
artus[®] Parvo B19 LC PCR Kit Handbook

Quantitative in vitro Diagnostics

For use with the LightCycler[®] Instrument

February 2018 – Version 1

Sample & Assay Technologies

QIAGEN Sample and Assay Technologies

QIAGEN is the leading provider of innovative sample and assay technologies, enabling the isolation and detection of contents of any biological sample. Our advanced, high-quality products and services ensure success from sample to result.

QIAGEN sets standards in:

- Purification of DNA, RNA, and proteins
- Nucleic acid and protein assays
- microRNA research and RNAi
- Automation of sample and assay technologies

Our mission is to enable you to achieve outstanding success and breakthroughs. For more information, visit <u>www.qiagen.com</u>.

Table of Contents

1.	Con	tents	5
2.	Stor	age	5
3.	Add	itionally Required Materials and Devices	6
4.	Gen	eral Precautions	6
5.	Inte	nded Use	6
6.	Patł	nogen Information	7
7.	Prin	ciple of Real-Time PCR	7
8.	Pro	duct Description	7
9.	Prot	ocol	8
	9.1	DNA Isolation	8
	9.2	Internal Control	10
	9.3	Quantitation	11
	9.4	Preparing the PCR	12
	9.5	Programming of the LightCycler Instrument	16
10.	Data	a Analysis	18
11.	Tro	ubleshooting	20
12.	Spe	cifications	22
	12.1	Analytical Sensitivity	22
	12.2	Specificity	
	12.3	Precision	25
	12.4	Robustness	
	12.5	Reproducibility	27
13.	Pro	duct Use Limitations	27
14.	Safe	ety Information	28

15.	Quality Control28	3
16.	References	3
17.	Explanation of Symbols29	9

artus Parvo B19 LC PCR Kit

For use with the LightCycler Instrument.

1. Contents

	Labelling and contents	Art. No. 4504063 24 reactions	Art. No. 4504065 96 reactions
Blue	Parvo B19 LC Master	2 x 12 rxns	8 x 12 rxns
Yellow	Parvo B19 LC Mg-Sol [¤]	1 x 400 µl	1 x 400 µl
Red	Parvo B19 LC QS 1⁼ 1 x 10⁵ IU/µl	1 x 200 µl	1 x 200 µl
Red	Parvo B19 LC QS 2⁼ 1 x 10⁴ IU/µl	1 x 200 µl	1 x 200 µl
Red	Parvo B19 LC QS 3⁼ 1 x 10³ IU/µl	1 x 200 µl	1 x 200 µl
Red	Parvo B19 LC QS 4ª 1 x 10² IU/µl	1 x 200 µl	1 x 200 µl
Red	Parvo B19 LC QS 5⁼ 1 x 10¹ IU/µl	1 x 200 µl	1 x 200 µl
Green	Parvo B19 LC IC⁼	1 x 1000 µl	2 x 1000 µl
White	Water (PCR grade)	1 x 1000 µl	1 x 1000 µl

QS = Quantitation Standard
 IC = Internal Control

Mg-Sol = Magnesium Solution

2. Storage

The components of the *artus* Parvo B19 LC PCR Kit should be stored at -15° C to -30° C and are stable until the expiry date stated on the label. Repeated thawing and freezing (> 2 x) should be avoided, as this may reduce the sensitivity. If the reagents are to be used only intermittently, they should be frozen in aliquots. Storage at +4°C should not exceed a period of five hours.

3. Additionally Required Materials and Devices

- Disposable powder-free gloves
- DNA isolation kit (see section 9.1 DNA Isolation)
- Pipettes (adjustable)
- Sterile pipette tips with filters
- Vortex mixer
- Desktop centrifuge with rotor for 2 ml reaction tubes
- Color Compensation Set (Roche Diagnostics, Cat. No. 2 158 850) for the installation of a Crosstalk Color Compensation file
- *LightCycler* Capillaries (20 µl)
- LightCycler Cooling Block
- LightCycler Instrument
- LightCyclerCapping Tool

4. General Precautions

The user should always pay attention to the following:

- Use sterile pipette tips with filters.
- Store and extract positive material (specimens, controls and amplicons) separately from all other reagents and add it to the reaction mix in a spatially separated facility.
- Thaw all components thoroughly at room temperature before starting an assay.
- When thawed, mix the components and centrifuge briefly.
- Work quickly on ice or in the LightCycler Cooling Block.

5. Intended Use

The *artus* Parvo B19 LC PCR Kit is an in vitro nucleic acid amplification test for the detection and quantification of parvovirus B19 DNA in human serum or EDTA plasma.

The kit utilizes real time polymerase chain reaction (PCR) and is configured for use with the QIAamp UltraSens Virus Kit, QIAamp DNA Mini Kit and the Roche LightCycler 1.1/1.2/1.5/2.0 instruments.

The kit is not intended to be used as a blood/blood product screening test for parvovirus B19 infection.

The *artus* Parvo B19 LC PCR Kit is intended for in vitro diagnostic use by healthcare professionals.

