June 2017

GeneRead[™] QlAact Lung DNA Panel Handbook

For constructing targeted, molecularly bar-coded libraries from DNA for digital sequencing with next-generation sequencing (NGS)

For Research Use Only. Not for use in diagnostic procedures.

REF 181930

QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden

MAT 1107208

Contents

Kit Contents	. 4
Storage	. 5
Intended Use	. 6
Safety Information	. 6
Quality Control	. 6
Introduction	.7
Principle and procedure	.7
Equipment and Reagents to Be Supplied by User1	10
Important Notes1	12
DNA preparation	12
DNA quantification1	13
Automation	۱4
Protocol: Fragmentation, End-repair and A-addition	15
Protocol: Adapter Ligation1	17
Protocol: Cleanup of Adapter-ligated DNA with QIAseq Beads	l 8
Protocol: Target Enrichment PCR	2 1
Protocol: Cleanup of Target Enrichment PCR with QIAseq Beads	23
Protocol: Universal PCR Amplification	25
Protocol: Cleanup of Universal PCR with QIAseq Beads	27
Troubleshooting Guide	29
Symbols3	30
Appendix A: Analyze the Library Using QIAxcel Advanced	3 1

Appendix B: Analyze the Library Using the Agilent 2100 Bioanalyzer	32
Ordering Information	33

Kit Contents

GeneRead QIAact Lung DNA Panel	
Catalog no.	181930
Number of reactions	24
GeneRead QIAact Library Preparation and Target Enrichment Reagents (Kit Box 1)*	
QIAact Target Enrichment Panel and QIAact Adapters (Kit Box 2)*	

^{*} Kit boxes 1 and 2 are components of the GeneRead QIAact Lung DNA Panel.

GeneRead QIAact Library Preparation and Target Enrichment Reagents*		
Number of reactions	24	
Fragmentation Buffer, 10x	65 µl	
Fragmentation Enzyme Mix	ابر 130	
FERA Solution	20 µl	
Ligation Buffer, 5x	260 µl	
Ligation Solution	اب 200	
DNA Ligase	130 µl	
Nuclease-Free Water	2 x 2 ml	
TEPCR Buffer, 5x	220 µl	
UPCR Buffer, 5x	220 µl	
HotStarTaq® DNA Polymerase	2 x 50 µl	
One bottle containing QIAseq Beads (provided in separate cold-packed shipment)	34 ml	

^{*} Not for individual sale; to order reagents, see cat. no. 181930.

QIAact Target Enrichment Panel and QIAact Adapters *			
Number of reactions	24		
GeneRead™ QlAact Lung DNA Panel Forward Primers	ابر 130		
GeneRead QIAact Lung DNA Panel Reverse Primers	130 µl		
QIAact Adapters (contains 12 tubes with each tube corresponding to one sample-specific bar code; each tube can process up to 2 samples)	10 μΙ		
GeneReader™ TE-PCR Primer	40 μΙ		
GeneReader Universal PCR Primer A	40 µl		
GeneReader Universal PCR Primer B	40 µl		

^{*} Not for individual sale; to order products, see cat. no. 181930.

Storage

The GeneRead QlAact Library Preparation and Target Enrichment Reagents (except QlAseq Beads) are shipped on dry ice and should be stored at -15° C to -30° C upon arrival. QlAseq Beads are shipped on cold packs and should be stored at 4° C. When stored properly, all reagents are stable for up to 3 months after delivery. GeneRead QlAact Lung DNA Panel is shipped on dry ice and should be stored at -15° C to -30° C upon arrival. When stored properly, all reagents are stable for up to 3 months after delivery.

Intended Use

The GeneRead QIAact Lung DNA Panel and GeneRead QIAact Library Preparation and Target Enrichment Reagents are intended for Research Use Only and are not intended for the diagnosis, prevention or treatment of a disease.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at www.qiagen.com/safety where you can find, view and print the SDS for each QIAGEN® kit and kit component.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of the GeneRead QIAact Lung DNA Panel is tested against predetermined specifications, to ensure consistent product quality.

Introduction

DNA sequencing is a useful tool to detect genetic variations, including somatic mutations, single nucleotide variants (SNVs), copy number variation (CNVs) and small insertions and deletions (inDels). Targeted enrichment technology enables next-generation sequencing (NGS) platform users to sequence specific regions of interest instead of the entire genome, effectively increasing sequencing depth and throughput with lower cost. Existing target enrichment methods, library preparation and sequencing steps all utilize enzymes and amplification processes, which introduce substantial bias and artifacts. These biases and artifacts lead to background artifactual errors that greatly limit the detection of true low-frequency variants in heterogeneous samples such as tumors.

