EpiTect® Methyl II PCR Array Handbook

For pathway or disease-focused profiling of regional DNA methylation using MethylScreen™ technology

Contents

Kit Contents
Storage6
Quality Control
Product Use Limitations
Technical Assistance
Safety Information
Introduction
Principle and procedure9
Equipment and Reagents to Be Supplied by User
Important Notes
Controls for monitoring enzyme digestion efficiency
DNA contamination
Genomic DNA contamination
Using the EpiTect Methyl II DNA Restriction Kit
Protocol: EpiTect Methyl II Signature PCR Array for 22 Genes in a 96-well Format and 1 DNA Sample
Protocol: EpiTect Methyl II Complete PCR Array for 94 Genes in a 96-well format and 1 DNA Sample
Protocol: EpiTect Methyl II Complete PCR Array for 94 Genes in a 384-well Format and 1 DNA Sample
Protocol: EpiTect Methyl II Signature PCR Array for 22 Genes in a 384-well Format and 4 DNA Samples
Data analysis

Obtaining raw threshold cycle (C _T) values				
Exporting C _T values	35			
Microsoft Excel-based data analysis	35			
Data quality control	35			
Data interpretation				
ΔC _T data analysis	39			
Troubleshooting Guide	43			
References	46			
Ordering Information	46			
Revision History	49			

Kit Contents

Catalog no. 335212						
Format	Α	c	D	E	F	G
96-well plate containing lyophilized assays	2, 12, or 24	2, 12, or 24		-	2, 12, or 24	-
384-well plate containing lyophilized assays	-	-	-	4	-	4
Optical thin-wall 8-cap strips (12 per plate)	24, 144, or 288	-	24, 144, or 288	-	-	-
Optical adhesive film (1 per plate)	-	2, 12, or 24	-	4	2, 12, or 24	4
384EZLoad Covers (set of 4 covers per plate)	-	-	-	4	-	4

EpiTect Methyl II Complete PCR Arrays								
Catalog no. 335222								
Format	A	С	D	E	F	G		
96-well plate containing lyophilized assays	8	8	8	-	8	-		
384-well plate containing lyophilized assays	-	-	-	2, 12, or 24	-	2, 12, or 24		
Optical thin-wall 8-cap strips (12 per plate)	96	-	96		-	-		
Optical adhesive film (1 per plate)	-	8	-	2, 12, or 24	8	2, 12, or 24		
384EZLoad Covers (set of 4 covers per plate)	_	-	-	2, 12, or 24	-	2, 12, or 24		

EpiTect Methyl II PCR A	Array specifications				
Cat no. and array format	Number of genes per plate	Plate format	Number of DNA samples per plate	µg gDNA per sample*	Number of DNA samples per kit
335212 A, C, D, F	22	96-well	1	1	12
335222 A, C, D, F	94	96-well	1	4	3
335222 E, G	94	384-well	1	2	6
335212 E, G	22	384-well	T	0.5	12

^{*} Recommended amount for optimal PCR Array performance.

Array format	Suitable real-time cyclers	Plate format
A	Applied Biosystems® 5700, 7000, 7300, 7500 Standard, 7700, 7900HT Standard; Bio-Rad® iCycler®, iQ™ 5, MyiQ™, MyiQ2™, Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex 2, 2s, 4, 4s; Stratagene® Mx3005P®, Mx3000P®	96-well
С	Applied Biosystems 7500 FAST, 7900HT Fast, StepOnePlus™	96-well
D	Bio-Rad CFX96™, Bio-Rad/MJ Research Opticon 2®; Stratagene Mx4000®	96-well
Е	Applied Biosystems 7900HT (384-well block); Bio-Rad CFX384™	384-well
F	Roche® LightCycler® 480 (96-well block)	96-well
G	Roche LightCycler 480 (384-well block)	384-well

Storage

The EpiTect® Methyl II Signature PCR Array and EpiTect Methyl II Complete PCR Array are shipped at ambient temperature, on ice, or on dry ice depending on the destination and accompanying products. Upon receipt, store at –20°C. If stored under these conditions, EpiTect Methyl II Signature PCR Arrays and EpiTect Methyl II Complete PCR Arrays are stable for 6 months after receipt.

If stored under these conditions, qBiomarker Somatic Mutation PCR Arrays and qBiomarker Somatic Mutation PCR Assays are stable for 6 months after receipt.

Quality Control

In accordance with QIAGEN's Quality Management System, each lot of EpiTect Methyl II Signature PCR Array and EpiTect Methyl II Complete PCR Array is tested against predetermined specifications to ensure consistent product quality.

Product Use Limitations

Purchaser agrees that use of this product and data is limited solely to the purchaser and only for the purchaser's own internal molecular biology research applications ("Permitted Use"), and shall not be re-sold or used for any other purposes (all of which are expressly prohibited), including without limitation, diagnostic purposes; uses that could require regulatory approval for diagnostics from an agency of any government or regulatory entity anywhere in the world; diagnosis, prevention, or treatment of disease; and the right to perform commercial services of any kind, including without limitation, reporting the results of purchaser's activities, including without limitation, for a fee or other commercial consideration. Except for the Permitted Use, no rights, titles, or interests in or to any tangible or intangible property rights are conveyed or shall be deemed conveyed by implication, estoppel or otherwise. The performance characteristics of the product other than for the Permitted Use are unknown.

EpiTect Methyl II PCR Arrays are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend all users of QIAGEN products to adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

Technical Assistance

At QIAGEN, we pride ourselves on the quality and availability of our technical support. Our Technical Service Departments are staffed by experienced scientists with extensive practical and theoretical expertise in sample and assay technologies and the use of QIAGEN products. If you have any questions or experience any difficulties regarding the EpiTect Methyl II Signature Array, EpiTect Methyl II Complete PCR Array, or QIAGEN products in general, please do not hesitate to contact us.

QIAGEN customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at QIAGEN. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques.

For technical assistance and more information, please see our Technical Support Center at **www.qiagen.com/Support** or call one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit **www.qiagen.com**).

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com** safety where you can find, view and print the SDS for each QIAGEN kit and kit component.

Introduction

The EpiTect Methyl II PCR System is an innovative technology enabling fast and accurate CpG island DNA methylation profiling of individual genes, as well as disease- and pathway-focused gene panels. The technology provides ready-to-use, predesigned primer assays with high specificity and amplification efficiency to detect the methylation status of the promoter region (gene) of interest. Arrays are disease- or pathway- focused and enable detection of the methylation status of 22 or 94 genes simultaneously. EpiTect Methyl II PCR Arrays use the MethylScreen Technology provided under license from Orion Genomics, LLC.

Approximately 60–70% of all human gene promoters overlap with CpG islands — regions with an elevated GC content and a high frequency of CpG dinucleotides. Gene silencing by means of DNA methylation of specific gene promoters is a well-known feature of neoplastic

cells and plays an important role in normal cell differentiation and development. DNA methylation occurs mainly at CpG dinucleotides and involves the enzymatic addition of a methyl group to the cytosine residue without changing the primary DNA sequences.