6. Pathogen Information

The majority of parvovirus B19 infections are clinically asymptomatic. The symptoms of an acute infection with parvovirus B19 are flu-like, but may also resemble those of rubella (German measles) and, especially in adults, those of rheumatism. Parvovirus B19 is a major cause of aplastic crisis in patients with hemolytic anemia. Severe fetal complications are sometimes observed, especially following maternal infections during the second and third trimesters.

7. Principle of Real-Time PCR

Pathogen diagnosis using PCR is based on the amplification of specific regions of the pathogen genome. In real-time PCR the amplified product is detected via fluorescent dyes. These are usually linked to oligonucleotide probes which bind specifically to the amplified product. Monitoring the fluorescence intensities during the PCR run (i.e. in real-time) allows the detection and quantitation of the accumulating product without having to re-open the reaction tubes after the PCR run (Mackay, 2004).

8. Product Description

The *artus* Parvo B19 LC PCR Kit constitutes a ready-to-use system for the detection of parvovirus B19 DNA using PCR in the *LightCycler* Instrument. The *Parvo B19 LC Master* contains reagents and enzymes for the specific amplification of a 259 bp region of the parvovirus B19 genome, and for the direct detection of the specific amplicon in fluorimeter channel F2 of the

LightCycler Instrument. In addition, the artus Parvo B19 LC PCR Kit contains a second heterologous amplification system to identify possible PCR inhibition This is detected Internal as an Control (*IC*) in fluorimeter channel F3. The detection limit of the analytical parvovirus B19 PCR (see section 12.1 Analytical Sensitivity) is not reduced. External positive controls (Parvo B19 LC QS 1-5) are supplied which allow the determination of the pathogen load. For further information, please refer to section 9.3 Quantitation.

9. Protocol

9.1 DNA Isolation

Various manufacturers offer DNA isolation kits. Sample amounts for the DNA isolation procedure depend on the protocol used. Please carry out the DNA isolation according to the manufacturer's instructions. The following isolation kits are recommended:

Sample Material	Nucleic Acid Isolation Kit	Catalogue Number	Manufacturer	Carrier RNA
Serum,	QIAamp [®] UltraSens [®] Virus Kit (50)	53 704	QIAGEN	included
plasma	QIAamp DNA Mini Kit (50)	51 304	QIAGEN	not included

- The use of carrier RNA is critical for the extraction efficiency and, consequently, for DNA/RNA yield. If the selected isolation kit does not contain carrier RNA, please note that the addition of carrier (RNA-Homopolymer Poly(A), Amersham Biosciences, Cat. No. 27-4110-01) is strongly recommended for the extraction of nucleic acids from cell free body fluids and material low in DNA/RNA content (e.g. CSF). Please proceed as follows in these cases:
 - a) Resuspend the lyophilized carrier RNA using the elution buffer (do <u>not</u> use lysis buffer) of the extraction kit (e.g., Buffer AE of the QIAamp DNA Mini Kit) and prepare a dilution with a concentration of 1 µg/µl. Divide this carrier RNA solution in a number of aliquots adequate to

your needs and store them at -20° C. Avoid repeated thawing (> 2 x) of a carrier RNA aliquot.

b) Use 1 µg carrier RNA per 100 µl lysis buffer. For instance, if the extraction protocol suggests 200 µl lysis buffer, please add 2 µl carrier RNA (1 µg/µl) directly into the lysis buffer. Before beginning of each extraction, a mixture of lysis buffer and carrier RNA (and *Internal Control*, where applicable, see section 9.2 Internal Control) should be prepared freshly according to the following pipetting scheme:

Number of samples	1	12
Lysis buffer	e.g., 200 µl	e.g., 2400 µl
Carrier RNA (1 µg/µl)	2 µl	24 µl
Total Volume	202 µl	2424 µl
Volume per extraction	200 µl	each 200 µl

- c) Please use the freshly prepared mixture of lysis buffer and carrier RNA <u>instantly</u> for extraction. Storage of the mixture is <u>not</u> possible.
- The use of carrier RNA is critical for the extraction efficiency and, consequently, for DNA/RNA yield. To increase the stability of the carrier RNA provided with the QIAamp UltraSens Virus Kit, we recommend the following procedure deviant from the user manual of the extraction kit:
 - a. Resuspend the lyophilized carrier RNA prior to first use of the extraction kit in 310 µl of the elution buffer provided with the kit (final concentration 1 µg/µl, do <u>not</u> use lysis buffer). Portion this carrier RNA solution into a number of aliquots adequate to your needs and store them at –20°C. Avoid repeated thawing (> 2 x) of a carrier RNA aliquot.
 - b. Before the beginning of each extraction, a mixture of lysis buffer and carrier RNA (and *Internal Control*, where applicable, see section 9.2 Internal Control) should be prepared <u>freshly</u> according to the following pipetting scheme:

Number of samples	1	12
Lysis buffer AC	800 µl	9,600 µl
Carrier RNA (1 μg/μl)	5.6 µl	67.2 µl
Total Volume	805.6 µl	9667.2 µl
Volume per extraction	800 µl	each 800 µl

