditions specified in the protocol. The cycling is optimized for this assay.
- Optimal analysis settings are a prerequisite for accurate quantification data. Readjust the analysis settings (i.e., threshold values) for analysis of every reporter dye channel in every run.


Procedure A: Creating an experiment

Open the HID Real-Time PCR Analysis Software v1.1 or v1.2 in the Custom Assays mode. If using the Applied Biosystems 7500 Real-Time PCR System, launch the 7500 Software v2.0.6 or v2.3.


 If you are using a template file, select New Experiment > From Template and proceed to step 6 to assign the Targets to the Plate Layout. Then proceed to step 12 on page 88 to save and start the run.


If you are not using a template file, proceed to step 2.

The template file loads all of the settings needed to start an Investigator Quantiplex Pro FLX run, including the standard curve settings, the cycling profile, and the targets needed for fluorescence acquisition. Download the template files from the **Resources** tab of the product page.

2. If you are not using a template file, select **Advanced Setup** by clicking the arrow below **Design Wizard**.

- Once the new window opens, enter a new Experiment Name in the appropriate field. Select the following settings:
 - Instrument: 7500 (96 Wells)
 - Experiment Type: Quantitation Standard curve
 - Reagents: TaqMan Reagents
 - Ramp Speed: Standard

Deselect the Include Melt Curve option.

🔄 New Experiment + 🧭 Open.	🔄 🚽 Save • 🧉 Close 🍕 Export • 📇 Print Report			
Experiment Menu «	Experiment: Untilled	Type: Standard Curve	Reagents: TaqMan@ Reagents START RUN ()	0
Jetup	Experiment Properties			
Experiment Properties	Enter an experiment name, select the instrument type, select the type of experiment to set up	ip, then select materials and methods for the PCR reactions and instrumen	trun.	
Plate Setup	How do you want to identify this experiment?			
Run Method	* Experiment Name: UstBed Barcode (Optional):			
Reaction Setup	User Name (Optional): Comments (Optional):			
Run	Which instrument are you using to run the experiment?			
Analysis	Which instrument are you using to run the experiment? 7500 (95 Wells)	7500 Fast (96 Wells)		
, Maryono	Set up, run, and analyze an experiment using a 4- or 5-color, 95-well system.	roor rais (in read)		
	•What type of experiment do you want to set up?			
	✓ Quantitation - Standard Curve	Quantitation - Relative Standard Curve	Quantitation - Comparative Cτ (ΔΔCτ)	
	Melt Curve	Genotyping	Presence/Absence	
	Use standards to determine the absolute quantity of target nucleic acid sequence in samples.			
	Which reagents do you want to use to detect the target sequence?			
	✓ TaqMan® Reagents	SYBR® Green Reagents	Other	
	The PCR reactions contain primers designed to amplify the target sequence and a TaqMan® (probe designed to detect amplification of the target sequence.		
	Which ramp speed do you want to use in the instrument run?			
	✓ Standard (~ 2 hours to complete a run)			
	For optimal results with the standard ramp speed, Applied Biosystems recommends using st	andard reagents for your PCR reactions.		
**				

- 4. Click **Plate Setup** and define 4 Targets by clicking twice on **Add New Target**. Select the following settings.
 - Human, Reporter: QPP_FAM, Quencher: None
 - IC, Reporter: QPP_JOE, Quencher: None
 - Degradation, Reporter: QPP_ATTO550, Quencher: None
 - Male, Reporter: QPP_ATTO647N, Quencher: None

File Edit Instrument Analysis								
🔛 New Experiment 🔹 🎯 Opan	🚽 Save • 🗳 Close 🎝 Export. • 🖄 Prin	t Report						
Experiment Menu «	Experiment: Untitled		Type: Sta	ndard Curve		Reagents: TaqMan@ Reagents	START RUN	(2)
Setup	Define Targets and Samples	ssign Targets and Samples	<u></u>					
Experiment Properties	Instructions: Define the targets to quantify a Define Targets	nd the samples to test in the reaction	plate.			Define Samples		
Flate Setup	Add New Target Add Saved Target Save	Taroet Delete Taroet				Add New Sample Add Saved Sample Save Sample Delete Sample		
Run Method	Target Name	Reporter	Quencher	Colour	11	Sample Name	Color	=11
Reaction Setup	Human	QPP_FAM	~ None	v 🔹 v		Standard -1		~
Materials List	Degradation	QPP_ATTO550 QPP_JOE	 None None 	v		Standard -2 Standard -3	_	~
WIII Run	Male	QPP_ATTO647N	-	v <mark>- v</mark>		Standard -4		~
Analysis						NTC Sample 1		~
Mil. Analysis						Sample 1 Sample 2		
						Sample 3		~
14	Define Biological Replicate Groups				-			
	Instructions: For each biological replicate g	roup in the reaction plate, click Add E	liological Group, then define the	biological group.				
	Add Biological Group Defete Biological Gro							
	Biological Group Name		Color			Comments		
"							Assign Targets and	Samples

5. Define the Sample names and also the names for the Standards (e.g., Standard 1 or Std1, Standard 2 or Std2, etc.) using the **Define Samples** tool on the right panel. Precise naming of Standards is required for proper subsequent analysis with the QIAGEN Quantification Assay Data Handling Tool. **Important**: If replicates are needed they should be assigned before you proceed to the next step. Define replicates by using the same sample name or in the **Define Biological Replicate Groups** panel.

 Switch to the tab Assign Targets and Samples. In the Plate Layout, select the wells in use and assign all 4 Targets by checking the boxes.

If using Applied Biosystems 7500 Real-Time PCR System with Software v2.0.6 or higher, make sure to change passive reference dye to **QPP_ROX**.

Important: Do not highlight the wells that are not in use (i.e., those without reaction mix). Including unused wells will significantly impact the scale of the X and Y axes when viewing the data.

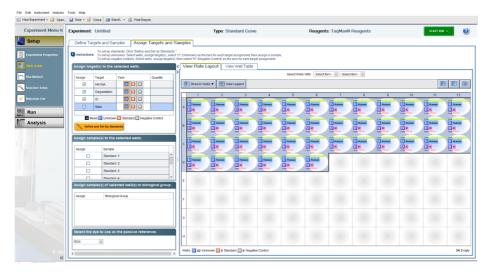


Figure 5. Settings for HID Real-Time PCR Analysis Software v1.1 or v1.2.