The GeneRead QIAact Lung DNA Panel integrates unique molecular index (UMI) technology into a gene-specific, primer-based target enrichment process, enabling sensitive variant detection of targeted genomic regions by NGS on the GeneReader system.

The GeneRead QIAact Lung DNA Panel has been optimized in combination with a specially formulated enrichment chemistry to achieve highly efficient enrichment on both regular and GC-rich regions at high multiplex levels.

Principle and procedure

The GeneRead QIAact Lung DNA Panel relies on gene-specific primer enrichment and UMIs for uniform coverage and sensitive variant detection.

Unique molecular index

The concept of unique molecular indexing is that prior to any amplification, each original DNA molecule is attached to a unique sequence index. This attachment is accomplished by the ligation of fragmented DNA with a QIAact adapter containing a UMI with 8 random bases

The DNA molecules are then amplified by PCR for target enrichment and library amplification. Due to intrinsic noise and sequence-dependent bias, DNA molecules with UMIs may be amplified unevenly across the target regions. Even target region coverage can be achieved by counting the number of UMIs in the reads rather than counting the number of total reads for each region. Sequence reads with varying UMIs represent different original molecules, while sequence reads with the same UMI are the result of PCR duplication from one original molecule.

PCR amplification and the sequencing process generate biases and artefacts which lead to the recording of false-positive DNA variants in the sequencing reads. These false-positive variants may mask the detection of true low-frequency variants in heterogeneous samples such as tumours. To reduce the number of false-positive variants, call variants across all reads within a UMI versus only calling variants from the original sequencing read (Figure 1).

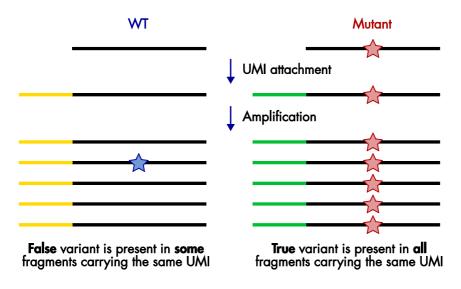


Figure 1. Principle of variant detection with UMI. Each original molecule is tagged by a UMI. True variants are those mutations present in the majority of reads within a UMI, while errors are mutations present in only one or a few reads within a UMI. Description of the variant calling algorithm can be found at www.qiagen.com.

Process

The GeneRead QIAact Lung DNA Panel is provided as two primer mix tubes, with up to 200 primers per tube. The GeneRead QIAact Lung DNA Panel is designed to enrich specific target regions in selected genes (AKT1, ALK, BRAF, DDR2, EGFR, ERBB2/HER2, ESR1, FGFR1, KIT, KRAS, MAP2K1, MET, NRAS, NTRK1, PDGFRA, PIK3CA, PTEN, RICTOR, ROS1) using 40-100 ng of DNA.

Genomic DNA samples are first fragmented, end-repaired and A-tailed using a single, controlled multi-enzyme reaction. The prepared DNA fragments are then ligated at their 5' ends with a specific adapter containing a UMI and a sample-specific bar code.

Ligated DNA molecules are subject to limited cycles of target enrichment PCR, with one gene-specific primer targeting a region and one universal forward primer complimentary to an adapter sequence. This reaction ensures that intended targets and UMIs are enriched sufficiently to be represented in the final library. A universal PCR with GeneReader specific sequences is then carried out to amplify the targets and complete the library.

Once the library is sequenced, results can be analyzed using the GeneRead QIAact Lung DNA Panel workflow, which will automatically perform all steps necessary to generate a DNA sequence variant report from your raw NGS data. All detected variants can be further interpreted by QIAGEN Clinical Insight (QCITM) analysis.

Recommendation for multiplexing and clonal amplification input

More than one DNA sample can be sequenced in one flow cell and this is made possible by the addition of a sample-specific bar code that is added during library preparation (see "Protocol: Adapter Ligation", page 17). The sequencing libraries prepared from the corresponding samples must be pooled prior to clonal amplification to allow them to be sequenced together in one flow cell (see "Protocol: Library Concentration Normalization and Pooling" in the QIAGEN GeneRead Clonal Amp Q Handbook for more information). Based on the total number of amplicons that are produced by the GeneRead QIAact Lung DNA

Panel, we recommend a multiplex of a maximum of 12 samples for FFPE or a maximum of 6 samples for liquid biopsy samples.