- Please use the freshly prepared mixture of lysis buffer and carrier RNA <u>instantly</u> for extraction. Storage of the mixture is <u>not</u> possible.
- It is recommended to elute the DNA in 50 µl elution buffer to get the highest sensitivity of the *artus* Parvo B19 LC PCR Kit.
- The QIAamp UltraSens Virus Kit allows a sample concentration. If you use sample material other than serum or plasma, please add at least 50 % (v/v) of negative human plasma to the sample.
- When using isolation protocols with ethanol-containing washing buffers, please carry out an additional centrifugation step (three minutes, 13,000 rpm) before the elution to remove any remaining ethanol. This prevents possible inhibition of PCR.
- The *artus* Parvo B19 LC PCR Kit should not be used with **phenol**-based isolation methods.

Important: The *Internal Control* of the *artus* Parvo B19 LC PCR Kit can be used directly in the isolation procedure (see **section 9.2 Internal Control**).

9.2 Internal Control

An *Internal Control (Parvo B19 LC IC)* is supplied. This allows the user **both to control the DNA isolation procedure and to check for possible PCR inhibition** (see Fig. 1). For this application, add the *Internal Control* to the isolation at a ratio of 0.1 μ l per 1 μ l elution volume. For example, using the QIAamp UltraSens Virus Kit the DNA is eluted in 50 μ l AVE buffer. Hence, 5 μ l of the *Internal Control* should be added initially. The quantity of *Internal Control* and carrier RNA (see section 9.1 DNA Isolation) should be added <u>only</u>

- · to the mixture of lysis buffer and sample material or
- directly to the lysis buffer.

The *Internal Control* must not be added to the sample material directly. If added to the lysis buffer please note that the mixture of *Internal Control* and lysis buffer/carrier RNA has to be prepared freshly and used instantly (storage of the mixture at room temperature or in the fridge for only a few hours may lead to *Internal Control* failure and a reduced extraction efficiency). Please do **not** add the *Internal Control* and the carrier RNA to the sample material directly.

The *Internal Control* can optionally be used **exclusively to check for possible PCR inhibition** (see Fig. 2). For this application, add 0.5 μ l of the *Internal Control* and 2 μ l *Parvo B19 LC Mg-Sol* per reaction directly to 13 μ l *Parvo B19 LC Master*. For each PCR reaction use 15 μ l of the Master Mix produced as described above* and add 5 μ l of the purified sample. If you are preparing a PCR run for several samples please increase the volume of the *Parvo B19 LC Master*, the *Parvo B19 LC Mg-Sol* and the *Internal Control* according to the number of samples (see **section 9.4 Preparing the PCR**).

9.3 Quantitation

The enclosed *Quantitation Standards* (*Parvo B19 LC QS 1 – 5*) are treated as previously purified samples and the same volume is used (5 μ I). To generate a standard curve on the *LightCycler* Instrument, all five *Quantitation Standards* should be used and defined in the *Sample Loading Screen* as standards with the specified concentrations (see *LightCycler Operator's Manual*, Version 3.5, Chapter B, 2.4. Sample Data Entry). The standard curve generated as above can also be used for subsequent runs, provided that at least one standard of **one** given concentration is used in the current run. For this purpose, the previously generated standard curve needs to be imported (see *LightCycler Operator's Manual*, Version 3.5, Chapter B, 4.2.5. Quantitation with an External Standard Curve). However, this quantitation method may lead to deviations in the results due to variability between different PCR runs.

^{*} The volume increase caused by adding the *Internal Control* is neglected when preparing the PCR assay. The sensitivity of the detection system is not impaired.

<u>Attention</u>: The *Quantitation Standards* are defined as IU/µI. The following equation has to be applied to convert the values determined using the standard curve into IU/mI of sample material:

Result (IU/ml) = Result (IU/µl) x Elution Volume (µl) Sample Volume (ml)

Please note that as a matter of principle the <u>initial</u> sample volume should be entered in the equation above. This has to be considered when the sample volume has been changed prior to the nucleic acid extraction (e.g. narrowing the volume by centrifugation or increase of volume by replenishment to the volume required for the isolation).

Important:A guideline for the quantitative analysis of artus systems on theLightCyclerInstrumentsareprovidedathttps://www.qiagen.com/TechnicalNoteLightCycler1for theLightCycler2for theLightCycler21.1/1.2/1.5and athttps://www.qiagen.com/TechnicalNoteLightCycler2for theLightCycler2for theLightCycler 2.0.LightCycler 2.0.LightCycler 2.0.for theLightCycler 2.0.

9.4 Preparing the PCR

Make sure that the Cooling Block as well as the capillary adapters (accessories of the *LightCycler* Instrument) are pre-cooled to +4°C. Place the desired number of *LightCycler* capillaries into the adapters of the Cooling Block. Please make sure that at least one *Quantitation Standard* as well as one negative control (*Water, PCR grade*) are included per PCR run. To generate a standard curve, use all supplied *Quantitation Standards* (*Parvo B19 LC QS 1 – 5*) for each PCR run. Before each use, all reagents need to be thawed completely, mixed (by repeated up and down pipetting or by quick vortexing) and centrifuged briefly.