Such modifications at regulatory regions (in particular gene promoters) correlate well with the transcriptional state of a gene: DNA methylation represses transcription while DNA unmethylation can lead to increased transcription levels. DNA methylation is an essential mechanism for normal cellular development, imprinting, X-chromosome inactivation, and maintaining tissue specificity. It can also contribute significantly to the progression of various human diseases.

The profiling of tumor suppressor genes and other key genes allows the correlation of CpG island methylation status with transcriptional status, biological phenotypes, or disease outcomes. Therefore, the results can provide insights into the molecular mechanisms and biological pathways and aid in the discovery and development of biomarkers.

Principle and procedure

The method employed by the EpiTect Methyl II PCR System is based on detection of remaining input DNA after cleavage with a methylation-sensitive and/or a methylation-dependent restriction enzyme. These enzymes will digest unmethylated and methylated DNA, respectively. Following digestion, the remaining DNA in each individual enzyme reaction is quantified by real-time PCR using primers that flank a promoter (gene) region of interest. The relative fractions of methylated and unmethylated DNA are subsequently determined by comparing the amount in each digest with that of a mock (no enzymes added) digest using a ΔC_T method. The reliability and simplicity of the procedure make this technology highly suited for semi-high-throughput DNA methylation profiling and biomarker development for various research fields, such as stem cell differentiation and development.

A protocol overview of the EpiTect Methyl II PCR Array is shown in Figure 1. Briefly, input genomic DNA is aliquoted into 4 equal portions and subjected to mock (no enzyme),

methylation-sensitive (MSRE), methylation-dependent (MDRE), and double (MSRE and MDRE) restriction endonuclease digestion. After digestion, the enzyme reactions are mixed directly with qPCR master mix and are dispensed into a PCR Array plate containing pre-aliquoted primer mixes. Real-time PCR is carried out using specified cycling conditions. Finally, the raw ΔC_T values are pasted into the EpiTect Methyl II PCR Array spreadsheet, which automatically calculates the relative amount of methylated and unmethylated DNA fractions.

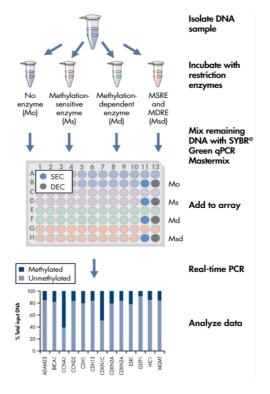


Figure 1. EpiTect Methyl II PCR Procedure.

The product of the mock (no enzyme, Mo) digestion represents the total amount of input DNA for real-time PCR detection. In the methylation-sensitive digestion (Ms) reaction, the MSRE will digest unmethylated and partially methylated DNA. The remaining hypermethylated DNA — DNA in which all CpG sites are methylated — will be detected by real-time PCR. In the methylation-dependent digestion (Md) reaction, the MDRE will preferentially digest methylated DNA. The remaining unmethylated DNA will be detected by real-time PCR. In the double digestion (Msd) reaction, both enzymes are present, and all DNA molecules (both methylated and unmethylated) will be digested. This reaction measures the background and the fraction of input DNA refractory to enzyme digestion.

EpiTect Methyl II PCR Arrays provide gene methylation status as percentage unmethylated (UM) and percentage methylated (M) fraction of input DNA. Unmethylated represents the fraction of input genomic DNA containing no methylated CpG sites in the amplified region of a gene. Methylated represents fraction of input genomic DNA containing 2 or more methylated CpG sites in the targeted region of a gene.

Each well of EpiTect Methyl II PCR Array plate contains a different primer assay mixed with an inert dye. This dye does not affect assay performance or fluorescence detection.

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, consult the appropriate material safety data sheets (MSDSs), available from the product supplier.

- DNeasy® Blood and Tissue Kit (cat. nos. 69504 or 69506) or the AllPrep® DNA/RNA Mini Kit (cat. no. 80204) for preparation of DNA
- EpiTect Methyl II DNA Restriction Kit (cat. no. 335452)
 - **IMPORTANT:** The EpiTect Methyl II DNA Restriction Kit contains all necessary components for cleavage of methylated and unmethylated DNA and is essential for a complete and successful experiment. The reagents included in the kit are sufficient for processing up to 12 µg of genomic DNA. The actual number of samples processed is dependent on the number of genes analyzed and the plate format selected.
- Appropriate RT² SYBR® Green qPCR Mastermix (be sure to select the correct format for the PCR instrument, and size and quantity for the number of samples):
 - RT² SYBR Green ROX[™] qPCR Mastermix (cat. nos. 330520, 330522, 330523, 330521, 330529) for Applied Biosystems, Stratagene, and Eppendorf Mastercycler ep realplex instruments with a ROX filter set

RT² SYBR Green Fluor qPCR Mastermix (cat. nos. 330510, 330512, 330513, 330511, 330519) for Bio-Rad iCycler, MyiQ, MyiQ2, and iQ 5 instruments

RT² SYBR Green qPCR Mastermix (cat. nos. 330500, 330502, 330503, 330501, 330509) for instruments that do not require a reference dye, e.g., Bio-Rad models CFX96, CFX384, Bio-Rad/MJ Research Opticon 2, Bio-Rad/MJ Research Chromo4; Roche LightCycler 480 (96- and 384-well)

- RT² PCR Array Loading Reservoirs (cat. no. 338162)
- Real-time PCR instrument (see list of supported instruments on page 5)
- Calibrated single- and multi-channel pipets

- RNase-/DNase-free pipet tips and tubes
- RNase-/DNase-free 100 µl regular PCR tubes (8- or 12-tube strings)
- Molecular biology grade RNase- and DNase-free water

Important Notes

Controls for monitoring enzyme digestion efficiency

A successful EpiTect Methyl II PCR experiment relies on efficient DNA digestion by methylation-sensitive and methylation-dependent restriction enzymes. Each EpiTect Methyl II PCR Array includes specific control assays for monitoring the cutting efficiencies of these enzymes and ensuring reliable and reproducible results. After the C_T values are pasted into the EpiTect Methyl II PCR Array data analysis spreadsheet, a "Pass" or "Fail" result is returned for the SEC (methylation sensitive enzyme control) and DEC (methylation dependent enzyme control) assays.

DNA contamination

For reliable results, it is very important to prevent contamination of the EpiTect Methyl II PCR assay reactions with foreign DNA. Even very small amounts of foreign DNA can artificially inflate SYBR Green signals, yielding false positive results. The most common source of contamination in the PCR reagents comes from the products of previous PCR experiments in your working area. To minimize contamination, follow the recommendations below:

- Wear gloves throughout the entire procedure.
- Use only fresh PCR-grade reagents and labware.
- Physically separate the workspaces used for PCR setup and post-PCR work.
- Never open PCR plates or tubes after real-time PCR instrument runs.
- Before setting up an experiment, decontaminate the PCR workspace and labware (pipet barrels, tube racks, etc.) with 10% bleach and UV light. Preferentially set up reactions in a PCR workstation.
- Do not remove the protective film from the PCR array until immediately before use.
- Close all tubes containing PCR products as soon as possible after use.