When using the DNA libraries as part of the GeneRead QlAact Lung All-in-One Assay, we recommend a maximum multiplex of 6 samples for FFPE samples (see GeneRead QlAact Lung All-in-One Assay Handbook for more information).

After target enrichment and library preparation, use 500 pg pooled DNA in the clonal amplification process (see "Preparing Libraries for Emulsion Making" in the QIAGEN GeneRead Clonal Amp Q Handbook for more information).

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

In addition to the QIAact Library Preparation and Target Enrichment Reagents and GeneRead QIAact Lung DNA Panel, the following supplies are required:

For DNA isolation:

See "Recommended genomic DNA preparation methods", page 12

For library construction and targeted enrichment:

- High-quality, nuclease-free water. Do not use DEPC-treated water
- 80% ethanol, made fresh
- Microcentrifuge

- 1.5 ml LoBind tubes (Eppendorf®)
- 0.2 ml PCR tubes, 96-well PCR plates or PCR strips and caps
- Thermal cycler (e.g., Bio-Rad® C1000™)
- Multichannel pipettor
- Single-channel pipettor
- DNase-free pipette tips and tubes
- QIAxcel® Advanced instrument (for information, visit www.qiagen.com)
- QIAxcel DNA High Resolution Kit (QIAGEN cat. no. 929002)
- QX DNA Size Marker 50–800 bp (50 μl) (QIAGEN cat. no. 929561)
- QX Alignment Marker 15 bp/3 kb (1.5 ml) (QIAGEN cat. no. 929522)
- QX Nitrogen Cylinder (x 6) (QIAGEN cat. no. 929705)
- Qubit® 3.0 Fluorometer (Thermo Fisher Scientific cat. no. Q33216) or equivalent
- Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific cat. no. Q32851)
- Qubit assay tubes (e.g., Thermo Fisher Scientific cat. no. Q32856)
- DynaMag[™]-2 Magnet (Thermo Fisher Scientific cat. no. 12321D)

Optional

- QIAseq DNA QuantiMIZE Array or Assay Kit (configured for specific thermal cycler) if using FFPE samples (QIAGEN cat. nos. 333404 and 333414)
- QIAxpert® System (for information, visit www.qiagen.com)
- Agilent® 2100 Bioanalyzer®
- Agilent High Sensitivity DNA Kit (Agilent cat. no. 5067-4626)

Important Notes

DNA preparation

High-quality DNA is essential for obtaining good sequencing results

The most important prerequisite for DNA sequence analysis is consistent, high-quality DNA of every experimental sample. Therefore, sample handling and DNA isolation procedures are critical to the success of the experiment.

Residual traces of proteins, salts or other contaminants may either degrade the DNA or decrease the efficiency of (if not block completely) the enzyme activities necessary for optimal targeted genome amplification.

Recommended genomic DNA preparation methods

The QIAGEN QIAamp® DNA Mini Kit (cat. no. 51304), GeneRead DNA FFPE Kit (cat. no. 180134), QIAamp Circulating Nucleic Acid Kit (cat no. 55114) or QS GeneRead DNA FFPE Treatment Kit (cat. no. 185306) in combination with the QIAsymphony DSP DNA Mini Kit (cat. no. 937236) are highly recommended for the preparation of genomic DNA samples from different sample types. Ensure that samples have been treated for the removal of RNA, as RNA contamination will cause inaccuracies in DNA concentration measurements. **Do not** omit the recommended RNase treatment step to remove RNA. If genomic DNA samples need to be harvested from biological samples for which kits are not available, please contact QIAGEN Technical Services for suggestions.

For best results, all DNA samples should be resuspended in the recommended buffer or DNase-free 10 mM Tris* buffer pH 8.0. **Do not use DEPC-treated water**.

Recommended circulating-free DNA preparation method for liquid biopsy samples

Optimal extraction of circulating-free DNA (cfDNA) from plasma samples can be safeguarded by drawing blood into sample collection tubes that provide efficient stabilization of plasma samples (e.g., PAXgene® Blood ccfDNA Tube, QIAGEN cat.no. 768115). To maximize DNA yields, we recommend extraction from 4–5 ml plasma and elution in the lowest volume stated in the QIAamp Circulating Nucleic Acid Kit Handbook. Low DNA yields can present challenges, such as providing insufficient input material for detecting low frequency variants.

DNA quantification

For best results, all DNA samples should also demonstrate consistent quality according to the following criteria:

DNA purity determined by UV spectrophotometry

The purity of DNA should be determined by measuring absorbance in a spectrophotometer such as the QIAxpert System. Prepare dilutions and measure absorbance in 10 mM Tris·Cl* buffer pH 8.0. The spectral properties of nucleic acids are highly dependent on pH.