If you want to use the *Internal Control* to monitor the DNA isolation procedure and to check for possible PCR inhibition, it has already been added to the isolation (see section 9.2 Internal Control). In this case, please use the following pipetting scheme (for a schematic overview see Fig. 1):

	Number of samples	1	12
	Parvo B19 LC Master	13 µl	156 µl
1. Preparation of	Parvo B19 LC Mg-Sol	2 µl	24 µl
Master Mix	Parvo B19 LC IC	0 µl	0 µl
	Total Volume	15 µl	180 µl
2. Preparation of	Master Mix	15 µl	15 µl each
PCR assay	Sample	5 µl	5 µl each
	Total Volume	20 µl	20 µl each

If you want to use the *Internal Control* exclusively to check for **PCR inhibition**, it must be added directly to the *Parvo B19 LC Master*. In this case, please use the following pipetting scheme (for a schematic overview see Fig. 2):

	Number of samples	1	12
	Parvo B19 LC Master	13 µl	156 µl
1. Preparation of	Parvo B19 LC Mg-Sol	2 µl	24 µl
Master Mix	Parvo B19 LC IC	0.5 µl	6 µl
	Total Volume	15 µl*	186 µl
2. Preparation of	Master Mix	15 µl	15 µl each
PCR assay	Sample	5 µl	5 µl each
· · · · · · · · · · · · · · · · · · ·	Total Volume	20 µl	20 µl each

Pipette 15 µl of the Master Mix into the plastic reservoir of each capillary. Then add 5 µl of the eluted sample DNA. Correspondingly, 5 µl of at least one of the *Quantitation Standards (Parvo B19 LC QS 1 – 5)* must be used as a positive control and 5 µl of water (*Water, PCR grade*) as a negative control. Close the capillaries. To transfer the mixture from the plastic reservoir into the capillary, centrifuge the adapters containing the capillaries in a desktop centrifuge for ten seconds at a maximum of 400 x g (2000 rpm).

^{*} The volume increase caused by adding the *Internal Control* is neglected when preparing the PCR assay. The sensitivity of the detection system is not impaired.

Addition of the Internal Control to the Purification Procedure

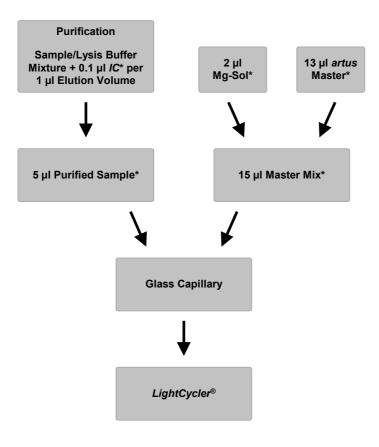
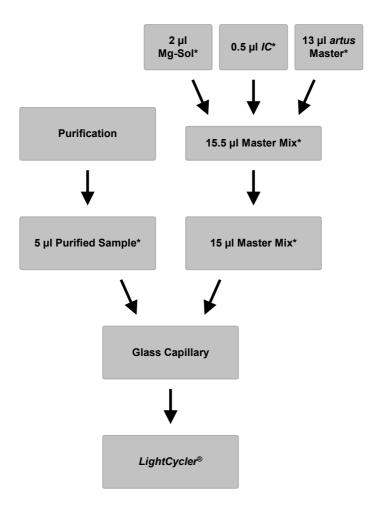



Fig. 1: Schematic workflow for the control of both the purification procedure and PCR inhibition.

*Please make sure that the solutions are thawed completely, mixed well and centrifuged briefly.

Addition of the Internal Control into the artus Master

Fig. 2: Schematic workflow for the control of PCR inhibition.

*Please make sure that the solutions are thawed completely, mixed well and centrifuged briefly.

9.5 Programming of the LightCycler Instrument

For the detection of parvovirus B19 DNA, create a temperature profile on your *LightCycler* Instrument according to the following three steps (see Fig. 3 - 5).

Α.	Initial Activation of the Hot Start Enzyme	Fig. 3
В.	Amplification of the DNA	Fig. 4
C.	Cooling	Fig. 5

Pay particular attention to the settings for *Analysis Mode*, *Cycle Program Data* and *Temperature Targets*. In the illustrations these settings are framed in bold black. Please find further information on programming the *LightCycler* Instrument in the *LightCycler Operator's Manual*.

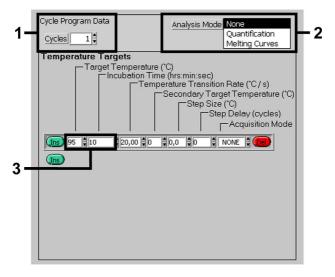


Fig. 3: Initial Activation of the Hot Start Enzyme.

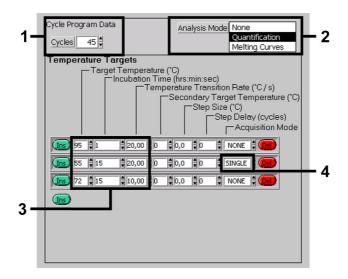


Fig. 4: Amplification of the DNA.

