Application Note

Detection of alternative Tra2 β regulated splicing

Andrew Best, Sushma Grellscheid, and David J. Elliott, Institute of Genetic Medicine, Newcastle University, UK

This application note describes how the QIAxcel[®] system was used to successfully determine the splicing pattern of exonic sequences targeted by Tra2β protein isoforms.

Introduction

Tra2 β (*Sfrs10*) is an evolutionarily conserved splicing protein that is crucial for mouse embryogenesis (1), but its biological role is not fully understood. It has a modular structure with domains rich in arginine and serine (RS1 and RS2) and a central RNA recognition motif (RRM) that binds to target RNA sequences (2, 3). Furthermore, at least 3 isoforms of Tra2 β have been identified. Tra2 β is known to splice the *Nasp* histone chaperone gene, which monitors DNA double strand breaks (4). An evolutionarily conserved cassette exon (annotated *Nasp*-T) may play a crucial role in developmental processes. Tra2 β splices *Nasp* via a number of binding sites, but the exact role of these interactions is not known.

Because of the high levels of splicing inclusion observed for the wild type Nasp-T exon at endogenous cellular concentrations of $Tra2\beta$, we tested a mutated exon ("M3+M4"), which is less efficiently spliced, to find out whether the $Tra2\beta$ binding sites are necessary for splicing activation. We also investigated the need for the $Tra2\beta$ RRM and RS1 domains in these interactions (5).

The QlAxcel system provides rapid, sensitive, and reproducible analyses of $Tra2\beta$ regulated splicing. This system may also prove advantageous for studying the role of other splicing proteins and their target sequences.

Materials and Methods

HEK 293 cells were cotransfected with a mutated Nasp-T construct (M3+M4) and one of 3 Tra2 β -GFP constructs encoding full length Tra2 β , Tra2 β ARRM, or Tra2 β ARS1. Control cells were cotransfected with the Nasp-T construct (M3+M4) and GFP only. \triangleright

The extracted pre-mRNAs were subjected to RT-PCR and subsequently analyzed using the QIAxcel system. Samples of low DNA concentration were analyzed using Method OL400. Samples were injected at 8 kV for 20 s, and separation was performed at 6 kV for 400 s. Alignment marker, with fragments of 15 bp and 3 kb, was injected at 4 kV and 20 s and run simultaneously with the samples. QX DNA size marker, with fragments ranging from 50–800 bp, was used for size and concentration estimation.

High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) was performed as previously described (6) using an antibody specific to $Tra2\beta$ (7).

Results and Discussion

As expected, analyses on the QIAxcel system demonstrated very high splicing activation by full length Tra2 β , but also significant percentage splicing inclusion (PSI) activation by the Tra2 $\beta\Delta$ RRM–GFP protein (Figure 1). These results indicate that for some exons, Tra2 β can act as a coactivator as well as a splicing activator.

Interestingly, Tra2 $\beta\Delta$ RS1 seems to behave as a potent splicing repressor. This indicates that the endogenous Tra2 $\beta\Delta$ RS1 isoform acts a splicing repressor and/or that the RS1 domain plays a central role in splicing activation.

Conclusions

- The QIAxcel system is a valuable tool for revealing exon splicing patterns.
- Analyses of the splicing patterns using the QIAxcel system were both qualitative and quantitative.
- The QIAxcel system can help to identify the roles of other splicing proteins as activators, coactivators, or repressors.

Ordering Information

Product	Contents	Cat. no.
QIAxcel Advanced	Capillary electrophoresis device: includes computer, QIAxcel ScreenGel® Software, and 1-year warranty on parts and labor	9001941
QIAxcel DNA High Resolution Kit (1200)	QIAxcel DNA High Resolution Cartridge, Buffers, Mineral Oil, QX Intensity Calibration Marker, 12-Tube Strips	929002
QIAxcel DNA Screening Kit (2400)	QIAxcel DNA Screening Cartridge, Buffers, Mineral Oil, QX Intensity Calibration Marker, 12-Tube Strips	929004
QX Alignment Marker 15 bp/3 kb (1.5 ml)	Alignment marker with 15 bp and 3 kb fragments	929522
QX DNA Size Marker 50–800 bp (50 µl) v2.0	DNA size marker with fragments of 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, and 800 bp; concentration 100 ng/µl	929561

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Visit www.qiagen.com/QIAxcel and find out how automated gel electrophoresis can benefit your lab!

Trademarks: QIAGEN®, QIAxcel[®], Sample to Insight[®], ScreenGel[®] (QIAGEN Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com