 A_{260}/A_{280} ratio should be greater than 1.8.

DNA concentration

The concentration of DNA should be determined by fluorometric quantitation using equipment such as the Qubit 3.0 Fluorometer (Thermo Fisher Scientific cat. no. Q33216). A minimum DNA input of 40 ng is recommended for the GeneRead QIAact Lung DNA Panel**.

^{*} When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs), available from the product supplier.

^{**} For unknown or lower quality FFPE DNA, an input range 40 to 100 ng should be used for optimal performance.

Optional: If DNA purified from FFPE samples will be used with the GeneRead QIAact Lung DNA Panel, the QIAGEN GeneRead DNA QuantiMIZE Array or Assay Kit can be used to check the integrity of the obtained DNA (QC Score \leq 0.04, proceed as the genomic DNA is of good quality; QC Score >0.04, proceed with caution as the DNA is highly fragmented/damaged).

Automation

The manual cleanup steps described in this handbook can be automated on the QIAcube instrument. Three protocols for automating cleanup are provided in the GeneRead QIAact Panel Cleanup Kit (cat. no. 185446)

- "Protocol: GR QIAact Panel Cleanup 1" describes the cleanup procedure after fragmentation, end repair and adapter ligation.
- "Protocol: GR QIAact Panel Cleanup 2" describes the cleanup procedure after target enrichment PCR.
- "Protocol: GR QIAact Panel Cleanup 3" describes the cleanup procedure after universal library amplification.

Protocol: Fragmentation, End-repair and Aaddition

Important points before starting

- Ensure input DNA is in 10mM Tris, for example QIAGEN's Buffer EB, QIAGEN's Buffer ATE or low TE (0.1x TE, 0.1mM EDTA).*
- Pre-chill thermal cycler to 4°C.

Procedure

1. If using 40ng of DNA as input, dilute DNA to 10 ng/ μ l with nuclease-free water in a LoBind tube. Use 4 μ l of diluted DNA for fragmentation.

Note: if using 100ng of DNA as input, dilute DNA to 25 $ng/\mu l$ with nuclease-free water in a LoBind tube.

 Prepare a reaction mixture for fragmentation, end-repair and A-addition according to Table 1, dispensing the reagents into a 0.2 ml PCR tube on ice. It is important to keep the mixture on ice and mix the components well by pipetting up and down 10 times.

Table 1. Preparation of mixture for fragmentation, end-repair and A-addition

Component	1 x Volume (μl)	6 x Volume (µI)	12 x Volume (μl)
DNA	4	-	-
Fragmentation Buffer, 10x	2.5	16.2	31.2
FERA Solution	0.75	4.9	9.4
Nuclease-Free Water	12.75	82.9	159.4
Total volume	20	104	200

^{*} When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs), available from the product supplier.

3. Add 5 µl Fragmentation Enzyme Mix to each reaction and ensure that the reaction solution is mixed well by pipetting up and down 10 times using a pipette set to 15 µl volume (do not vortex).

IMPORTANT: It is critical to keep the PCR tube or plate on ice for the entire time during reaction setup.

4. Program a thermal cycler according to Table 2. Be sure to use the instrument's heated lid.

Table 2. Thermal cycler conditions

Time	Temperature	Number of cycles
1 minutes	4°C	1
24 minutes	32°C	1
30 minutes	72°C	1
∞*	4°C	Hold

^{*} Samples should not remain at 4°C for prolonged period of time. See Steps 6 and 7 below.

- Start the program. When the thermal cycler block reaches 4°C (Step 1), pause the program.
- 6. Transfer the PCR tube to the pre-chilled thermal cycler and resume the cycling program.
- When the thermal cycler program is complete and the sample block has returned to 4°C (Step 4), remove the samples and place them on ice.
- 8. Immediately proceed to the next protocol, "Adapter Ligation", page 17.

Protocol: Adapter Ligation

Procedure

 Prepare a reaction master mix for adapter ligation according to Table 3, adding the components to the 0.2 ml PCR tube containing DNA that has been prepared from "Protocol: Fragmentation, End-repair and A-addition" (page 15).

Note: Only one single sample-specific bar code adapter should be used per ligation reaction. Open one adapter tube at a time to avoid cross-contamination. It is also recommended to change gloves between each adapter addition to avoid cross-contamination.