Experiment Menu «	Experiment: Untitled			Type: SI	andard Cur	e		Reager	its: TaqMan	9 Reagents			START RU	•• (
Setup	Define Targets and Samples Assign Targets and	nd Sample:	5											
Experiment Properties	To set up standards: Click "Define and Set Up Stand To set up unknowns: Select wells, assign target(s), To set up negative controls: Select wells, assign target(s).	select "U" (Unkr	iown) as the to ct "N" (Negativ	isk for each tarj e Control) as th	et assignment, ti e task for each ta	en assign a sam get assignment	ple.							
Plate Setup	Assign target(s) to the selected wells.	< Vie	w Plate L	ayout 🛛 🗸	ew Well Table		Select We	lis With: - Select	Ram , u , Sal	diam. v				
Run Method Reaction Setup	Assign Target Task Quantity	0	Show in Well	is 🔻 🛐 Vie	w Legend									3 🗊 🗄
Materials List	Degradation Degradation		1	2	3	4	6	6	7	8	9	10	11	12
Run			Human	U Human	1 Human	U Human	1 Human 1 K	1 Human 1 K	1 Haman 1 K	U Kuman	1 Haman	U Haman	U Human	1 Human
Analysis	Mixed II Unknown S Standard Negative Control		Human	Human U K	i Human	1 Human	ii Human	1 Human	Human HE	1 Human	Human HE	Human	Human UK	i Human
	Assign sample(s) to the selected wells.		Haman	U Human	1 Human	1 Human	1 Human	1 Puman	1 Haman	U Human	i Haman	U Haman	U Harran	1 Human
	Standard -1 Standard -2 Standard -3		Human IC	U Human	1 Human	U Human	1 Human	T Puman						
	Assign sample(s) of selected well(s) to biological grou	P.												
	Assign Biological Group	r												
		0												
	Select the dye to use as the passive reference.	н												
	OPP_ROX ~				idard 🔝 0 Nega									

Figure 6. Settings for Applied Biosystems 7500 Real-Time PCR System with Software v2.0.6 or higher.

 Select the wells for the no-template controls (NTC) and flag them as Negative Control using the gray N button.

Note: Leave the IC (QPP_JOE) Task for NTC reactions set to **Unknown**. Enter the sample name.

 Select the wells for the standard curve and flag them as Standard using the orange S button. Select Quantity for the appropriate detector and enter the quantity of DNA in the well according to Table 3 (on page 19).

Important: Although units are not entered for **Quantity**, a common unit must be used for all standard quantities (e.g., $ng/\mu L$). The units used for standard quantities define the quantification units for analysis of results.

Note: Leave the IC (QPP_JOE) Task for standard reactions set to Unknown.

9. Assign the samples to the plate layout by clicking on the wells and checking the appropriate box on the left panel.

File Edit Instrument Analysis	Tools Help . 🙀 Save - 🧉 Close 🦛 Export 📇 Print Report			
Experiment Menu «	Experiment: Untitled	Type: Standard Curve	Reagents: TaqMan@ Reagents	START RUN ()
Setup	Define Targets and Samples Assign Targets and Sam	ples		
Experiment Properties	Instructions: To set up standards: Click "Define and Set Up Standards." To set up unknowns: Select wells, assign target(s), select "U" (To set up another controls: Select wells, assign target(s), select "U" (Inknown) as the task for each target assignment, then assign a sample, select "N" (Negative Control) as the task for each target assignment.		
🛗 Plate Setup		View Plate Layout View Well Table		
Run Method	Assign Target Task Quantity		Select Wells With: - Select Item - - Select Item - -	
Neaction Setup	Human Image: Solution	Show in Wells View Legend		10 II II II
🛒 Materials List	Degradation Degradation C	1 2 3 4	5 6 7 8 9 10	11 12
Run		Shuman Shuman<	7 0.07 0 0 Naman Naman	Human Human
Analysis	Mixed II Unknown S Standard II Negative Control		Ruman II Ruman II Ruman II Ruman II Ruman	1 Human 1 K 1 K
	Assign sample(s) to the selected wells.		Remark I Remark I Remark I Remark	Human II Human
	Assign Sample			
	Standard -1		Haman II Naman	
	Standard -3			
	Standard 4			
	Assign sample(s) of selected well(s) to biological group.			
	Assign Biological Group			

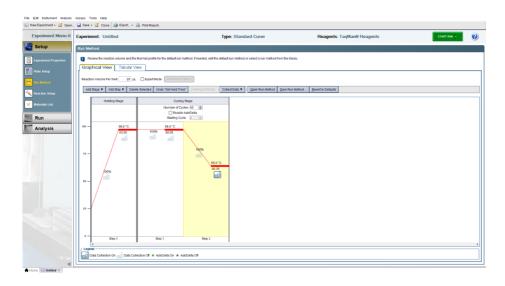

10. Click Run Method. Program the cycler according to Table 16.

Table 16. Cycling protocol using an Applied Biosystems 7500 Real Time PCR System for Human Identification or Applied Biosystems 7500 Real Time PCR System

Step	Temperature (°C)	Time	No. of cycles	Remarks
Initial PCR activation step	98	3 min	-	PCR requires an initial incubation at 98°C to activate the DNA poly- merase
Denaturation	98	5 s		-
Combined annealing/extension	65	35 s	40	Perform fluorescence data collection

Note: Always use a compression pad if using the entire plate. If using 8-tube strips, please follow the PCR cycler manufacturer's recommendation for the use of strips.

11. On the thermal profile, change the **Reaction Volume Per Well** to **20 µL**. Data acquisition should be performed during the combined annealing/extension step.

- 12. Before running the reaction plate, save the plate document as an EDS Document (*.eds) file. Click **File** and then **Save**. Enter a name for the plate document, then click **Save** again.
- 13. Load the plate into the instrument. Ensure that position A1 on the plate is on the top-left side of the tray.
- 14. Start the reaction by clicking Start.

Procedure B: Data analysis

Optimal analysis settings are a prerequisite for accurate quantification data. Readjust the analysis settings (i.e., threshold values) for analysis of every reporter dye channel in every run.

Open the run file using the HID Real-Time PCR Analysis Software v1.1 or v1.2. First you
must open the software in the Custom Assays Mode. Then go to **Open** and then **Browse** to
locate the saved file.

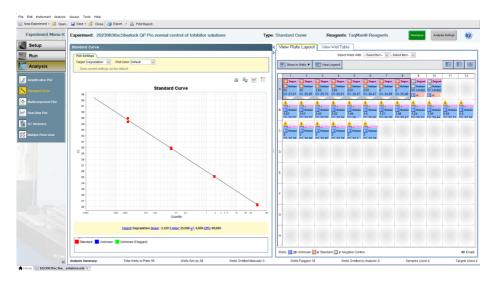
If using Applied Biosystems 7500 Real-Time PCR System open the run file by using 7500 Software v2.0.6 or higher. Go to **Open** and then **Browse** to locate the saved file.

- 2. Standards must first be defined before a standard curve can be created. If the standards were defined before the run was started, proceed to step 4, below.
- 3. Go to **Setup** and select **Plate Setup**. Define the wells that contain DNA standards as explained in step 8 on page 86.