Treat any labware (tips or tubes) containing PCR products or other DNA with 10%

bleach before discarding

Genomic DNA contamination

High-quality DNA is a prerequisite for a successful EpiTect Methyl II PCR assay reaction.

Therefore, sample handling and genomic DNA isolation procedures are crucial to the success

of the experiment. Residual traces of proteins, salts, or other contaminants will either degrade the DNA or decrease the restriction enzyme activities necessary for optimal DNA digestion.

We recommend the DNeasy Blood and Tissue Kit or the AllPrep DNA/RNA Mini Kit for

preparation of genomic DNA samples. When using the DNeasy Blood and Tissue Kit, ensure

that samples have been treated for the removal of RNA, as RNA contamination will cause

inaccuracies in DNA concentration measurements and may affect restriction digestion

efficiency. Do not omit the recommended RNase treatment step to remove RNA. If genomic

DNA samples are harvested from biological samples where purification kits are not available,

contact QIAGEN Technical Services for suggestions.

For best results, resuspend or dilute all DNA samples in DNase-free water, or alternatively, in

DNase-free 10 mM Tris buffer pH 8.0 without EDTA.

Measurement of DNA contamination and purity by UV spectrophotometry

Prepare dilutions of genomic DNA samples and measure absorbance in DNase-free 10 mM

Tris buffer, pH 8.0. The spectral properties of nucleic acids are highly dependent on pH. The

recommended ratios and values for DNA are as follows:

• A_{260}/A_{230} : >1.7

• A_{260}/A_{280} : >1.8

1.5

A₂₆₀ concentration: >4 μg/ml

DNA concentration for restriction digestion and PCR assay

Using the recommended amount of DNA optimizes the sensitivity of detecting methylated DNA. More input DNA may be used if analyzing hypermethylated DNA isolated from samples of heterogeneous cell types, e.g., tumor samples, where heavy non-tumor cell contamination is expected, e.g., blood, stromal cells, etc. However, maintain the specific enzyme to DNA ratios outlined below for each assay, and purchase additional qPCR plates to ensure assay consistency.

Using the EpiTect Methyl II DNA Restriction Kit

- IMPORTANT: Do not vortex enzymes.
 Methylation-dependent enzyme B is very sensitive to vortexing. Extensive vortexing may cause a loss of enzyme activity. Mix enzymes by pipetting gently up and down.
- Store enzymes at -20°C. When in use, enzymes should be kept on ice.

Protocol: EpiTect Methyl II Signature PCR Array for 22 Genes in a 96-well Format and 1 DNA Sample

Be sure to read "Important Notes," page 14, before starting the protocol.

Procedure

Restriction digestion

- Perform the restriction digestions using the EpiTect Methyl II DNA Restriction Kit (cat. no. 335452).
- 2. Prepare a reaction mix without enzymes as indicated in Table 1.

We recommend using 1 µg genomic DNA. 5x Restriction Digestion Buffer should be thawed and vortexed well before use. If any precipitates are present in the buffer, continue mixing the buffer until precipitates dissolve.

Table 1. Reaction mix without enzymes

Component	Volume
Genomic DNA (1 µg)	Variable
5x Restriction Digestion Buffer	26 µl
RNase-/DNase-free water	Variable
Final volume	120 µl

- 3. Add RNase-/DNase-free water to make the final volume 120 μ l. Vortex to thoroughly mix the components and centrifuge briefly in a microcentrifuge.
- 4. Set up 4 digestion reactions (Mo, Ms, Md, and Msd) according to Table 2.

IMPORTANT: All 4 tubes must contain equal amounts of genomic DNA.

Table 2. Restriction digestion

Component	Мо	Ms	Md	Msd
Reaction mix from step 3	28 µl	28 µl	28 ul	ام 28
Methylation-sensitive enzyme A	-	1 pl	-	1 µl
Methylation-dependent enzyme B	-	-	1 µl	1 µl
RNase-/DNase-free water	2 µl	1 pl	1 µl	-
Final volume	30 µl	30 µl	30 µl	30 µl

5. Pipet up and down to gently, but thoroughly mix the components. Centrifuge the tubes briefly in a microcentrifuge.

IMPORTANT: Do not vortex!

- 6. Incubate all 4 tubes at 37°C for 6 hours in a heating block or thermal cycler. The reaction can also be performed overnight.
- 7. After incubation, stop the reactions by heat-inactivating the enzymes at 65°C for 20 minutes
- 8. The reactions are now ready for use or storage at -20°C. Mix the samples thoroughly by vortexing before use. Centrifuge the samples briefly in a microcentrifuge and proceed to step 1 of "Setting up the PCR."

Setting up the PCR

1. Prepare a reaction for each of the 4 digestions (M_o , M_s , M_d , and M_{sd}) in a 1.5 ml tube according to Table 3.

Table 3. PCR setup

Component	M。	Ms	M_d	M_{sd}
PCR master mix	اµ 330	330 µl	330 µl	330 µl
M₀ digest	30 µl	-	-	-
M _s digest	-	30 µl	_	_
M _d digest	-	-	30 µl	-
M _{sd} digest	-	-	-	30 µl
RNase-/DNase-free water	اب 300	300 µl	300 µl	300 µl
Final volume	660 µl	660 µl	660 µl	660 µl

- 2. Mix tubes well by vortexing, and briefly centrifuge the contents to the bottom of the tube.
- 3. Add 25 μ l of the M_o reaction to each well in rows A and B of the 96-well EpiTect Methyl II Signature PCR Array. Add 25 μ l of the M_s reaction to each well in rows C and D. Add 25 μ l of the M_d reaction to each well in rows E and F. Finally, add 25 μ l of the M_{sd} reaction to each well in rows G and H, as shown in Figure 2.

Digest													
	Well	1_	2	3	4	5	6	7	8	9	10	11	12
Mo	Α	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
IVI _O	В	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
Ν.4	С	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
Ms	D	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
M_d	Е	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
ivid	F	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
M_{sd}	G	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
IVI _{Sd}	Н	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC

Figure 2. Layout of a 96-well EpiTect Methyl II Signature PCR Assay.

4. Seal or cap the wells of the plate. Centrifuge the plate for 1 minute at 2000 rpm to remove any air bubbles.

Running the PCR

1. Program the thermal cycler according to the manufacturer's instructions using the conditions outlined in Table 4.

Note: It is critical that the cycling conditions are followed exactly.

Table 4. PCR cycling protocol

Temperature	Time	Number of cycles			
95°C	10 min*	1 cycle			
99°C 72°C	30 s 1 min	3 cycles			
97°C 72°C	15 s 1 min [†]	40 cycles			
According to instrument recommendations	Melting curve	Melting curve segment			

^{*} Hot-start to activate DNA polymerase.

2. After the run has finished, analyze the data as described in "Data Analysis," page 34.

[†] Detect and record SYBR Green fluorescence from each well during the annealing step of each cycle.

Protocol: EpiTect Methyl II Complete PCR Array for 94 Genes in a 96-well format and 1 DNA Sample

Be sure to read "Important Notes," page 14, before starting the protocol.