Table 3. Reaction setup for adapter ligation

Component	1x Volume (µl)	6x Volume (µl)	12x Volume (μl)
DNA (from "Protocol: Fragmentation, End- repair and A-addition")	25	-	-
Ligation Buffer, 5x	10	65	125
QIAact Adapter (1–12)	2.8	18.2	35
DNA Ligase	5	32.5	62.5
Ligation Solution (PEG6000, 50%)	7.2	46.8	90
Total volume	50	162.5	312.5

- 2. Mix the components thoroughly by pipetting up and down 10 times using a pipette set to 25 µl.
- 3. Program a thermal cycler to 20 $^{\circ}\text{C}.$ Incubate reaction from Step 2 for 15 minutes.

IMPORTANT: Do not use heated lid.

4. After the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Adapter-ligated DNA with QIAseq Beads", page 18.
If reactions are to be stored after ligation, transfer them to a -20°C freezer. Samples are stable for 3 days.

Protocol: Cleanup of Adapter-ligated DNA with QIAseq Beads

Procedure

- 1. Let the QIAseg Beads come to room temperature for at least 30 minutes before use.
- 2. Transfer 50 μl ligation reaction from "Protocol: Adapter Ligation", page 17, to a 1.5 ml LoBind tube. Add nuclease-free water to bring the volume to 100 μl.

Note: The final ligation reaction volume may be less than 50 μ l due to evaporation. It is important to measure the ligation reaction volume from "Protocol: Adapter Ligation" and then add the appropriate volume of nuclease-free water to bring the final volume to 100 μ l.

- Add 100 μl (1.0x volume) QIAseq Beads to 100 μl diluted DNA solution. Mix well by pipetting up and down 10 times using a pipette set to 100 μl. Use a fresh tip for every sample.
- 4. Incubate for 5 minutes at room temperature.
- Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant.
 After the solution is clear, carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 6. Add 200 µl freshly made 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads. Carefully remove and discard the supernatant.
- 7. Repeat previous step once.
- 8. Completely remove ethanol with a 200 μ l pipette tip first, then use a 10 μ l tip to remove any residual ethanol. Air dry the beads for up to 10 minutes while the open tube is on the rack.

- **Note**: Avoid over drying the beads. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads no longer appear shiny.
- Elute DNA target beads into 52 μl nuclease-free water. Mix well by pipetting up and down 10 times using a pipette set to 25 μl. Use a fresh tip for every sample. Place tube on the rack until solution is clear.
- 10. Transfer 50 µl supernatant to a clean 1.5 ml tube.
- 11.Add 50 µl (1.0x volume) QlAseq Beads to 50 µl DNA solution from previous step. Mix well by pipetting up and down 10 times using a pipette set to 50 µl. Use a fresh tip for every sample.
- 12.Incubate for 5 minutes at room temperature.
- 13. Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. After the solution is clear, carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 14.Add 200 µl freshly made 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads. Carefully remove and discard the supernatant.
- 15. Repeat previous step once.
- 16. Completely remove ethanol with a 200 µl pipette tip first, then use a 10 µl tip to remove any residual ethanol. Dry beads for up to 10 minutes while the tube is on the rack.
 - **IMPORTANT**: It is critical to dry beads completely before elution. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the beads no longer appear shiny. Ethanol carryover can affect enrichment PCR efficiency in the next protocol, "Target Enrichment PCR".
- 17.Elute DNA target beads in 22 µl nuclease-free water. Mix well by pipetting up and down 10 times using a pipette set to 15 µl. Use a fresh tip for every sample. Place tube on the magnetic rack until solution is clear.

- 18. Prepare two sets of 0.2 ml PCR tubes, one for the forward target enrichment PCR and one for the reverse target enrichment PCR.
- 19.From each 1.5 ml LoBind tube transfer 9.4 µl supernatant to each of two PCR tubes, one for the forward target enrichment PCR and one for the reverse target enrichment PCR.

 Proceed to the next protocol, "Target Enrichment PCR", page 21.
 - If reactions are to be stored after QIAseq Beads cleanup, transfer them to a -20° C freezer. Samples are stable for 3 days.