Important: Although units are not entered for **Quantity**, a common unit must be used for all standard quantities (e.g., $ng/\mu L$). The units used for standard quantities define the quantification units for the analysis of results.


Note: Leave the IC (QPP_JOE) Task for standard reactions set to **Unknown**. Enter the sample name (e.g., Standard 50 ng/µL).

4. In the Amplification Plot tab (found in the Analysis tab), select the appropriate samples in the table below the amplification plot. Choose Human, set threshold to 0.2 and then press Analyze. Repeat this for Male, Degradation, and IC with the following thresholds listed:


Note: Alternatively, click the **Analysis Settings** button in the upper right corner to set all analysis settings.

- Human: 0.2
- Male: 0.5
- Degradation: 0.2
- IC: 0.05
- Auto Baseline for all targets

Note: Verify that option for **Auto Threshold** is deselected for all Targets. Setting the appropriate threshold value may require further internal validation at your facility.

5. To view the standard curve, select the **Standard Curve** tab (found in the **Results** tab). View the C_T values for the quantification standard reactions and the calculated regression line, slope, y-intercept, and R^2 values.

6. View the concentrations of the unknown samples.

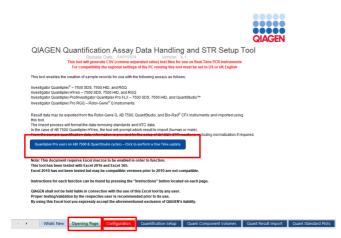
The **Well Table** displays data for the selected wells and summarizes the quantity of DNA present in the unknown samples. The **Human** Target shows the quantity of DNA present with the same units as used for the standards (i.e., if $ng/\mu L$ was used for the definition of the standards, then the quantities for the unknowns will be reported in $ng/\mu L$). The **Male** and **Degradation** Targets show the quantity of male and human DNA present, with the same units as used for the standards. The **IC** Target shows the C_T value for the internal control.

Important: If replicates are needed they have to be assigned before you proceed to the next step and export your data for further analysis with the QIAGEN Quantification Assay

Data Handling Tool. Mean quantification values should be displayed if replicates have been assigned.

Experiment Menu «	Ехр	eriment:	Untitl	bed				Тур	e: Standa	ard Curve			Reagents	s: Other	Reanalyse	Analysis Settings	e
Setup	<u>،</u>	View Plat	e Layou	t View Well	Table												
Run									Select	Wells With: - t	Select Item -	· Select item · · ·					
Analysis		Show in Tabl	e 🔻 🛛 G	roup By 🔻												Expand Al 🛛 💽 C	
.		💠 Well	Omit	Flag Sample N	ame Target Name	Task	CT	Cr Mean	CT SD	Quantity	Quantity M.	Quantity SD HIGHSD	NOAMP	Comments			
Amplification Plot		1 A1		Std 1	Degradation	STANDARD	20,001	19,985									
Standard Curve		2 A1		Std 1	Human	STANDARD	20,971	20,94									
Standard Curve		3 A1 4 A1		Std 1 Std 1	IC Male	UNKNOWN	22,143 19,053	22,095									
		5 42		Std 1	Degradation	STANDARD STANDARD	19,063	19,02									
Multicomponent Plot		6 42		Std 1	Human	STANDARD	20,909	20.94									
		7 42		Std 1	IC .	UNKNOWN	22.047	22,095									
Raw Data Piot		8 A2		Std 1	Male	STANDARD	18,976	19,02									
Ξ.		9 A3		Std 2	Degradation	STANDARD	24,569	24,601									
QC Summary		10 A3		Std 2	Human	STANDARD	25,450	25,512									
-		11 A3 12 A3		Std 2 Std 2	IC Male	UNKNOWN	22,590 23.600	22,648 23,622									
Multiple Picts View		12 A3 13 A4		585 2 S85 2	Degradation	STANDARD	23,600 24,633	23,622 24,601									
		14 A4		510 2	Human	STANDARD	25.575	25.512									
		15 A4		Std 2	IC I	UNKNOWN	22,706	22,648									
		16 A4		\$15.2	Male	STANDARD	23,645	23,622	0.033	1,852							
		17 AS		Std 3	Degradation	STANDARD	28,844	28,867									
		18 AS		Std 3	Human	STANDARD	30,053	30,111									
		19 AS		Std 3	IC .	UNKNOWN	22,527	22,53									
		20 AS 21 AS		Std 3 Std 3	Male Degradation	STANDARD STANDARD	28,163 28,890	28,209 28,867									
		21 A5		Std 3	Human	STANDARD	28,890	28,867									
		23 46		Std 3	IC IC	UNKNOWN	22,532	22.53									
		24 A6		Std 3	Male	STANDARD	28,256	28,209									
		25 A7		Std 4	Degradation	STANDARD	33,166	33,095	0,1	0,002							
		26 A7		Std 4	Human	STANDARD	34,674	34,756									
		27 A7		585.4	IC IC	UNKNOWN	22,627	22,649									
		7A 85		Std 4	Male	STANDARD	33,312	33,304									
		29 A8 30 A8		Std 4 Std 4	Degradation Human	STANDARD STANDARD	33,024 34,837	33,095 34,756									
		30 AS 31 AS		500.4 Std 4	Human	UNKNOWN	34,837	34,755									
		32 48		Std 4	Male	STANDARD	33,295	33.304									
		33 A9		NTC	Degradation	NTC	Undetermi		0,013	. 0,002							
		34 A9	873	NTC	Human	NTC	Undetermi	-									
		35 AQ		NTC	IC	UNKNOWN	22,527	22,595	0,097	1							
		96 A9	23	NTC	Male	NTC	Undetermi										
		37 A10		NTC	Degradation	NTC	Undetermi	-									
			8	NTC	Human	NTC	39,674	40.000									
	1 2	39 A10	23	NTC	IC IC	UNKNOWN	22,665	22,595	0.097								

- To export and save the results report, go to File, followed by Export and then Results. The analysis settings must be saved first, then the results may be saved in the format Results Export Files *.csv.
- 8. To interpret the results, see "Interpreting Data Using the QIAGEN Quantification Assay Data Handling Tool", next chapter.


Interpreting Data Using the QIAGEN Quantification Assay Data Handling Tool

The QIAGEN Quantification Assay Data Handling Tool is designed for accurate quantification, data analysis, and interpretation. The Opening Page worksheet contains information on version number and software requirements/compatibility. On the Configuration worksheet, the root directories for data processing, result import options, and default values for analysis criteria and thresholds can be set. Each worksheet contains an instruction button, which, when pressed, provides detailed instructions on using the functions of the specific worksheet.