Procedure

Restriction digestion

- Perform the restriction digestion using the EpiTect Methyl II DNA Restriction Kit (cat. no. 335452).
- 2. Prepare a reaction mix without enzymes as indicated in Table 5.

We recommend using 4 μ g genomic DNA. 5x Restriction Digestion Buffer should be thawed and vortexed well before use. If any precipitates are present in the buffer, continue mixing the buffer until precipitates dissolve.

Table 5. Reaction mix without enzymes

Component	Volume
Genomic DNA (4 μg)	Variable
5x Restriction Digestion Buffer	ام 100
RNase-/DNase-free water	Variable
Final volume	ام 470 l

- 3. Add RNase-/DNase-free water to make the final volume 470 µl. Vortex to thoroughly mix the components and centrifuge briefly in a microcentrifuge.
- 4. Set up 4 digestion reactions (M_o , M_s , M_d , and M_{sd}) according to Table 6.

IMPORTANT: All 4 tubes must contain equal amounts of genomic DNA.

Table 6. Restriction digestion

Component	Mo	Ms	Md	M_{sd}
Reaction mix from step 3	112 µl	112 µl	112 µl	112 µl
Methylation-sensitive enzyme A	-	4 µl	-	4 µl
Methylation-dependent enzyme B	-	-	4 µl	4 µl
RNase-/DNase-free water	ام 8	4 µl	4 µl	-
Final volume	120 µl	120 µl	120 µl	120 µl

5. Pipet up and down to gently, but thoroughly mix the components. Centrifuge the tubes briefly in a microcentrifuge.

IMPORTANT: Do not vortex!

- 6. Incubate all 4 tubes at 37°C for 6 hours in a heating block or thermal cycler. The reaction can also be performed overnight.
- 7. After incubation, stop the reactions by heat-inactivating the enzymes at 65°C for 20 minutes.
- 8. The reactions are now ready for use or storage at -20°C. Mix the samples thoroughly by vortexing before use. Centrifuge the samples briefly and proceed to step 1 of "Setting up the PCR"

Setting up the PCR

1. Prepare a reaction for each of the 4 digestions (M_o , M_s , M_d , and M_{sd}) in a 15 ml tube according to Table 7.

Table 7. PCR setup

Component	Mo	Ms	M₄	M_{sd}
PCR master mix	1280 µl	1280 µl	1280 µl	1280 µl
M₀ digest	120 µl	-	-	-
M _s digest	-	120 µl	-	-
M _d digest	-	-	120 µl	-
M _{sd} digest	-	-	_	120 µl
RNase-/DNase-free water	1160 µl	1160 µl	1160 µl	1160 µl
Final volume	2560 µl	2560 µl	2560 µl	2560 µl

- 2. Mix tubes well by vortexing, and briefly centrifuge the contents to the bottom of the tube.
- 3. Add 25 μl of the M_o reaction to each well in rows A and B of the four 96-well EpiTect Methyl II Complete PCR Arrays. Add 25 μl of the M_s reaction to each well in rows C and D. Add 25 μl of the M_d reaction to each well in rows E and F. Finally, add 25 μl of the M_{sd} reaction to each well in rows G and H, as shown in Figure 3.

Digest													
⊡	Well	1	2	3	4	5	6	7	8	9	10	11	12
Мо	Α	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
IVIO	В	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
M	С	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
M _s	D	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
M_d	Е	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
ivid	F	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC
M_{sd}	G	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
IVI sd	Н	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	SEC	DEC

Figure 3. Layout of 96-well EpiTect Methyl II Complete PCR Array. The first of four 96-well plates is laid out as shown. On the remaining 3 plates, the SEC and DEC assays are replaced by gene-specific primers (G45, G69, G93 and G46, G70, G94, respectively).

4. Seal or cap the wells of each plate. Centrifuge the plates for 1 minute at 2000 rpm to remove any air bubbles.

Note: One plate can be run immediately and the other 3 plates placed at -20° C until the PCR instrument is ready for another run. Do not thaw the plates before running the PCR, but place them directly in the PCR instrument.

Running the PCR

1. Program the thermal cycler according to the manufacturer's instructions using the conditions outlined in Table 8.

Note: It is critical that the cycling conditions are followed exactly.

Table 8. PCR cycling protocol

Temperature	Time	Number of cycles	
95°C	10 min*	1 cycle	
99°C 72°C	30 s 1 min	3 cycles	
97°C 72°C	15 s 1 min [†]	40 cycles	
According to instrument recommendations	Melting curve segment		

^{*} Hot-start to activate DNA polymerase.

2. After the run has finished, analyze the data as described in "Data Analysis," page 34.

[†] Detect and record SYBR Green fluorescence from each well during the annealing step of each cycle.

Protocol: EpiTect Methyl II Complete PCR Array for 94 Genes in a 384-well Format and 1 DNA Sample

Be sure to read "Important Notes," page 14, before starting the protocol.

Procedure

Restriction digestion

- Perform the restriction digestions using the EpiTect Methyl II DNA Restriction Kit (cat. no. 335452).
- 2. Prepare a reaction mix without enzymes as indicated in Table 9.

We recommend using 2 µg genomic DNA. The 5x Restriction Digestion Buffer should be thawed and vortexed well before use. If any precipitates are present in the buffer, continue mixing the buffer until the precipitates dissolve.

Table 9. Reaction mix without enzymes

Component	Volume
Genomic DNA (2 μg)	Variable
5x Restriction Digestion Buffer	100 µl
RNase-/DNase-free water	Variable
Final volume	470 µl

- 3. Add RNase-/DNase-free water to make the final volume 470 µl. Vortex to thoroughly mix the components and centrifuge briefly in a microcentrifuge.
- 4. Set up 4 digestion reactions (M_o , M_s , M_d , and M_{sd}) according to Table 10.

IMPORTANT: All 4 tubes must contain equal amounts of genomic DNA.

Table 10. Restriction digestion

Component	Mo	Ms	Md	M _{sd}
Reaction mix from step 3	116 µl	116 µl	116 µl	116 µl
Methylation-sensitive enzyme A	-	2 µl	-	2 µl
Methylation-dependent enzyme B	-	-	2 µl	2 µl
RNase-/DNase-free water	4 µl	2 µl	2 µl	-
Final volume	120 µl	120 µl	120 µl	120 µl

5. Pipet up and down to gently, but thoroughly mix the components. Centrifuge the tubes briefly in a microcentrifuge.

IMPORTANT: Do not vortex!

- 6. Incubate all 4 tubes at 37°C for 6 hours in a heating block or thermal cycler. The reaction can also be performed overnight.
- 7. After incubation, stop the reactions by heat-inactivating the enzymes at 65°C for 20 minutes.
- 8. The reactions are now ready for use or storage at -20°C. Mix the samples thoroughly by vortexing before use. Centrifuge the samples down briefly and proceed to step 1 of "Setting up the PCR."

Setting up the PCR

1. Prepare a reaction for each of the 4 digestions (M_o , M_s , M_d , and M_{sd}) in a 1.5 ml tube according to Table 11.