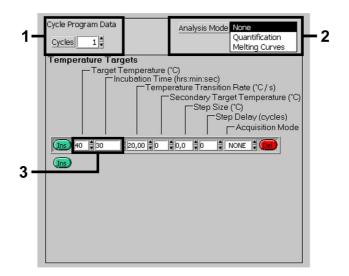


Fig. 5: Cooling.

10. Data Analysis

In multicolor analyses interferences occur between fluorimeter channels. The LightCycler Instrument's software contains a file termed Color Compensation File, which compensates for these interferences. Open this file before, during or after the PCR run by activating the Choose CCC File or the Select CC Data button. If no Color Compensation File is installed, generate the file according to the instructions in the LightCycler Operator's Manual. After the Color Compensation File has been activated, separate signals appear in fluorimeter channels F1, F2 and F3. For analysis of the PCR results gained with the artus Parvo B19 LC PCR Kit please select fluorescence display options F2/Back-F1 for the analytical parvovirus B19 PCR and F3/Back-F1 for the Internal Control PCR, respectively. For the analysis of quantitative runs, please follow the instructions given in section 9.3 Quantitation and in the Technical Notes, which are provided at the following web addresses: https://www.giagen.com/TechnicalNoteLightCvcler1 for the LightCycler 1.1/1.2/1.5 and https://www.giagen.com/TechnicalNoteLightCycler2 for the LightCycler 2.0.

The following results are possible:

1. A signal is detected in fluorimeter channel F2/Back-F1.

The result of the analysis is positive: The sample contains parvovirus B19 DNA.

In this case, the detection of a signal in the F3/Back-F1 channel is dispensable, since high initial concentrations of parvovirus B19 DNA (positive signal in the F2/Back-F1 channel) can lead to a reduced or absent fluorescence signal of the *Internal Control* in the F3/Back-F1 channel (competition).

2. In fluorimeter channel F2/Back-F1 no signal is detected. At the same time, a signal from the *Internal Control* appears in the F3/Back-F1 channel.

In the sample no parvovirus B19 DNA is detectable. It can be considered negative.

In the case of a negative parvovirus B19 PCR the detected signal of the *Internal Control* rules out the possibility of PCR inhibition.

3. No signal is detected in the F2/Back-F1 or in the F3/Back-F1 channel.

No diagnosis can be concluded.

Information regarding error sources and their solution can be found in section 10. Troubleshooting.

Examples of positive and negative PCR reactions are given in Fig. 6 and Fig. 7.

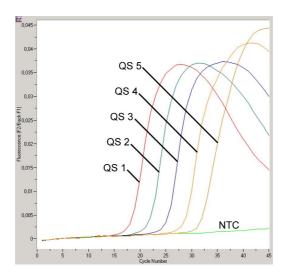


Fig. 6: Detection of the Quantitation Standards (Parvo B19 LC QS 1 – 5) in fluorimeter channel F2/Back-F1. NTC: nontemplate control (negative control).

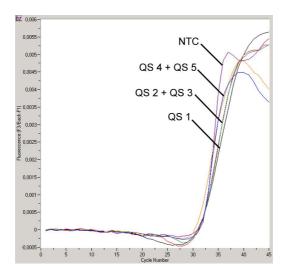


Fig. 7: Detection of the Internal Control (IC) in fluorimeter channel F3/Back-F1 with simultaneous amplification of Quantitation Standards (Parvo B19 LC QS 1 – 5). NTC: non-template control (negative control).

11. Troubleshooting

No signal with positive controls (*Parvo B19 LC QS 1 – 5*) in fluorimeter channel F2/Back-F1:

- The selected fluorimeter channel for PCR data analysis does not comply with the protocol.
 - ➔ For data analysis select the fluorimeter channel F2/Back-F1 for the analytical parvovirus B19 PCR and the fluorimeter channel F3/Back-F1 for the *Internal Control* PCR.
- Incorrect programming of the temperature profile of the LightCycler Instrument.
 - → Compare the temperature profile with the protocol (see section 9.5 Programming of the LightCycler Instrument).
- Incorrect configuration of the PCR reaction.
 - → Check your work steps by means of the pipetting scheme (see section 9.4 Preparing the PCR) and repeat the PCR, if necessary.

- The storage conditions for one or more kit components did not comply with the instructions given in section 2. Storage or the *artus* Parvo B19 LC PCR Kit had expired.
 - → Please check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary.