Quantification Assay Data Handling Configuration
Import QIAsymphony Rack File Data for Quantification Setup Define the root directory where the QIAsymphony Rack File is stored
Root directory where the Unsympton years these stored Defined root directory
To import QIAsymphony Rack files Browse.
X
Contents Configuration Quantification Setup Quantification Respert Volumes Importing Quantification Data Virtual Quantification Standards Standard Assessment PCR Setup PCR Respert Volumes CE Setup on QUAgility
Back to Contents Close
Configuring not directories, Duantialex Pro specific settings, Dilaent naming & Archive options
Description
The Quark Assay Data Handing tool (QDH7) reads, reformats and exports data from defined locators, these locators are specified in the "Configuration" sheet and must be configured prior to using the associated function. The tool data perform analysis of exported data from the 7200, Quartification and ROQ for Quantification is a set for the imported Quantification data and the POX Exits or interst.
Instructions
The configuration sheet is presented in 5 main sections as described below. To specify the directory for the import and export functions clock the browse button and navigate to the appropriate folder.
1. Quantification Data Processing
The QDHT will produce plate record files for use with the RGQ and Life Technologies 7500 (505/HD) and QuantStudio. These files contain data relating to standards, samples and locations on the plate. Specify here where files should be saved.
2. Quart Result Import
Specify here where in the directory the quantification result files are located.
Following the import of quantification run results, for Investigator Quantiplex and Investigator Quantiplex Hires the QDHT will calculate PCR Setup volumes. For Investigator Quantiplex Pro the QDHT will perform a quality analysis assessment. Investigator Quantiplex Pro data may then be used for calculating PCR Setup volumes.
3. Quantiplex Pro Plate Setup and Analysis Criteria
For Quantiplex Pro it is possible to specify the target name for each of the targets in the result file, this option is only required if the targets have been changed from the default values in the Quantiplex Pro handbook. The Quality Assessment thresholds may also be modified, see the Quantiplex Pro handbook for more details.
Note: Default handbook values may be entered for the Target Names and Threshold Quality Criteria by pressing the "Enter Defaults" button located in each table as required.
For Questiples Pro it is possible to define a Quantification control sample(g) in the run, entering the name of the control here will allow the control to be filtered, if required, from the imported sample data. If filtering a non-required define the minimal from the data. To configure thread Standerds, Baleen and the one between the same thread of the control here will allow the control to be filtered, if required, from the imported sample data.
4. Normalization Divent Naming
The diuent used at PCR stage may be defined here, the PCR Setup sheet will then present the name entered into this field.
5. Archive Settings
The archive format, archive location and a filename prefix (which will be appended with a timestamp) may be defined using the options presented in this section.
6. Export Quantification Result to Instrument for POR Setup
Save the QDHT to retain configuration settings for future use, to do this, select "file/Save".

Procedure

- 1. Open QIAGEN Quantification Assay Data Handling Tool.
- 2. If the cycler has been calibrated with the Investigator Quantiplex Pro Calibration Kit and if the Data Handling Tool is being used for the first time on your computer, a one-time update has to be conducted. For proper functioning of the Data Handling Tool please ensure that the QPP dyes have been named exactly on your cycler as described in the calibration section of this handbook. The one-time update will set proper dye naming in the Data Handling Tool. Save the Data Handling Tool afterwards on your computer. If you are using the Data Handling Tool the first time on your computer proceed to step 3. If the one-time update has already been done and the changes have been saved proceed to step 4.
- 3. Click on the blue **One Time update** button.
- 4. Click the Configuration worksheet tab.

5. Set the root/home directory to save Quant batch files.

- 6. Set the root/home directory to import Quant result files.
- 7. Target names should be assigned for the Applied Biosystems 7500 Real-Time PCR System. Click on the Enter Defaults button and select ABI 7500/Quantstudio. Default names for the targets are "Human" (Human Target), "Male" (Male Target), "Degradation "(Degradation Target), and "IC" (Internal Positive Control). Defaults can be restored by clicking the Enter Defaults button.

Note: The Male Degradation Marker is only available in the Investigator Quantiplex Pro RGQ Kit.

Import QIAsymphony Rack Define the root directory where the QIAsym Root directory To import QIAsymphony Rack files Quantification Data Process Define the root directory where the quality	Defined root directory Browse.	AGEN									
Define the root directory where the GMAsymp Root directory To import QMAsymphony Rack files Quantification Data Process Define the root directory where the quantific	shony Rack File is stored Defined root directory Bround										
Define the root directory where the GMAsymp Root directory To import QMAsymphony Rack files Quantification Data Process Define the root directory where the quantific	shony Rack File is stored Defined root directory Bround										
Quantification Data Process											
Define the root directory where the quantific	ing										
	Quantification Data Processing										
	Define the root directory where the quantification RT-PCR plate record will be saved										
Root directory	Defined root directory										
To save Quant batch files	Browse										
Quant Result Import											
Define the root directory where concentration	in data result file from the RGQ/AB7500/QuantStudio will be saved										
· · · · · · · · · · · · · · · · · · ·	Root directory Durged root directory										
To import Quant result files	Brause										
Use Virtual Standard for Data Analysis?	What's many Otes I No Edit Standard Data Delele Saved Standard										
Quantinley Pro Plate Setup	and Analysis Criteria Options										
Result File Target Name Specification (Qua											
Target Description	Name in Results File Enter Defaults										
Human Target	Human										
Male Target	Male										
Human Degradation Target	Degradation										
Internal Positive Control (IPC)	10										
Male Degradation Target (RGQ Only)	Male Degradation										
Threshold Specification for Quality Asses	Threshold Specification for Quality Assessment in Quantiplex Pro only										
Quality Assessment	Threshold Enter Defaults										
Moture Index (Human/Male)	2										
Human Degradation Index (Human/Human											
Inhibition Index (IC Shift)	1										
Male Degradation Index (Male/Male Degrad	ation) 10										
Quantification NTC & QC Control Specific	tion, to be removed during data import (Quantiplex Pro only)										
Control Name in Result File	9948										
Retain samples with task "NTC" in importe	d result data? O Yes No										
Whats New Opening Page Configurat	ion Quantification Setup Quant Component Volumes Quant Result Import Quant Standard	Plots PCR									

8. Threshold setting for the Quality Assessment can be changed/adjusted as needed. The default threshold settings are

- Mixture index (Human/Male): 2
- Degradation Index (Human/Degradation): 10
- Inhibition Index (IC Shift): 1

Note: Setting the appropriate threshold values may require further internal validation at your facility. 9948 will be filtered from the import, provided it is included in the section "Quantification QC Control Specification". Removing it allows it to be kept in the final data set.

Defaults can be restored by clicking the Enter Defaults button.