Table 11. PCR setup

Component	Mo	Ms	M_{d}	M_{sd}
PCR master mix	590 µl	590 µl	590 µl	590 µl
M _o digest	120 µl	_	-	-
M₅ digest	-	120 µl	-	-
M _d digest	-	-	120 µl	-
M _{sd} digest	-	-	-	120 µl
RNase-/DNase-free water	470 µl	470 µl	470 µl	470 µl
Final volume	1180 µl	1180 µl	1180 µl	1180 µl

- 2. Mix tubes well by vortexing, and briefly centrifuge the contents to the bottom of the tube.
- Carefully add each reaction mix to the appropriate wells of the EpiTect Methyl II
 Complete PCR Array 384-well plate as follows, using the provided 384EZLoad Covers
 (Figure 4, next page).

Place Cover 1 on the plate. Add 10 μ l M_{\circ} reaction to the open wells (odd-numbered wells of rows A, C, E, G, I, K, M, and O). Remove and discard the cover.

Place Cover 2 on the plate. Add 10 μ l M_s reaction to the open wells (even-numbered wells of rows A, C, E, G, I, K, M, and O). Remove and discard the cover.

Place Cover 3 on the plate. Add 10 μ l M_d reaction to the open wells (odd-numbered wells of rows B, D, F, H, J, L, N, and P). Remove and discard the cover.

Place Cover 4 on the plate. Add 10 μ l M_{sd} reaction to the open wells (even-numbered wells of rows B, D, F, H, J, L, N, and P). Remove and discard the cover.

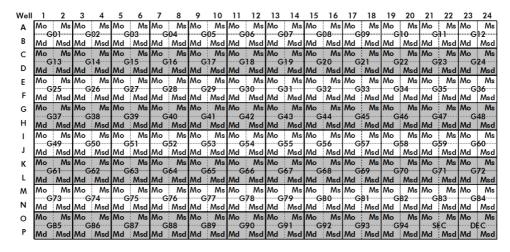


Figure 4. Layout of 384-well EpiTect Methyl II Complete PCR Array

4. Seal or cap the wells of the plate. Centrifuge the plate for 1 minute at 2000 rpm to remove air bubbles.

Running the PCR

1. Program the thermal cycler according to the manufacturer's instructions, using the conditions outlined in Table 12.

Note: It is critical that the cycling conditions are followed exactly.

Table 12. PCR cycling protocol

Temperature	Time	Number of cycles	
95°C	10 min*	1 cycle	
99°C 72°C	30 s 1 min	3 cycles	
97°C 72°C	15 s 1 min [†]	40 cycles	
According to instrument recommendations	Melting curve segment		

^{*} Hot-start to activate DNA polymerase.

2. After the run has finished, analyze the data as described in "Data Analysis," page 34.

[†] Detect and record SYBR Green fluorescence from each well during the annealing step of each cycle.

Protocol: EpiTect Methyl II Signature PCR Array for 22 Genes in a 384-well Format and 4 DNA Samples

Be sure to read "Important Notes," page 14, before starting the protocol.

Procedure

Restriction digestion

- Perform the restriction digestions using the EpiTect Methyl II DNA Restriction Kit (cat. no. 335452).
- 2. Prepare a reaction mix without enzymes as indicated in Table 13.

We recommend using $0.5~\mu g$ genomic DNA per sample. The amounts shown in Table 13~are for 1~sample. Repeat this process for each sample. 5x Restriction Digestion Buffer should be thawed and vortexed well before use. If any precipitates are present in the buffer, continue mixing the buffer until the precipitates dissolve.

Table 13. Reaction mix without enzymes

Component	Volume
Genomic DNA (0.5 µg)	Variable
5x Restriction Digestion Buffer	26 µl
RNase-/DNase-free water	Variable
Final volume	125 µl

3. Add RNase-/DNase-free water to make the final volume $125 \, \mu l$. Vortex to thoroughly mix the components and centrifuge briefly in a microcentrifuge.

4. Set up 4 digestion reactions (M_o , M_s , M_d , and M_{sd}) for each sample according to Table 14.

IMPORTANT: All 4 tubes must contain equal amounts of genomic DNA.

Table 14. Restriction digestion

Component	M _o	M_s	M_d	M_{sd}
Reaction mix from step 3	28 µl	28 µl	28 µl	28 µl
Methylation-sensitive enzyme A	-	1 pl	-	1 pl
Methylation-dependent enzyme B	-	-	1 µl	1 µl
RNase-/DNase-free water	2 µl	1 µl	1 µl	-
Final volume	30 µl	30 µl	30 µl	30 µl

5. Pipet up and down to gently, but thoroughly mix the components. Centrifuge the tubes briefly in a microcentrifuge.

IMPORTANT: Do not vortex!

- 6. Incubate all 4 tubes at 37°C for 6 hours in a heating block or thermal cycler. The reaction can also be performed overnight.
- 7. After incubation, stop the reactions by heat-inactivating the enzymes at 65°C for 20 minutes.
- 8. The reactions are now ready for use or storage at -20°C. Mix the samples thoroughly by vortexing before use. Spin the samples down briefly and proceed to step 1 of "Setting up the PCR."

Setting up the PCR

1. Prepare a reaction for each of the 4 digestions (M_o , M_s , M_d , and M_{sd}) in a 1.5 ml tube according to Table 15.

The volumes shown in Table 15 are for 1 sample.

Table 15. PCR setup

Component	Mo	Ms	M_d	M_{sd}
PCR master mix	1 <i>7</i> 0 µl	1 <i>7</i> 0 µl	170 µl	1 <i>7</i> 0 µl
M _o digest	30 µl	-	-	_
M₅ digest	-	30 hl	-	_
M _d digest	-	-	30 µl	_
M _{sd} digest	-	-	_	30 µl
RNase-/DNase-free water	140 µl	140 µl	140 µl	140 µl
Final volume	340 µl	اµ 340	340 µl	340 µl

- 2. Mix tubes well by vortexing, and briefly centrifuge the contents to the bottom of the tube.
- Carefully add each reaction mix to the appropriate wells of the EpiTect Methyl II
 Signature PCR Array 384-well plate as follows, using the provided 384EZLoad Covers
 (Figure 4, next page).

Place Cover 1 on the plate. Add 10 μ l M_{\circ} reaction to the open odd-numbered wells of rows A and C for sample 1, rows E and G for sample 2, rows I and K for sample 3, and rows M and O for sample 4. Remove and discard the cover.

Place Cover 2 on the plate. Add 10 μ l M_s reaction to the open even-numbered wells of rows A and C for sample 1, rows E and G for sample 2, rows I and K for sample 3, and rows M and O for sample 4. Remove and discard the cover.

Place Cover 3 on the plate. Add 10 μ l M_d reaction to the open odd-numbered wells of rows B and D for sample 1, rows F and H for sample 2, rows J and L for sample 3, and rows N and P for sample 4. Remove and discard the cover.

Place Cover 4 on the plate. Add 10 μ l M_{sd} reaction to the open even-numbered wells of rows B and D for sample 1, rows F and H for sample 2, rows J and L for sample 3, and rows N and P for sample 4. Remove and discard the cover.