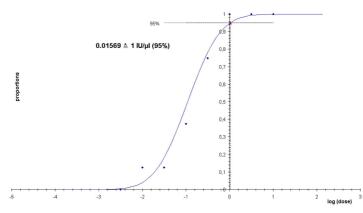
Weak or no signal of the *Internal Control* in fluorimeter channel F3/Back-F1 and simultaneous absence of a signal in channel F2/Back-F1:

- The PCR conditions do not comply with the protocol.
 - → Check the PCR conditions (see above) and repeat the PCR with corrected settings, if necessary.
- The PCR was inhibited.
 - → Make sure that you use a recommended isolation method (see section 9.1 DNA Isolation) and stick closely to the manufacturer's instructions.
 - → Make sure that during the DNA isolation the recommended additional centrifugation step has been carried out before the elution in order to remove any residual ethanol (see section 9.1 DNA Isolation).
- DNA was lost during extraction.
 - → If the Internal Control had been added to the extraction, an absent signal of the Internal Control can indicate the loss of DNA during the extraction. Make sure that you use a recommended isolation method (see section 9.1 DNA Isolation) and stick closely to the manufacturer's instructions.
- The storage conditions for one or more kit components did not comply with the instructions given in section 2. Storage or the *artus* Parvo B19 LC PCR Kit had expired.
 - → Please check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary.

Signals with the negative controls in fluorimeter channel F2/Back-F1 of the analytical PCR.

- A contamination occurred during preparation of the PCR.
 - → Repeat the PCR with new reagents in replicates.
 - ➔ If possible, close the PCR tubes directly after addition of the sample to be tested.
 - → Strictly pipette the positive controls last.
 - → Make sure that work space and instruments are decontaminated at regular intervals.
- A contamination occurred during extraction.
 - → Repeat the extraction and PCR of the sample to be tested using new reagents.
 - → Make sure that work space and instruments are decontaminated at regular intervals.

If you have any further questions or if you encounter problems, please contact our Technical Service.


12. Specifications

12.1 Analytical Sensitivity

The analytical detection limit as well as the analytical detection limit in consideration of the purification (sensitivity limits) were assessed for the *artus* Parvo B19 LC PCR Kit. The analytical detection limit in consideration of the purification is determined using parvovirus B19-positive clinical specimens in combination with a particular extraction method. In contrast, the analytical detection limit is determined without clinical specimens and independent from the selected extraction method, using a standard of known concentration.

To determine the **analytical sensitivity** of the *artus* Parvo B19 LC PCR Kit, a standard dilution series has been set up from 116.6 to nominal

0.03 Parvo B19 IU*/ μ I and analyzed with the *artus* Parvo B19 LC PCR Kit. Testing was carried out on three different days on eight replicates. The results were determined by a probit analysis. A graphical illustration of the probit analysis is shown in Fig. 8. The analytical detection limit of the *artus* Parvo B19 LC PCR Kit is 1 IU/ μ I (p = 0.05). This means that there is a 95 % probability that 1 IU/ μ I will be detected.

Probit analysis: Parvovirus B19 (LightCycler)

Fig. 8: Analytical sensitivity of the artus Parvo B19 LC PCR Kit.

The **analytical sensitivity in consideration of the purification** of the *artus* Parvo B19 LC PCR Kit was determined using a dilution series of the international parvovirus B19 standard (WHO) spiked in clinical plasma specimens. These were subjected to DNA extraction using the QIAamp UltraSens Virus Kit (extraction volume: 1 ml, elution volume: 70 μ l). Each of the six dilutions was analyzed with the *artus* Parvo B19 LC PCR Kit on three different days on eight replicates. The results were determined by a probit analysis. The analytical detection limit in consideration of the purification of the

^{*} The standard is a cloned PCR product, the concentration of which has been calibrated using the international parvovirus B19 standard (WHO).

artus Parvo B19 LC PCR Kit is 125 IU/ml (p = 0.05). This means that there is a 95 % probability that 125 IU/ml will be detected.

12.2 Specificity

The specificity of the *artus* Parvo B19 LC PCR Kit is first and foremost ensured by the selection of the primers and probes, as well as the selection of stringent reaction conditions. The primers and probes were checked for possible homologies to all in gene banks published sequences by sequence comparison analysis. The detectability of all relevant genotypes has thus been ensured.

Moreover, the specificity was validated with 30 different parvovirus B19 negative serum samples. These did not generate any signals with the parvovirus B19 specific primers and probes, which are included in the *Parvo B19 LC Master*.

To determine the specificity of the *artus* Parvo B19 LC PCR Kit the control group listed in the following table (see Table 1) has been tested for cross-reactivity. None of the tested pathogens has been reactive.

Control Group	Parvovirus B19 (F2/Back-F1)	Internal Control (F3/Back-F1)
Human herpesvirus 1 (Herpes simplex virus 1)	-	+
Human herpesvirus 2 (Herpes simplex virus 2)	-	+
Human herpesvirus 3 (Varicella-zoster virus)	-	+
Human herpesvirus 5 (Cytomegalovirus)	-	+
Human T cell leukaemia virus 1	-	+
Human T cell leukaemia virus 2	-	+

Table 1: Testing the specificity of the kit with potentially cross-reactive pathogens.

12.3 Precision

The precision data of the *artus* Parvo B19 LC PCR Kit allow the determination of the total variance of the assay. The total variance consists of the **intra-assay variability** (variability of multiple results of samples of the same concentration within one experiment), the **inter-assay variability** (variability of multiple results of the assay generated on different instruments of the same type by different operators within one laboratory) and the **inter-batch variability** (variability of multiple results of the assay using various batches). The data obtained were used to determine the standard deviation, the variance and the coefficient of variation for the pathogen specific and the *Internal Control* PCR.