9. To import quantification results click the **Quant Result Import** worksheet tab.

Instructions	Quantification Assay	Data Handling	Configuration	n	GIAGEN
	Import QIAsymphony Rack Fil		tion Setup		_
	Root directory		ed root directory		
	To import QIAsymphony Rack files	Browse			
	Quantification Data Processing]			
	Define the root directory where the quantification				
	Root directory	Defin	ed root directory		
	To save Quant batch files	Browse			
	Quant Result Import				
	Define the root directory where concentration d			i i	
	Root directory	Defin	ed root directory		
	To import Quant result files	Browse			
	Use Virtual Standard for Data Analysis?	What's This?	s 🛞 No 🛛 Edit Sta	ndard Data 📔 Delele Saved Sta	andard
	Quantiplex Pro Plate Setup and		ptions		
	Result File Target Name Specification (Quantip	lex Pro only)			
	Target Description	Name	e in Results File	Enter Defaults	
	Human Target	Hum	an		
	Male Target	Male			
	Human Degradation Target		adation		
	Internal Positive Control (IPC)	IC			
	Male Degradation Target (RGQ Only)	Male	Degradation		
	Threshold Specification for Quality Assessment	nt in Quantiplex Pro only			
	Quality Assessment	Three	shold	Enter Defaults	
	Mixture Index (Human/Male)	2			
	Human Degradation Index (Human/Human De	gradation) 10			
	Inhibition Index (IC Shift)	1			
	Male Degradation Index (Male/Male Degradatio	n) 10			
	Quantification NTC & QC Control Specification		port (Quantiplex Pro only)		
	Control Name in Result File	9948	A		
	Retain samples with task "NTC" in imported re-	sult data? O Yes	: 🛞 No		
< • • V	Vhats New Opening Page Configuration	Quantification Setup		e: Quant Result Import	Quant Standard Plots PCR

Setup

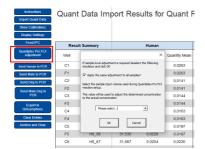
10. Click the Import QuantData button.

Instructions Import Quant Data	Quar	nt Data Im	port Re	sults						
Show Calibrations Display Settings										
Fixed IPC	Res	ult Summary		Human		1	luman Degrad	ation	IPC	
Quantiplex Pro FLX Adjustment	Well	Sample Name	ст	Quantity	Quantity Mean	п СТ	Quantity	Quantity Mean	ст	
Send Human to PCR										
Send Male to PCR										
Send Deg to PCR										
Send Male Deg to PCR										
Export to QIAsymphony										
Clear Entries										
Archive and Clear										
 ♦ What 	ats New	Opening Page C	onfiguration	Quantification	on Setup	Quant Compor	ient Volumes	Quant Result Im	port	Quant Star

11. Confirm that the exported data are in the appropriate format.

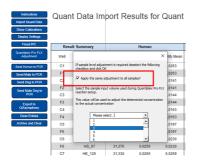
Microsoft Excel	×
Data exported from the RGQ and AB 7500 must be saved as .csv, .tx .xls, .xlsx and exported with all default export fields enabled	,
ОК	

Your quantification data are now imported and the data analyzed. The Mixture Index, Degradation Index, and Inhibition Index are calculated and tagged as "Below Threshold", "Possible Mixture", "Possible Degradation", or "Possible Inhibition".


*** 24							R	aw data is cu	rrently hidd	len. Click ti	he "Displa;	/ Settings" b	utton to ch	ange this.				
	Resul	t Summary		Human		Bun	Human Degradation IPC Male					Quality Assessment						
fix t	Well	Sample Name	ст	Quantity	QuantityMean	СТ	Quantity	QuantityMean	СТ	ст	Quantity	Quantity Mean	Misture Index	Minure Threshold	Degradation Index	Degradation Threshold	Inhibition Index	Inhibition Thre
POR	C1	HS_25	31,368	0,0257	0,0263	35,875	0,0013	0,0009	24,942	29,357	0,0335	0,0312	0,77	Below Threshold	19,50	Possible Degradation	-2,04	Possible inh
PCR	F1	HS_25	31,311	0,0268	0.0263	37,593	0.0004	0.0009	24,927	29,573	0,0288	0.0312	0.93		70,30	Possible Degradation	-2,82	Possible inh
PCR	C2	H5_33	32,068	0,0155	0,0141	Undetermined	0,0000	0,0000	27,549	29,443	0,0315	0,0327	0,49		Not Applicable	Possible Degradation	-5,44	Possible Inh
12 10	F2	H5_33	32,341	0.0127	0.0141	Undetermined	0.0000	0.0000	30,710	29,339	0.0339	0.0327	0.37		Not Applicable	Possible Degradation	-8,60	Possible Inhi
••	C3	H5_42	32,007	0.0162	0.0144	Undetermined	0.0000	0.0000	33,900	29,394	0.0326	0.0342	0.50		Not Applicable	Possible Degradation	-11,79	Possible Inhi
	F3	HS_42	32,335	0,0127	0.0144	Undetermined	0,0000	0.0000	34,954	29,262	0.0358	0,0342	0,36		Not Applicable	Possible Degradation	-12,85	Possible Inhi
	C4	HS_50	31,977	0.0165	0.0163	Undetermined	0.0000	0.0000	33,981	28,878	0.0469	0,0435	0.35		Not Applicable	Possible Degradation	-11.87	Possible Inhi
85	F4	HS_50	32,016	0,0161	0,0163	Undetermined	0,0000	0,0000	34,285	29,096	0.0402	0,0435	0,40		Not Applicable	Possible Degradation	-12,18	Possible inhi
lear -	CS	H5_58	31,972	0.0166	0.0197	Undetermined	0.0000	0.0000	34,349	29,138	0.0391	0.0450	0,42		Not Applicable	Possible Degradation	-12,24	Possible Inhi
	FS	H5_58	31,535	0.0228	0.0197	Undetermined	0.0000	0.0000	33,459	28,761	0.0509	0.0450	0.45		Not Applicable	Possible Degradation	-11.35	Possible Inhi
	06	HS_67	31,687	0.0204	0.0230	Undetermined	0.0000	0.0000	34,118	29,102	0.0400	0.0372	0.51		Not Applicable	Possible Degradation	-12.01	Possible inhit
	F6	HS_67	31,376	0.0258	0.0230	Undetermined	0,0000	0.0000	33,907	29,318	0.0344	0,0372	0,74		Not Applicable	Possible Degradation	-11.80	Possible Inhi
	C7	HE_125	31,330	0.0265	0.0259	31,571	0.0296	0.0297	22,555	28,664	0.0544	0.0552	0,49		0.90	Below Threshold	-0.45	Below Three
- 1	F7	HE_125	31,393	0.0253	0.0259	31,562	0.0298	0.0297	22,437	28,626	0.0553	0,0552	0,45		0.85	Below Threshold	-0,39	Below Three
	C8	HE_167	32,027	0,0159	0.0178	32,516	0.0143	0.0%3	23,205	27,608	0,1140	0.0900	0,14		1.07	Below Threshold	-1.10	Possible initial
- 1	F8	HE_167	31,740	0,0196	0.0178	32,188	0,0189	0.0169	22,857	28,388	0.0660	0,0900	0.30		1.04	Below Threshold	-0.75	Below Three
	C9	HE_208	31,787	0.0190	0.0188	34,522	0.0026	0.0024	23,842	28,171	0.0769	0,0673	0.25		7.22	Below Threshold	-1,74	Possible inhi
	F9	HE_208	31,809	0,0187	0.0188	35,156	0.0022	0.0024	23,753	28,580	0.0577	0,0673	0.32	Below Threshold	8,41	Below Threshold	-1.65	Possible Inhi
	C10	HE_250	32,033	0,0159	0.0163	Undetermined	0.0000	0.0000	25,221	28,322	0.0691	0.0596	0.23		Not Applicable	Possible Degradation	-3,12	Possible inhibit
	F10	HE_250	31,959	0,0167	0,0163	Undetermined	0,0000	0,0000	25,598	28,781	0,0501	0,0596	0,33		Not Applicable	Possible Degradation	-3,49	Possible initial
	811	no inhibitor	31,094	0.0314	0.0386	31,378	0.0340	0.0347	22,472	29,412	0.0322	0.0345	0.98		0.93	Below Threshold	-0,37	Below Three
- 1	C11	HE_292	32,225	0,0138	0.0133	Undetermined	0.0000	0.0000	30,534	28,826	0.0486	0,0444	0.28		Not Applicable	Possible Degradation	-8,83	Possible inhit
	F11	HE_292	32,325	0.0128	0.0133	Undetermined	0.0000	0.0000	30,870	29,097	0.0402	0,0444	0.32		Nor Applicable	Possible Degradation	-8,76	Possible inhit
- 1	B12	no inhibitor	30,580	0,0457	0.0386	31,325	0.0353	0.0347	22,409	29,192	0.0376	0,0349	1,22		1,29	Below Threshold	-0,30	Below Three
	C12	HE_333	32,289	0,0132	0.0108	Undetermined	0.0000	0.0000	32,860	29,304	0.0348	0.0371	0.38		Not Applicable	Possible Degradation	-10,75	Possible inhi
	F12	HE_333	32,893	0,0085	0.0108	Undetermined	0,0000	0,0000	32,976	29,127	0,0394	0,0371	0,22		Not Applicable	Possible Degradation	-10,87	Possible initial
	12	HE_333	32,893	0,0085	0,0108	Undetermined	0.0000	0.0000	32,376	28,927	0.0394	0,0371	0,22	Delow Threshold	Not Applicable	Possible Degradation	-10,87	Possible P