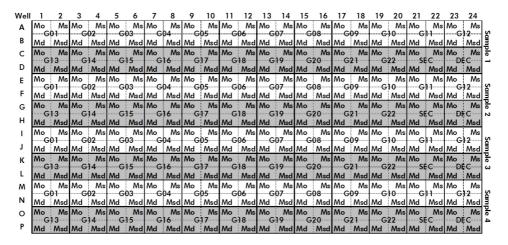


Figure 5. Layout of 384-well EpiTect Methyl II Signature PCR Array.

4. Seal or cap the wells of the plate. Centrifuge the plate for 1 minute at 2000 rpm to remove any air bubbles.

Running the PCR

1. Program the thermal cycler according to the manufacturer's instructions, using the conditions outlined in Table 16.

Note: It is critical that the cycling conditions are followed exactly.

Table 16. PCR cycling protocol

Temperature	Time	Number of cycles
95°C	10 min*	1 cycle
99°C 72°C	30 s 1 min	3 cycles
97°C 72°C	15 s 1 min [†]	40 cycles
According to instrument recommendations	Melting curve so	egment

^{*} Hot-start to activate DNA polymerase.

2. After the run has finished, analyzed the data as described in "Data Analysis," page 34.

Data analysis

Obtaining raw threshold cycle (C_T) values

After the cycling program has completed, obtain the C_T values according to the instructions provided by the manufacturer of the real-time PCR instrument. We recommend manually setting the baseline and threshold values as follows.

Note: When comparing multiple plates, make sure that the settings for all plates are identical.

Baseline: Using the Linear View of the amplification plots, set the instrument to use the readings from cycle number 2 through the cycle just before the earliest visible amplification, usually between cycle 10 and 15.

Threshold value: Using the Log View of the amplification plots, place the threshold above the background signal but within the lower third of the linear portion of the amplification curves.

[†] Detect and record SYBR Green fluorescence from each well during the annealing step of each cycle.

Exporting C_T values

Microsoft Excel-based data analysis

Export the C_T values from the instrument software to a blank Excel spreadsheet according to the manufacturer's instructions for the real-time PCR instrument. Data analysis can then be conducted with a spreadsheet-based tool that can be downloaded from a QIAGEN website.

Note: The EpiTect Methyl II PCR Array Data Analysis spreadsheets can be found under "Product Resources/Performance Data" at

https://www.qiagen.com/us/shop/epigenetics/epitect-methyl-ii-pcr-arrays/#resources.

Paste in the downloaded C_T value data into the spreadsheet and analyze the automatically generated results by following the directions in the "Instructions" worksheet of the Excel file.

Data quality control

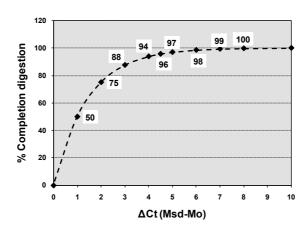
Mock digest (M₀) C_T values

The C_T values of the mock digests for all genes should be within the range of 18 to 27 cycles if the recommended amounts of genomic DNA were used.

Single enzyme digest (M_s and M_d) C_T values

The C_T values of the M_s and M_d digests should be between the values of the mock and double digests, depending on the methylation status of the DNA samples.

Double digest (Msd) C_T values


The C_T values of the double digests should be higher than the C_T values of the mock digest.

Enzyme digestion efficiency

The difference in C_T values between the double digest and mock digest samples represents the analytical window (W) of the assay and should be greater than 3 (ΔC_T [$M_{sd} - M_{\odot}$] >3). This means that more than 87.5% of all DNA molecules in the samples were digested, and that the assay results are reliable and meaningful. See also the "QC Data Report" tab in the EpiTect Methyl II PCR Array data analysis spreadsheet. For every gene, the analytical window (W) values should be >3 and the F_R values should be <12.5%.

When using the EpiTect Methyl II PCR Assay for EP_SEC (cat. no. EPHS115450-1A) and EP_DEC (cat. no. EPHS115451-1A) to test the cutting efficiencies of the restriction enzymes, copy and paste the C_T values for these controls into the EpiTect® Methyl II PCR Array data analysis spreadsheet. For the SEC assay, the difference in C_T values between the methylation-sensitive and mock digests should be equal to or greater than $4 (\Delta C_T (M_S - M_O) \ge 4)$ to "Pass" the quality control. Likewise for the DEC control assay, the difference in C_T values between the methylation-dependent and mock digests should be equal to or greater than $4 (\Delta C_T (M_d - M_O) \ge 4)$ to "Pass" the quality control. "Pass" means that more than 93.6% of control DNA molecules spiked in buffer (5x Restriction Digestion Buffer) were digested, showing that the restriction enzymes were active and digested the DNA efficiently. See the "Result" worksheet in the

EpiTect Methyl II PCR Array data analysis spreadsheet. Both the SEC and DEC assays should show "Pass" in the analysis.

Dissociation (melting) curve

Perform the default melting curve program on the instrument immediately after the cycling program. Generate the first derivative dissociation curve for each well in each plate using the instrument's software. A single well-defined peak should appear in each well. If your instrument does not have a default melting curve program, run the following program instead:

97°C, 1 min; 55°C, 30 sec (OPTICS OFF) 55–97°C at 2°C/s (OPTICS ON)

Data interpretation

EpiTect Methyl II PCR Arrays provide gene methylation status as percentage unmethylated (UM) and percentage methylated (M) fraction of input DNA. "UM" represents the fraction of input genomic DNA containing no methylated CpG sites in the amplified region of a gene. "M" represents the fraction of input genomic DNA containing 2 or more methylated CpG sites in the targeted region of a gene. The number of CpG sites methylated in a targeted region can vary within the fraction of methylated input DNA.

		Final results	
Example #	Input genomic DNA	Unmethylated (UM)	Methylated (M)
1	00000 00000 00000 00000	100%	0%
2		60%	40%
3		0%	100%
4	••••• •••• ••• •••	0%	100%

Figure 6. Pictorial explanations of results.

In the figure above, each horizontal bar represents the targeted region of a gene from 1 genome. Biological samples usually contain many genomes derived from many cell types. For simplicity, 5 such genomes are depicted here. Light and dark circles represent unmethylated and methylated CpG sites, respectively.

The "Results" in the EpiTect Methyl II PCR Array spreadsheet displays the relative percentage of methylated (M) and unmethylated (UM) DNA in each target genomic DNA sequence. The M values can be used to generate a graphical representation of the data using our developed Hierarchical Clustering method. Significance of the level of methylated DNA (% of total input DNA) must be defined by the researcher. Methylated DNA may have biological significance if such methylation status is associated with a specific tumor, tissue, or other phenotype. Ideally, to determine if this methylation status is sufficient to repress transcription, measuring the corresponding expression levels and comparing those with the expression levels in the appropriate controls should be considered. Alternatively, results can be compared between a control and experimental DNA samples. Such parallel analysis will allow researchers to see if the methylation status of an experimental sample is substantially different from a matched control sample (i.e., tumor sample vs. normal control or treated sample vs. untreated).