Protocol: Target Enrichment PCR

Procedure

1. Prepare the following master mixes as indicated in Tables 4 and 5 in separate 1.5 ml LoBind tubes.

Table 4. Reaction components for forward target enrichment PCR

Component	1 x Volume (µl)	6 x Volume (µl)	12 x Volume (µl)
DNA library (from "Protocol: Cleanup of Adapter-ligated DNA with QlAseq Beads")	9.4	-	-
TEPCR buffer, 5x	4	26	50
GeneRead QIAact Lung DNA Panel Forward Primers	5	32.5	62.5
GeneReader TE-PCR Primer	0.8	5.2	10
HotStarTaq DNA Polymerase	0.8	5.2	10
Total volume	20	68.9	132.5

Table 5. Reaction components for reverse target enrichment PCR

Component	1 x Volume (µl)	6 x Volume (μl)	12 x Volume (μl)
DNA library (from "Protocol: Cleanup of Adapter-ligated DNA with QlAseq Beads")	9.4	-	-
TEPCR buffer, 5x	4	26	50
GeneRead QIAact Lung DNA Panel Reverse Primers	5	32.5	62.5
GeneReader TE-PCR Primer	0.8	5.2	10
HotStarTaq DNA Polymerase	0.8	5.2	10
Total volume	20	68.9	132.5

- Add 10.6 μl of master mix from either Table 4 or 5 to the corresponding 0.2 ml PCR tube(s) containing the purified DNA library from the previous section. Mix gently by pipetting up and down 7 times with a pipette set to 10 μl, spin down briefly.
- 3. Set up the thermal cycler using the cycling conditions provided in Table 6. **IMPORTANT**: Ensure the heated lid on the thermal cycler is turned on for the PCR.

Table 6. Cycling conditions for target enrichment PCR

Time	Temperature	Number of cycles
13 minutes 2 minutes	95°C 98°C	1 (Initial denaturation)
15 seconds 10 minutes	98°C 68°C	8
5 minutes	72°C	1
5 minutes*	4°C	1
∞	4 °C	Hold

^{*} Samples must be held at 4°C for at least 5 minutes.

4. When the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Target Enrichment PCR with QIAseq Beads", page 23.
If reactions are to be stored after target enrichment PCR, transfer them to a -20°C freezer. Samples are stable for 3 days.

Protocol: Cleanup of Target Enrichment PCR with QIAseq Beads

Procedure

- 1. Let the QIAseq Beads come to room temperature for at least 30 minutes before use.
- Pulse-centrifuge the Forward and Reverse PCR reactions from "Protocol: Target Enrichment PCR", page 21, and combine them in a 1.5 ml LoBind tube and add nuclease-free water to bring the volume to 100 μl.

Note: The combined PCR reaction volume may be less than 40 μ l due to evaporation. It is important to measure the combined PCR reaction volume from "Protocol: Target Enrichment PCR" and then add the appropriate volume of nuclease-free water to bring the final volume to 100 μ l.

- 3. Add 100 µl (1.0x volume) QIAseq Beads to 100 µl diluted PCR solution. Mix well by pipetting up and down 10 times using a pipette set to 100 µl. Use a fresh tip for every sample. Incubate for 5 minutes at room temperature.
- Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant.
 Carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 5. Add 200 µl fresh 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads, then carefully remove and discard the supernatant.
- 6. Repeat previous step once.
- 7. Completely remove ethanol with a 200 μ l pipette tip first, then use a 10 μ l tip to remove any residual ethanol. Dry beads for up to 10 minutes while the tube is on the rack.

IMPORTANT: It is critical to dry beads completely before elution. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the

- beads no longer appear shiny. Ethanol carryover can affect PCR efficiency in the next protocol, "Universal PCR Amplification".
- 8. Elute DNA beads in 16 μl nuclease-free water. Mix well by pipetting up and down 10 times using a pipette set to 8 μl. Use a fresh tip for every sample. Place on the magnetic rack until solution is clear (5–10 minutes). Transfer 13.4 μl supernatant to a clean 0.2 ml PCR tube. Proceed to the next protocol, "Universal PCR Amplification", page 25.

If reactions are to be stored, transfer them to a -20°C freezer. Samples are stable for 3 days.

Protocol: Universal PCR Amplification

Procedure

1. Prepare the following master mix as indicated in Table 7 in a 1.5 ml LoBind tube.

Table 7. Reaction components for universal PCR amplification

Component	1 x Volume (μl)	6 x Volume (µl)	12 x Volume (μl)
Enriched DNA (from "Cleanup of Target Enrichment PCR with QlAseq Beads")	13.4	-	-
UPCR Buffer, 5x	4	26	50
GeneReader Universal PCR Primer A	0.8	5.2	10
GeneReader Universal PCR Primer B	0.8	5.2	10
HotStarTaq DNA Polymerase	1	6.5	12.5
Total volume	20	42.9	82.5

- 2. Add 6.6 µl of master mix from Table 7 to the 0.2 ml PCR tube(s) containing the enriched DNA from the previous section. Mix gently by pipetting up and down 7 times with a pipette set to 10 µl, spin down briefly.
- Set up the thermal cycler using the cycling conditions provided in Table 8.IMPORTANT: Ensure the heated lid on the thermal cycler is turned on for the PCR.