- 12. Display options can be adjusted by clicking **Display Settings**:
 - Show Raw Data
 - Show Quantity Mean Values
 - Show C_T Values

Note: The Degradation Index is set to 10 as a default. Full STR profiles can be obtained with DNA fragmented to an average fragment size of approximately 300 bp. The default Degradation Index of 10 should allow differentiation between DNA fragments larger or smaller than 300 bp.


Note: The Inhibition Index is set to 1 as a default. The IC acts as a quality sensor and reports the presence of inhibitors with a C_T shift while quantification remains reliable. The default value can be changed and adjusted for relevant degrees of inhibition. Therefore, laboratory validation should be performed to determine criteria for detecting inhibition.

Apply concentration correction factor (only necessary if sample volume was not 2 μ L) by clicking **Quantiplex Pro FLX Adjustment**.

By checking or unchecking the box, you can choose between:

a. the same correction factor is applied to all samples

or;

b. a separate correction factor is used for each sample individually (if the input volume of the samples differs).

Instructions Import Quant Data Show Calibrations Display Settings	Quan	t Data Im	port Re	sults for G	Quant
Fixed IPC	Rest	It Summary		Human	
Quantiplex Pro FLX Adjustment	Well			×	nity Mean
Send Human to PCR	C1	If sample level adjust checkbox and dick O	ment is required de	eselect the following	0263
Send Male to PCR	E1	_ /	0263		
Send Deg to PCR	C2	Apply the same a	.0141		
Send Male Deg to	F2	Click OK to enter inpu	0141		
PCR	C3	displayed click "Apply Quant Result Import	0144		
Export to	F3				0144
GlAsymphony	C4				0163
Clear Entries	F4				0163
Archive and Clear	C5				0197
	F5	0		Cancel	0197
	C6				.0230
	F6	HS_67	31,376	0,0256	0,0230
	C7	HE_125	31,330	0,0265	0,0259

After entering the sample volume, click on Apply Adjustments.

kávdori	Quantiplex Pro FLX - Ad	justment by Input Volume	QIAGEN
Appendix	Instant Instant 0.2 5 0.2 5 0.2 5 0.2 5 0.2 5 0.2 5 0.2 5 0.2 5 0.2 6 0.2 1 0.4 1 0.5 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.7 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 <td></td> <td></td>		

Back in the **Quant Result Import** sheet, the samples are corrected with the selected correction factor.

General Interpretation of Results

General considerations for data analysis

Real-time PCR data are produced as sigmoidal-shaped amplification plots (when using a linear scale), in which fluorescence is plotted against the number of cycles.

The threshold cycle (C_T value) serves as a tool for calculation of the starting template amount in each sample. This is the cycle in which there is the first detectable significant increase in fluorescence.

The optimal threshold setting depends on the reaction chemistries used for PCR. Therefore, an optimal threshold setting that has been established for another kit may not be suitable for the Investigator Quantiplex Pro FLX Kit and may need to be adjusted.

For DNA quantification using the Investigator Quantiplex Pro FLX Kit, the analysis settings must be adjusted for all reporter dyes.

Standard curve

The standard curve is the best fit for a linear regression to the standard dilution series data. The equation is in the form

$$y = mx + b$$

where \boldsymbol{x} represents the log concentration and \boldsymbol{y} is the threshold cycle C_T.

The slope

The slope m describes the PCR efficiency. A slope of -3.3 indicates 100% PCR efficiency (i.e., the number of copies of amplification product is doubled at each cycle). Typically, the slope ranges between -3.0 and -3.6. If the values fall outside of this range, see the "Troubleshooting Guide" on page 106 for more information.

The y-intercept

The y-intercept b indicates the expected C_T value for a sample with a quantity value of 1 (for example, 1 ng/µL).

The R² value

The R² value is a measure of the fit of the data points to the regressed line. In general, the standard curve has an R² value ≥ 0.990 . Low R² values (R² ≤ 0.98) may occur for many different reasons. In case of low R² values, see the "Troubleshooting Guide" on page 106 for more information.