ΔC_T data analysis

Due to the inversely proportional relationship between threshold cycle and the amount of input DNA, and due to the doubling of PCR product with every cycle in the exponential phase of the reaction, the initial DNA amount in each digest before PCR is expressed as:

$$C_{Mo} = 2^{-CT(Mo)}$$
; $C_{Ms} = 2^{-CT(Ms)}$; $C_{Md} = 2^{-CT(Md)}$; $C_{Msd} = 2^{-CT(Msd)}$ (1)

The fraction of DNA in each digest is calculated by normalizing the DNA amount to the amount of digestible DNA. The amount of digestible DNA is equal to the total amount of DNA (determined from the mock digest) minus the amount of DNA resistant to DNA digestion (determined from the double digest).

Unmethylated (UM) DNA fraction:

$$F_{UM} = \frac{C_{Md}}{C_{Mo} - C_{Msd}} = \frac{2^{-CT \text{ (Md)}}}{2^{-CT \text{ (Mo)}} - 2^{-CT \text{ (Msd)}}}$$
(2)

Hypermethylated (HM) DNA fraction:

$$F_{HM} = \begin{array}{c} C_{Ms} & 2^{-CT \; (Ms)} \\ \hline \\ C_{Mo} - C_{Msd} & 2^{-CT \; (Mo)} - 2^{-CT \; (Msd)} \end{array}$$

Intermediately methylated (IM) DNA fraction:

$$F_{IM} = 1 - F_{HM} - F_{UM}$$

Methylated (M) DNA fraction:

$$F_{M} = F_{HM} + F_{IM} \tag{3}$$

DNA copies resistant (R) to enzyme digestion:

$$F_{R} = \frac{C_{Msd}}{C_{Mo}} = \frac{2^{-CT(Msd)}}{2^{-CT(Mo)}} = 2^{-[CT (Msd) - -CT (Mo)]} = 2^{-\Delta CT (Msd - Mo)}$$
(4)

Example:

$$F_{UM} = 2 ^- (C_T M_d) / (2 ^- (- C_T M_o) - 2 ^- (- C_T M_{sd})) = 0.3015 \text{ or } 30.15\%$$

$$\begin{split} F_{HM} &= 2 \text{ }^{\wedge} - \left(C_{T} \text{ } M_{s} \right) \text{ } / \left(2 \text{ }^{\wedge} \left(- \text{ } C_{T} \text{ } M_{o} \right) - 2^{\wedge} \left(- \text{ } C_{T} \text{ } M_{sd} \right) \right) = 0.0647 \text{ or } 6.47\% \\ F_{IM} &= 1 - F_{HM} - F_{UM} = 1 - 0.0647 - 0.3015 = 0.6338 \text{ or } 63.38\% \\ F_{M} &= F_{HM} + F_{IM} = 0.0647 + 0.6338 = 0.6985 \text{ or } 69.85\% \\ F_{R} &= 2 \text{ }^{\wedge} - \left(C_{T} \text{ } M_{sd} - C_{T} \text{ } M_{o} \right) = 2 \text{ }^{\wedge} - \left(36.51 - 23.16 \right) = 0.0095\% \end{split}$$

Methylation-sensitive or methylation-dependent digest C_T values within 1 cycle of the mock digest cannot be reliably used to calculate the percentage of either respective methylated DNA fraction. Differences in threshold cycles less than one (1) are within the standard error associated with real-time PCR instruments and experimental procedures. In these situations, the digest with the greatest difference in C_T value from the mock digest is used to calculate its DNA fraction, whether unmethylated or hypermethylated. The opposite fraction (hypermethylated or unmethylated, respectively) is instead calculated as 1 minus the determined fraction. The amount of intermediately methylated DNA is then assumed to be negligible. Thus, the amount of methylated DNA is represented by the hypermethylated DNA fraction.

If ΔC_T ($M_s - M_o$) < 1.0 and ΔC_T ($M_d - M_o$) > 1.0, use the following formula to calculate the fraction of hypermethylated DNA:

$$F_M = 1 - F_{UM} = 1 - 2^{-CT (Md)} / (2^{-CT (Mo)} - 2^{-CT (Msd)})$$
 (5)

Example:

$$F_{UM} = 2 \land - (C_T M_d) / (2 \land (-C_T M_o) - 2 \land (-C_T M_{sd})) = 0.0027 \text{ or } 0.27\%$$

$$F_M = F_{HM} = 1 - F_{UM} = 1 - 0.0027 = 0.9973 \text{ or } 99.73\%$$

$$F_R = 2 \land - (C_T M_{sd} - C_T M_o) = 2 \land - (36.36 - 19.84) = 0.068\%$$

If ΔC_T ($M_d - M_o$) <1.0 and ΔC_T ($M_s - M_o$) >1.0, use following formula to calculate the fraction of unmethylated DNA:

$$F_{UM} = 1 - F_{HM} = 1 - 2^{-CT (Ms)} / (2^{-CT (Ms)} - 2^{-CT (Msd)})$$
 (6)

Example:

$$F_M = F_{HM} = 2 \land - (C_T \: M_s) \: / \: (2 \land (-C_T \: M_o) - 2 \land (-C_T \: M_{sd})) = 0.00114 \: or \: 0.114\%$$

$$F_{UM} = 1 - F_{HM} = 1 - 0.00114 = 0.99888 \text{ or } 99.886\%$$

$$F_R = 2 \land - (C_T M_{sd} - C_T M_o) = 2 \land - (40.00 - 22.96) = 0.0007\%$$

If both ΔC_T ($M_s - M_o$) and ΔC_T ($M_d - M_o$) are <1.0, then the fraction of both hypermethylated and unmethylated DNA is assigned as 50%, while again the amount of intermediately methylated DNA is negligible. Thus, the amount of methylated DNA is represented by the hypermethylated DNA fraction.

Example:

$$F_M = F_{HM} = F_{UM} = 50.0\%$$

$$F_R = 2 ^ - (C_T M_{sd} - C_T M_o) = 2 ^ - (40.00 - 24.03) = 0.0016\%$$

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQlist.aspx. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and/or protocols in this handbook or sample and assay technologies (for contact information, visit www.qiagen.com).

Comments and suggestions

Incomplete restriction enzyme digestion: C_T (M_{sd}) - C_T (M_o) <3 or SEC or DEC "Fail" in the EpiTect® Methyl II PCR Array spreadsheet

- Repeat the experiment with new DNA samples. a) Poor-quality DNA
- b) Low restriction enzyme activity

Check that the EpiTect Methyl II DNA Restriction Kit has not expired. Be sure to use the correct amount of both enzymes recommended in the protocol for the amount of DNA used. Be sure to mix the enzyme by gently pipetting up and down.

c) DNA samples

RNA contamination in the RNA contamination inhibits restriction enzyme DNA digestion and causes an overestimation of DNA concentration. Be sure to include any RNase treatment steps recommended in the procedure of the chosen DNA preparation kit.

d) Other contaminants in the DNA samples

DNA prepared from difficult organ tissues may contain protein and/or polysaccharide contaminants that significantly inhibit restriction enzyme activity. Organic reagents (such as chloroform, phenol, and isopropanol) used in some DNA kits and protocols may not be completely removed. Be sure to use the recommended DNA isolation kits and protocols and avoid using organic solvent-based methods and protocols for DNA preparation.