Precision data of the *artus* Parvo B19 LC PCR Kit have been collected using the *Quantitation Standard* of the lowest concentration (*QS 5*; 10 IU/µI). Testing was performed with eight replicates. The precision data were calculated on basis of the Ct values of the amplification curves (see Ct: threshold cycle, see Table 2). In addition, precision data for quantitative results in IU/µI were determined using the corresponding Ct values (see Table 3). Based on these results, the overall statistical spread of any given sample with the mentioned concentration is 1.62 % (Ct) or 33.37 % (conc.), for the detection of the *Internal Control* 2.13 % (Ct). These values are based on the totality of all single values of the determined variabilities.

	Standard Deviation	Variance	Coefficient of Variation [%]
Intra-assay variability: Parvo B19 LC QS 5	0.12	0.01	0.36
Intra-assay variability: Internal Control	0.08	0.01	0.27
Inter-assay variability: Parvo B19 LC QS 5	0.43	0.18	1.34
Inter-assay variability: Internal Control	0.66	0.44	2.29
Inter-batch variability: Parvo B19 LC QS 5	0.47	0.22	1.44
Inter-batch variability: Internal Control	0.70	0.44	2.39
Total variance: Parvo B19 LC QS 5	0.52	0.27	1.62
Total variance: Internal Control	0.62	0.39	2.13

Table 2: Precision data on basis of the Ct values.

Table 3: Precision data on basis of the quantitative results (in IU/ μ I).

	Standard Deviation	Variance	Coefficient of Variation [%]
Intra-assay variability: Parvo B19 LC QS 5	0.70	0.49	6.04
Inter-assay variability: Parvo B19 LC QS 5	0.93	0.87	8.01
Inter-batch variability: Parvo B19 LC QS 5	4.12	16.77	52.63
Total variance: Parvo B19 LC QS 5	3.34	11.13	33.37

12.4 Robustness

The verification of the robustness allows the determination of the total failure rate of the *artus* Parvo B19 LC PCR Kit. 30 parvovirus B19 negative samples of serum were spiked with 6 IU/µI elution volume of parvovirus B19 control DNA (threefold concentration of the analytical sensitivity limit). After extraction using the QIAamp DNA Mini Kit (see **section 9.1 DNA Isolation**) these samples were analyzed with the *artus* Parvo B19 LC PCR Kit. For all parvovirus B19 samples the failure rate was 0 %. In addition, the robustness of the *Internal Control* was assessed by purification and analysis of 30 parvovirus B19 negative serum samples. The total failure rate was 0 %. Inhibitions were not observed. Thus, the robustness of the *artus* Parvo B19 LC PCR Kit is \geq 99 %.

12.5 Reproducibility

Reproducibility data permit a regular performance assessment of the *artus* Parvo B19 LC PCR Kit as well as an efficiency comparison with other products. These data are obtained by the participation in established proficiency programs.

13. Product Use Limitations

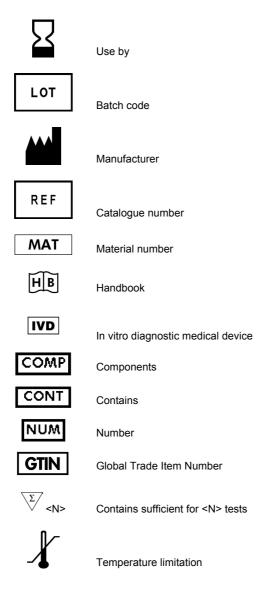
- All reagents may exclusively be used in in vitro diagnostics.
- The kit is intended for in vitro diagnostic use by healthcare professionals.
- Strict compliance with the user manual is required for optimal PCR results.
- Attention should be paid to expiration dates printed on the box and labels of all components. Do not use expired components.
- For some genotype 3–related sequences the claimed performance cannot be guaranteed. Due to mutations in the primer/probe binding region a significant decrease of sensitivity could occur (Baylis and Buchheit, 2009).

 Although rare, mutations within the highly conserved regions of the viral genome covered by the kit's primers and/or probe may result in underquantitation or failure to detect the presence of the virus in these cases. Validity and performance of the assay design are revised at regular intervals.

14. Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at <u>www.giagen.com/safety</u> where you can find, view, and print the SDS for each QIAGEN[®] kit and kit component.

Discard sample and assay waste according to your local safety regulations.


15. Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of *artus* Parvo B19 LC PCR Kit has been tested against predetermined specifications to ensure consistent product quality.

16. References

- Hokynar K, Norja P, Laitinen H, Palomäki P, Garbarg-Chenon A, Ranki A, Hedman K, Söderlund-Venermo M. Detection and differentiation of human parvovirus variants by commercial quantitative real-time PCR Tests. J. Clin. Microbiol. 2004; 42 (5): 2013 – 2019.
- (2) Mackay IM. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 2004; 10 (3): 190 – 212.
- (3) Baylis SA, Buchheit KH. A proficiency testing study to evaluate laboratory performance for the detection of different genotypes of parvovirus B19. Vox Sang. 2009; 97 (1): 13 – 20.