Table 8. Cycling conditions for universal PCR amplification

Time	Temperature	Number of cycles
13 minutes 2 minutes	95°C 98°C	1 (Initial denaturation)
15 seconds 2 minutes	98°C 60°C	21
5 minutes	72°C	1
5 minutes*	4°C	1
∞	4°C	Hold

^{*} Samples must be held at 4°C for at least 5 minutes.

4. When the reaction is complete, place the reactions on ice and proceed to the next protocol, "Cleanup of Universal PCR with QIAseq Beads", page 277.

If reactions are to be stored after universal PCR amplification, transfer them to a -20° C freezer. Samples are stable for 3 days.

Protocol: Cleanup of Universal PCR with QIAseq Beads

Procedure

- 1. Let the QIAseg Beads come to room temperature for at least 30 minutes before use.
- Transfer 20 μl PCR reaction from "Protocol: Universal PCR Amplification", page 25, to a
 1.5 ml LoBind tube. Add nuclease-free water to bring the volume to 100 μl.

Note: The PCR reaction volume may be less than 20 μ l due to evaporation. It is important to measure the PCR reaction volume from "Protocol: Universal PCR Amplification" and then add the appropriate volume of nuclease-free water to bring the final volume to 100 μ l.

- 3. Add 100 µl (1.0x volume) QlAseq Beads to 100 µl diluted PCR solution. Mix well by pipetting up and down 10 times using a pipette set to 100 µl. Use a fresh tip for every sample. Incubate for 5 minutes at room temperature.
- 4. Place the tube on the magnetic rack for 10 minutes to separate beads from supernatant. Carefully remove and discard supernatant. Be careful not to disturb the beads, which contain the DNA target.

IMPORTANT: Do not discard the beads.

- 5. Add 200 µl fresh 80% ethanol to the tube while it is on the magnetic rack. Rotate the tube 180° on the magnetic rack four times, shifting the position of the pellet, to wash the beads, then carefully remove and discard the supernatant.
- 6. Repeat previous step once.
- 7. Completely remove ethanol with a 200 µl pipette tip first, then use a 10 µl tip to remove any residual ethanol. Dry beads for up to 10 minutes while the tube is on the rack.

IMPORTANT: It is critical to dry beads completely before elution. As drying depends on temperature and air flow, the drying time may vary. Adapt the drying time until the

- beads no longer appear shiny. Ethanol carryover may affect downstream processing and sample assessment.
- 8. Elute DNA library beads in 30 µl nuclease-free water. Mix well by pipetting up and down 10 times using a pipette set to 20 µl. Use a fresh tip for every sample. Place tube on the magnetic rack until solution is clear. Transfer 28 µl supernatant to a clean LoBind 1.5 ml tube or PCR tube.
 - Note. Reactions can be stored after universal PCR amplification cleanup at -20°C for up to 6 months.
- 9. Assess the product size (bp) and yield (ng) of PCR-enriched DNA library using the QIAxcel Advanced instrument and the QIAxcel DNA High Resolution Kit (1200) (see Appendix A). Typically, 3–20 ng/µl of PCR product will be obtained after purification. Note. Dilute the sample 1:2 in QX DNA Dilution Buffer.

Optional: The DNA library assessment could also be performed on the Agilent 2100 Bioanalyzer with the Agilent High Sensitivity DNA Kit (see Appendix B).

Note: It is not recommended to proceed to sequencing when the yield of the Universal PCR is less than 2 ng/µl as this may impact performance.

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQList.aspx. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and/or protocols in this handbook or sample and assay technologies (for contact information, visit www.qiagen.com).

Comments and suggestions

Library preparation and target enrichment				
a)	No or low PCR product yield (<2ng/µl) after Universal PCR	Concentration of DNA to be used for library preparation and target enrichment should be determined by fluorometric quantitation.		
b)	No or low PCR product yield (<2ng/µl) after Universal PCR	Ensure that all reaction components are thoroughly mixed as described in this handbook before use		
		Ensure that all reaction components are correctly added at each stage and thoroughly mixed as described in this handbook		
c)	No or low PCR product yield (<2ng/µl) after Universal PCR	Increase DNA input used for library preparation. If 40ng was used initially increase input to 100ng. If 100ng was used initially increase input to 250ng.		
d)	No or low PCR product yield (<2ng/µl) after Universal PCR from FFPE sample- derived DNA	When using DNA derived from FFPE samples, ensure that the DNA is of suitable quality. It is recommended to first assess the extracted DNA using the QlAseq DNA QuantiMIZE Array or Assay Kit (QC Score <=0.04, proceed as the genomic DNA is of good quality; QC Score >0.04, proceed with caution as the DNA is highly fragmented/damaged).		