Comments and suggestions

e) Too much DNA used in the digestion

Carefully measure the DNA concentration and only use the amount of DNA recommended by the selected PCR setup protocol.

f) Incorrect incubation conditions

Incubate for at least 4 hours at 37°C, and use the size of tubes recommended in the protocol.

Use an overnight incubation if a shorter time was used previously and resulted in incomplete digestion.

High mock digestion (M₀) C₁ values from most/all genes

 a) Insufficient DNA used in the digestion Be sure to use at least the amount of DNA recommended in the protocol. Use the recommended methods and instruments to determine DNA concentrations.

Be sure to include any RNase treatment steps recommended in the procedure of the chosen DNA isolation kit.

b) Degraded DNA

DNA samples may be contaminated by microbes due to improper storage of DNA samples, e.g., at 4°C. Always store DNA samples at -20°C (up to 2 years) or -80°C (indefinitely).

 PCR array or master mix incorrectly stored Storing PCR array or master mix at inappropriate temperature for extended periods reduces their activity and PCR amplification efficiency.

 d) Incorrect real-time PCR cycling program used

Be sure to use the correct cycling program, including 10 minutes at 95°C to fully activate the hot start enzyme in the RT² SYBR Green gPCR Mastermix.

All 4 digests (M_o , M_s , M_d , M_{sd}) C_T values for an individual gene are ≥ 32

 a) DNA sample may contain a different sequence relative to most recent NCBI genome build

This may be due to unreported chromosomal abnormalities (insertion or deletions) or single nucleotide polymorphisms (SNPs) that affect the EpiTect Methyl II PCR Assays. Verification may require sequencing of the relevant genomic region in the original DNA sample.

Comments and suggestions

b) Homozygous deletions

If the C_T values from all 4 digests for an individual gene, but not the majority of genes, are ≥32, genomic homozygous deletion most likely exists at this locus in the genomic DNA of the original sample.

References

Esteller, M. (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 6, R50.

Ordway, JM. et al. (2006) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27, 2409.

Ordering Information

Product	Contents	Cat. no.
EpiTect Methyl II Signature PCR Array (22)	For methylation analysis of 22 genes in a 96-well or 384-well plate format 2, 12, or 24 x 96; 4 x 384	335212
EpiTect Methyl II Complete PCR Array (94)	For methylation analysis of 94 genes in a 96-well or 384-well plate format 2 x set of 4 of 96; 2, 12 or 24 x 384	335222
Related products		
EpiTect Methyl II Custom PCR Array	For methylation analysis of customer-selected genes in a 96-well or 384-well plate format	335112
EpiTect Methyl II DNA Restriction Kit (12)	Reagents for the cleavage of methylated and unmethylated DNA for processing up to 12 DNA samples; 5x Restriction Digestion Buffer, Methylation-Sensitive Enzyme A, Methylation- Dependent Enzyme B	335452

EpiTect Methyl II PCR Assay (200)	Laboratory-tested forward and reverse primers for 200 x 25 µl reactions; 25 µl per primer; total volume: 200 µl	335002
DNeasy Blood and Tissue Kit (50)*	50 DNeasy Mini Spin Columns, Proteinase K, Buffers, Collection Tubes (2 ml)	69504
AllPrep DNA/RNA Mini Kit (50)	For 50 minipreps: AllPrep DNA Spin Columns, RNeasy® Mini Spin Columns, Collection Tubes, RNase-Free Water and Buffers	80204
RT ² SYBR Green ROX qPCR Mastermix (2)*	For 2 x 96 assays in 96-well plates; suitable for use with real-time cyclers that do not require a reference dye, including: Bio-Rad models CFX96, CFX384, Bio-Rad/MJ Research Chromo4, Bio-Rad/MJ Research Opticon 2; Roche LightCycler 480 (96-well and 384-well); all other cyclers	330500
RT ² SYBR Green qPCR Mastermix (2)*	For 2 x 96 assays in 96-well plates; suitable for use with the following real-time cyclers: Applied Biosystems models 5700, 7000, 7300, 7500 [Standard and Fast], 7700, 7900HT 96-well block [Standard and Fast] and 384-well block, StepOnePlus; Eppendorf Mastercycler ep realplex models 2, 25, 4, 45; Stratagene models Mx3000P, Mx3005P, Mx4000	330520
RT ² SYBR Green Fluor qPCR Mastermix (2)*	For 2 x 96 assays in 96-well plates; suitable for use with the following realtime cyclers: Bio-Rad models iCycler, iQ5, MyiQ, MyiQ2	330510
RT ² PCR Array Loading Reservoir	5 ml capacity reservoir for convenient sample loading on PCR arrays	338162

^{*} Larger kit sizes available; please inquire.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Revision History

Document Revision History

R2 Updated location of online supporting documents and software.
03/2019 Updated data analysis procedure.

Trademarks: QIAGEN®, AllPrep®, DNeasy®, EpiTed®, RNeasy® (QIAGEN Group); Applied Biosystems®, StepOnePlus™, ROX™, SYBR® (Life Technologies Corporation); Bio-Rad®, iCycler®, Chromod™, CFX96™, DNA Engine Opticon®, CFX384™, iQ™, MyiQ™, MyiQQ™ (Bio-Rad Laboratories, Inc.); Eppendorf®, Mastercycler® (Bio-Rad Laboratories, Inc.); Eppendorf®, Mastercycler® (Roche Group); SmartCycler® (Cepheid); Stratagene®, Mx3005P®, Mx30005P®, Mx4000® (Stratagene); Excel®, Microsoft® (Microsoft® Corporation). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Limited License Agreement for EpiTect Methyl II PCR Array

Use of this product signifies the agreement of any purchaser or user of the EpiTect Methyl II PCR Array to the following terms:

- The EpiTect Methyl II PCR Array may be used solely in accordance with the EpiTect Methyl II PCR Array Handbook and for use with components contained in the
 Kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this Kit with any components not
 included within this Kit except as described in the EpiTect Methyl II PCR Array Handbook and additional protocols available at www.qiagen.com.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this Kit and/or its use(s) do not infringe the rights of third-parties.
- 3. This Kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the Kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the Kit and/or its components.

For updated license terms, see www.qiagen.com

The EpiTect Methyl II PCR Arrays use MethylScreen technology provided under license from Orion Genomics, LLC.

This product is compatible for use in real-time PCR methodologies, including 5' nuclease processes and dsDNA-binding dye processes claimed in patents owned by Roche Molecular Systems, Inc., F. Hoffmann-La Roche Ltd, and Applera Corporation. No right to perform any of these patented processes is conveyed, expressly, by implication or by estoppel to the purchaser by the purchase of this product. A license to use these patented processes for the purchaser's own internal research accompanies the purchase of certain reagents of Applied Biosystems and other licensed suppliers, or is available from Applied Biosystems. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

HB-1003-002 03/2019 © 2019 QIAGEN, all rights reserved.

Notes

Notes