17. Explanation of Symbols

i	Consult instructions for use
QS	Quantitation Standard
IC	Internal Control
Mg-Sol	Magnesium Solution

artus Parvo B19 LC PCR Kit

Trademarks and Disclaimers QIAGEN®, QIAamp®, artus®, UltraSens® (QIAGEN Group); LightCycler® (Roche Diagnostics).

Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

The artus Parvo B19 LC PCR Kit is a CE-marked diagnostic kit according to the European In Vitro Diagnostic Directive 98/79/EC. Not available in all countries.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at <u>www.qiagen.com</u> or can be requested from QIAGEN Technical Services or your local distributor.

The purchase of this product allows the purchaser to use it for the performance of diagnostic services for human in vitro diagnostics. No general patent or other license of any kind other than this specific right of use from purchase is granted hereby.

THE PURCHASE OF THIS PRODUCT GRANTS THE PURCHASER RIGHTS UNDER ONE OR MORE OF U.S. PATENT NOS 6,174,670, 7,160,998, 6,569,627 AND 6,245,514 AND THEIR FOREIGN COUNTERPARTS TO USE THIS PRODUCT SOLELY FOR PROVIDING HUMAN AND ANIMAL IN VITRO DIAGNOSTIC SERVICES. NO GENERAL PATENT OR OTHER LICENSE OF ANY KIND OTHER THAN THIS SPECIFIC RIGHT OF USE FROM PURCHASE IS GRANTED HEREBY.

Limited License Agreement

Use of this product signifies the agreement of any purchaser or user of the artus Parvo B19 LC PCR Kit to the following terms:

- The artus Parvo B19 LC PCR Kit may be used solely in accordance with the artus Parvo B19 LC PCR Kit Handbook and for use with components contained in the Kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this Kit with any components not included within this Kit except as described in the artus Parvo B19 LC PCR Kit Handbook and additional protocols available at <u>www.ajagen.com</u>.
- Other than expressly stated licenses, QIAGEN makes no warranty that this Kit and/or its use(s) do
 not infringe the rights of third-parties.
- This Kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the Kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the Kit and/or its components.

For updated license terms, see <u>www.qiagen.com</u> .

02/2018 1112175 HB-0010-006 -© 2018 QIAGEN, all rights reserved.

www.qiagen.com

Australia = Orders 1-800-243-800 = Fax 03-9840-9888 = Technical 1-800-243-066 Austria = Orders 0800-28-10-10 = Fax 0800-28-10-19 = Technical 0800-28-10-11 Belgium = Orders 0800-79612 = Fax 0800-79611 = Technical 0800-79556 Brazil = Orders 0800-557779 = Fax 55-11-5079-4001 = Technical 0800-557779 Canada = Orders 800-572-9613 = Fax 800-713-5951 = Technical 800-DNA-PREP (800-362-7737) China = Orders 86-21-3865-3865 = Fax 86-21-3865-3965 = Technical 800-988-0325 Denmark = Orders 80-885945 = Fax 80-885944 = Technical 80-885942 Finland = Orders 0800-914416 = Fax 0800-914415 = Technical 0800-914413 France = Orders 01-60-920-926 = Fax 01-60-920-925 = Technical 01-60-920-930 = Offers 01-60-920-928 Germany = Orders 02103-29-12000 = Fax 02103-29-22000 = Technical 02103-29-12400 Hong Kong = Orders 800 933 965 = Fax 800 930 439 = Technical 800 930 425 Ireland = Orders 1800 555 049 = Fax 1800 555 048 = Technical 1800 555 061 Italy = Orders 800-789-544 = Fax 02-334304-826 = Technical 800-787980 Japan = Telephone 03-6890-7300 = Fax 03-5547-0818 = Technical 03-6890-7300 Korea (South) = Orders 080-000-7146 = Fax 02-2626-5703 = Technical 080-000-7145 Luxembourg = Orders 8002-2076 = Fax 8002-2073 = Technical 8002-2067 Mexico = Orders 01-800-7742-639 = Fax 01-800-1122-330 = Technical 01-800-7742-436 The Netherlands = Orders 0800-0229592 = Fax 0800-0229593 = Technical 0800-0229602 Norway = Orders 800-18859 = Fax 800-18817 = Technical 800-18712 Singapore = Orders 1800-742-4362 = Fax 65-6854-8184 = Technical 1800-742-4368 Spain = Orders 91-630-7050 = Fax 91-630-5145 = Technical 91-630-7050 Sweden = Orders 020-790282 = Fax 020-790582 = Technical 020-798328 Switzerland = Orders 055-254-22-11 = Fax 055-254-22-13 = Technical 055-254-22-12 UK = Orders 01293-422-911 = Fax 01293-422-922 = Technical 01293-422-999 USA = Orders 800-426-8157 = Fax 800-718-2056 = Technical 800-DNA-PREP (800-362-7737)

1112175

Sample & Assay Technologies