Internal control

The internal control (IC) is intended to report chemistry or instrument failure, errors in assay setup, and the presence of inhibition in the sample. The IC system is designed to be more sensitive to inhibition than the specific target for human DNA. Therefore, the quantification will be valid even if some inhibition is present in the sample. In this case, the operator will get information both about the concentration of DNA in the sample and about the presence of inhibitors. Comparison of the C_T value of the IC system for DNA standards with the C_T values of the IC system for unknown samples can provide an indication of potential inhibition. At higher concentrations of inhibitor, the quantification data may be affected, and this must be considered for downstream applications. In general, the internal control can be interpreted in the following manner:

a) IC system shows normal amplification. No IC shift greater than specified is observed. No amplification of the Human, Degradation, and Male Targets is detectable.	No or insufficient DNA was present.
b) IC shift is greater than specified. Degradation Index is below threshold.	Sample contains inhibitors. DNA is not degraded.
c) IC shift is greater than specified. Degradation Index is above threshold.	Sample contains inhibitors. DNA is possibly degraded. Note : Extremely high concentrations of inhibitors can inhibit amplification of the Degradation target and trigger the Degradation Index.

Important: Internal laboratory validation with relevant inhibitors should be performed to determine criteria for detecting inhibition.

Quantification of unknowns

The Investigator Quantiplex Pro FLX Kit can quantify a broad range of DNA amounts in a sample, from 200 ng/ μ L to approximately 0.5 pg/ μ L of human genomic DNA. In the low DNA concentration range, statistical effects, known as stochastic variations, can significantly affect the assay result. When using samples with low concentrations of DNA, increased template input volumes, and/or running replicates may give more reliable results.

Quantification of female/male mixtures

The Investigator Quantiplex Pro FLX Kit provides high sensitivity to detect low amounts of male DNA even in a very high background of female DNA. The Mixture Index provides information on whether a sample is a female/male mixture. In general, the Mixture Index can be interpreted in the following manner:

a) The sample has a Mixture Threshold below the index specified.	The sample contains only male DNA or only low levels of female DNA.
b) The sample has a Mixture Threshold above the index specified.	The sample contains a possible male DNA/female DNA mixture.

Degradation status assessment

Environmental degradation may occur with forensic casework samples and is a typical challenge in routine genetic fingerprinting. The Investigator Quantiplex Pro FLX Kit contains a newly developed system for detection of DNA degradation. In general, the Degradation Index can be interpreted in following manner:

a) The sample has a Degradation Threshold below the index spe- cified. No IC shift is detected.	DNA is most likely not degraded. The sample most likely contains no inhibitors.
b) The sample has a Degradation Threshold below the index spe- cified. IC shift is detectable above the threshold.	DNA is most likely not degraded. The sample may contain inhibitors.
c) The sample has a Degradation Threshold above the index spe- cified. No IC shift is detected.	DNA is most likely degraded. The sample most likely contains no inhibitors.
d) The sample has a Degradation Threshold above the index spe- cified. IC shift is detectable above the threshold.	DNA may or may not be degraded. The sample contains inhibitors.

Note: When 2 µL of a sample with very low concentrations is loaded in a reaction, the well probably contains less than 1 diploid human genome equivalent. In the low DNA concentration range, statistical effects, known as stochastic variations, can affect the assay. In case of degraded DNA with a very low DNA concentration, the Degradation target can be affected. If the Degradation target has an undetermined value, the sample will be tagged with "Possible Degradation". Extremely high inhibitor concentrations can also affect the Degradation target and lead to a "Possible Degradation" flag.

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: **www.qiagen.com/FAQ/FAQList.aspx**. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocols in this handbook or sample and assay technologies (for contact information, see back cover or visit **www.qiagen.com**).

No signal or one or n	nore signals detected late in PCR
a) Incorrect cycling conditions	Always use the optimized cycling conditions specified in the protocols. Make sure to select ROX or QPP_ROX as the passive dye on Applied Biosystems instruments.
b) Pipetting error, missing or degraded reagent	Check the storage conditions of the reagents. Repeat the assay.
c) Incorrect or no detection step	Make sure that fluorescence detection takes place during the combined annealing/extension step.
d) Insufficient amount of starting template	Increase the amount of template, if possible. Ensure that sufficient copies of the template DNA are present in the sample.
e) Problems with starting template	Check the storage conditions of the starting template DNA. Efficient removal of PCR inhibitors is essential for optimal results. Purify nucleic acids from your sample using an appropriate purification method. Ensure that all reagents, buffers and solutions used for isolating and diluting template nucleic acids are free from nucleases.
f) Wrong detection channel/filter chosen	Ensure that the correct detection channel is activated or the correct filter set is chosen for each reporter dye. Ensure that the chosen combination of reporter dyes is compatible with the selected detection channels or filter sets.
g) Degraded control DNA	Make new serial dilutions of the control DNA from the stock solution. Repeat the assay using the new dilutions.

Comments and suggestions

Comments and suggestions

Differences in C_T values or in PCR efficiencies between runs

a) Incorrect cycling conditions	Always start with the optimized cycling conditions specified in the protocols. Ensure that the cyc- ling conditions include the initial step for activation of the DNA polymerase and the specified times for denaturation and annealing/extension.
b) Analysis settings (e.g., threshold and baseline settings) not optimal	Check the analysis settings (threshold and baseline settings) for each reporter dye. Repeat ana- lysis using optimal settings for each reporter dye.
No linearity in ratio o	f C _T value/crossing point to log of the template amount
Amount of template in unknown sample too high	Linearity is guaranteed within the range of the standard curve. If signals appear at very early ${\rm C}_{\rm T}$ values, dilute the sample and repeat the reaction.
Increased fluorescence	e or C _T value for no-template control
a) Contamination of reagents	Discard all the components of the assay (e.g., master mix). Repeat the assay using new components.
b) Minimal probe degradation, lead- ing to sliding increase in fluor- escence	Check the amplification plots, and adjust the threshold settings.
c) Crosstalk prob- lems	Depending on the instrument, different techniques are used to avoid spectral crosstalk when using multiple fluorophores for multiplex assays. However, minimal crosstalk, as a result of resid- ual spectral overlap, may be observed in the NTC wells, especially if the instrument is in need of calibration.
Varying fluorescence	intensity
a) Contamination of real-time cycler	Reactions were contaminated with target DNA. Decontaminate the real-time workstations and the cycler according to the manufacturer's instructions. Use new reagents and solutions.
b) Real-time cycler no longer cal- ibrated	Recalibrate the real-time cycler according to the manufacturer's instructions.