Symbols

Symbol	Symbol definition
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Contains reagents sufficient for <n> tests</n>
REF	Catalog number
MAT	Material number (i.e., component labeling)
	Manufacturer

Appendix A: Analyze the Library Using QIAxcel Advanced

After the library is constructed and purified analyse using the QlAxcel Advanced, in combination with the QlAxcel DNA High Resolution Kit (cat. no. 929002), to check the fragment size and concentration. The majority of the library fragments are between 200–800 bp in size (Figure 2). Amounts of DNA under the peak can be used to quantify libraries.

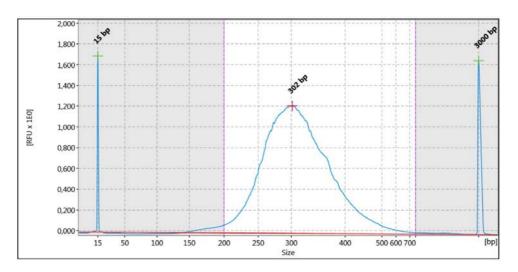


Figure 2. Sample QIAxcel Advanced image of a GeneRead QIAact Lung DNA library. The majority of the library fragments are between 200–800 bp in size.

Appendix B: Analyze the Library Using the Agilent 2100 Bioanalyzer

After the library is constructed and purified, a Bioanalyzer can be used to check the fragment size and concentration with the High Sensitivity DNA Kit. The majority of the library fragments are between 200–800 bp in size (Figure 3). Amounts of DNA under the appropriate peaks can be used to quantify libraries.

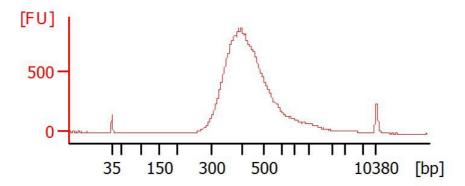


Figure 3. Sample Bioanalyzer image of a GeneRead QIAact Lung DNA library. The majority of the library fragments are between 200–800 bp in size.

Ordering Information

Product	Contents	Cat. no.
GeneRead QIAact Lung DNA Panel (24)	GeneRead QIAact Library Preparation and Target Enrichment Reagents (24) and QIAact Target Enrichment Panel and QIAact Adapters (24)	181930
Related Products		
QIAseq DNA QuantiMIZE Array Kit	qPCR arrays for FFPE DNA quality assessment	333404
QIAseq DNA QuantiMIZE Assay Kit	qPCR assays for FFPE DNA quality assessment	333414
QIAamp DNA Mini Kit (50)	For 50 DNA preps: 50 QIAamp Mini Spin Columns, QIAGEN Proteinase K, Collection Tubes (2 ml), reagents and buffers	51304
GeneRead DNA FFPE Kit (50)	QIAamp MinElute® columns, Proteinase K, UNG, collection tubes (2 ml), buffers, Deparaffinization Solution, RNaseA	180134
QIAamp Circulating Nucleic Acid Kit (50)	QIAGEN Mini columns, Proteinase K, collection tubes (2 ml), reagents and buffers.	55114

This page intentionally left blank.

Limited License Agreement for GeneRead QIAact Lung DNA Panel

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- 1. The product may be used solely in accordance with the protocols provided with the product and this handbook and for use with components contained in the kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this handbook, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users for QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.
- This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

For updated license terms, see www.qiagen.com.

Trademarks: QIAGEN®, Sample to Insight®, QIAamp®, QIAxcel®, QIAxperl®, GeneRead™, HotStarTaq®, MinElute®, QCI™ (QIAGEN Group); GeneReader™ (Intelligent Bio-Systems, Inc.); Agilent®, Agilent Technologies, Bioanalyzer® (Agilent Technologies, Inc.); Bio-Rad®, C1000™ (Bio-Rad Laboratories, Inc.); Eppendorf® (Eppendorf AG); PAXgene® (PreAnalytiX GmbH); DynaMag™, Qubit® (Thermo Fisher Scientific or its subsidiaries). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. 06/2017 HB2-324-002

© 2017 QIAGEN all rights reserved.