Comments and suggestions

c) Wavy curve at high template In the analysis settings, reduce the number of cycles used for background calculation (if the realamounts for highly concentrated targets

Slope for the standard curve differs significantly from -3.33 or R² value is significantly less than 0.98–0.99

a) Contamination of real-time cycler	Decontaminate the real-time cycler according to the manufacturer's instructions.
b) Real-time cycler and/or pipettes no longer calibrated	Recalibrate the real-time cycler according to the manufacturer's instructions. Calibrate pipettes to minimize pipetting variability.
c) Wavy curve at high template amounts for highly concentrated targets	In the analysis settings, reduce the number of cycles used for background calculation or reduce the amount of template.
	Ensure that the DNA standard is completely thawed and mixed thoroughly before use.
d) Problem with dilu- tion of standards	Ensure that dilutions of the DNA standard are mixed thoroughly before removing each aliquot for the serial dilution.
	Change pipette tips between each dilution step.
e) Plate not sealed	Carefully seal the plates to avoid evaporation.
f) Error made during dilution of the DNA standard	Verify all calculations, and repeat dilution of the DNA standard.
g) Incorrect con- centration values entered in the soft- ware	Verify the concentrations for all samples used to generate the standard curve.
h) Abnormal fluor- escence	Do not write on the plate. Use caution when handling plates. Wear gloves.
i) Statistical vari- ation	Some variation in the reaction is normal, particularly when the DNA target is present at a low copy number. Perform at least duplicates for the standard curve to minimize the effect of this variation.

Comments and suggestions

Handling of Quantiplex Pro FLX Plates			
a) Lyophilized cake disturbed by pipet- ting	Do avoid to touch the cake while pipetting sample or water. With automated setup, check if z- height settings accommodate for cakes. Also consider z-height settings for loosened and/or upside down cakes.		
b) No lyophilized cake, or part of it lost	Ensure no lyophilized product sticks to the seal before removing it. Tap the plate to bring all cakes down. Do not use wells from which product was lost.		
c) Lyophilized product at the side of the well after setup	Do vortex the re-sealed plate after setup. If only pipette mixing is performed, some lyophilized product may stay at the side of the well.		
d) Lyophilized cake shrunk, hard to redissolve	The cake may have become rehydrated. Avoid prolonged open times of the plate before setup and setup under conditions of more than 60% humidity. Rehydrated cakes require more time to dissolve. In general, once completely dissolved, reactions can still be used.		
e) Evaporation of chemistry during qPCR run	Always use a compression pad for qPCR runs of full plates.		
f) Lyophilized cake shrunk, hard to redissolve after stor- age	Always store unused part of the sealed PCR plate in the aluminum bag with desiccant and use up within 4 weeks.		
g) lssues to remove seals from strips	Use a scalpel to cut between the strips before breaking the plate.		

Appendix: Alternative Standard Curves

Table 17. Alternative 5-point standard curve (10x dilution)

Serial dilution of control DNA (ng/µL)	Amount of control DNA (µL)	QuantiTect Nucleic Acid Dilution Buffer (µL)	
50	Undiluted DNA	-	
5	5	45	
0.5	5	45	
0.05	5	45	
0.005	5	45	

Table 18. Alternative 6-point standard curve (9x dilution)

Serial dilution of control DNA (ng/µL)	Amount of control DNA (µL)	QuantiTect Nucleic Acid Dilution Buffer (µL)	
50	Undiluted DNA	-	
7.1429	5	40	
1.0204	5	40	
0.0686	5	40	
0.0076	5	40	
0.0030	5	40	

Serial dilution of control DNA (ng/µL)	Amount of control DNA (µL)	QuantiTect Nucleic Acid Dilution Buffer (µL)	
50	Undiluted DNA	-	
10	10	40	
2	10	40	
0.4	10	40	
0.08	10	40	
0.016	10	40	
0.0032	10	40	

Table 19. Alternative 7-point standard curve (5x dilution)

Ordering Information

Product	Contents	Cat. no.				
Investigator Quantiplex Pro FLX Kit (576)	6x single blistered 96-well optical plates with Master Mix, Control DNA M1, and QuantiTect Nucleic Acid Dilution Buffer	387516				
Investigator Quantiplex Pro Cal- ibration Kit	Calibration Standard FAM, JOE, ATTO 550, ROX, ATTO 647N, and Quantiplex Pro Calibration Buffer	387416				
	Related products					
Investigator Casework GO! Kit	Casework GO! Lysis Buffer, Proteinase K Solution, and Nuc- lease-free water	386546				
qPCR adhesive plate foil, perforated (100)	Clear adhesive foils for qPCR plates, perforated for tearing into 8-well strips	386055				
qPCR adhesive plate foil (100)	Clear adhesive foils for qPCR plates	209003				
PCR Water (10 x 1 mL)	Water certified to be free of DNA, DNase and RNase con- tamination	17000-10				
Investigator Human Identification PCR Kits						
Investigator 24plex QS Kit (100)*	Primer mix, Fast Reaction Mix 2.0, Control DNA, allelic lad- der, DNA size standard, and Nuclease-free water	382415				
Investigator 26plex QS Kit (100)*	Primer mix, Fast Reaction Mix 3.0, Control DNA, allelic lad- der, and Nuclease-free water	382615				
Investigator ESSplex SE QS Kit (100)*	Primer Mix, Fast Reaction Mix 2.0, Control DNA, allelic lad- der, DNA size standard, and Nuclease-free water	381575				
Investigator Argus X-12 QS Kit (25)*	Primer mix, Fast Reaction Mix 2.0, Control DNA, allelic lad- der, DNA size standard, and Nuclease-free water	383223				
Investigator Argus Y-28 QS Kit (100)	Primer mix, Fast Reaction Mix 3.0, Control DNA, allelic lad- der, DNA size standard, and Nuclease-free water	383625				

* Larger kit sizes available; please inquire.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Document Revision History

Date

Changes

02/2024

Initial release

Limited License Agreement for Investigator Quantiplex Pro FLX Kit

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- 1. The product may be used solely in accordance with the protocols provided with the product and this Instructions for Use and for use with components contained in the panel only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this panel with any components not included within this panel except as described in the protocols provided with the product, this Instructions for Use, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users for QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- Other than expressly stated licenses, QIAGEN makes no warranty that this panel and/or its use(s) do not infringe the rights of third-parties.
- 3. This panel and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the panel agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the panel and/or its components.

For updated license terms, see **www.qiagen.com**.

Trademarks: QIAGEN®, Sample to Insight®, 4NS1C®, Investigator®, Q-Bond®, QuantiNova®, Quantiplex®, QuantiTect® (QIAGEN Group); Applied Biosystems®, FAM™, JOE™ (Life Technologies Corporation); Cy® (GE Healthcare); TaqMan® (Roche Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

02/2024 HB-3538-001 © 2024 QIAGEN, all rights reserved.

This page intentionally left blank

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com