

QlAseq® Multimodal DNA/RNA Library Kit Handbook

Multiomic WGS and WTS library prep

Table of Contents

Kit Contents	3
Shipping and Storage	9
Intended Use	9
Safety Information	10
Quality Control	10
Introduction Principle and Procedure	11 12
Important Notes	17
Equipment and Reagents to be Supplied by User	19
Protocol: Nucleic Acid Fragmentation	20
Protocol: RNA Polyadenylation	24
Protocol: DNA Ligation	26
Protocol: DNA Library Indexing	31
Protocol: RNA Reverse Transcription	35
Protocol: RNA Library Indexing	40
Recommendations: Library QC & Quantification NGS Library QC Preferred library quantification method	44 44 44
Recommendations: Hybrid Capture	45
Recommendations: NGS General read allocation recommendations for WGS and WTS	47 48
Troubleshooting Guide	49
Appendix A: DNA and RNA Index Layouts	50
Ordering Information	53
Document Revision History	57

Kit Contents

QIAseq Multimodal DNA/RNA Library Kit Catalog no. Number of samples	(24) 334842 24	(96) 334845 96
10x FX Buffer	48 µL	225 μL
5X WGS FX Mix	96 µL	475 µL
QIAseq FastSelect TM –rRNA HMR (8)	12 μL	12 μL
Side Reaction Reducer	48 µL	192 µL
FG Solution	170 μL	170 µL
ATP Solution	36 µL	290 µL
PAP Enzyme	96 µL	96 µL
PAP Dilution Buffer	192 μL	192 µL
T4 Polynucleotide Kinase	125 µL	125 µL
DNA Ligase	120 µL x 2	1100 μL
UPH Ligation Buffer, 2.5x	1152 µL	1500 μL x 3
Buffer GE2 gDNA Elimination Buffer	72 µL	250 µL
US RT Buffer, 5X	150 μL	450 µL
100 mM DTT	20 μL	80 µL
10 mM dNTP	55 μL	235 μL
EZ Reverse Transcriptase	36 µL	96 µL x 2
RNase Inhibitor	12 μL	96 µL
Nuclease-free Water	10 mL	10 mL
QIAseq Beads	10 mL	38.4 mL

QIAseq Multimodal DNA/RNA UDI (24) (DNA and RNA indexing for 24 samples)	(24)
Catalog no.	334852
MDNA24X (QIAseq Multimodal MDNA Index Plate 24)	1
Each plate allows indexing of 24 DNA samples. Each well in the plate is single-use and contains 9 μ L of UDI index pairs for DNA Libraries.	
MRNA-24X (QIAseq Multimodal MRNA Index Plate 24)	1
Each plate allows indexing of 24 RNA samples. Each well in the plate is single-use and contains 9 μ L of UDI index pairs for RNA Libraries.	
non-UMI Adapter	60 µL
UMI Adapter	60 µL
MM RNA RT Primer	24 μL
MM RNA TSO Primer	24 µL
HiFi Ultra Buffer	384 µL
HiFi Ultra Polymerase	192 µL
MM F-R Primer Mix	77 μL
QIAseq Multimodal DNA/RNA UDI Set A (DNA and RNA indexing for 96 samples)	(96)
(DNA and RNA indexing for 96 samples) Catalog no.	334855
(DNA and RNA indexing for 96 samples)	•
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and	334855
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries.	334855
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains	334855
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for RNA Libraries.	334855 1
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for RNA Libraries. non-UMI Adapter	334855 1 1 275 μL
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QlAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QlAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for RNA Libraries. non-UMI Adapter UMI Adapter	334855 1 1 275 μL 275 μL
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for RNA Libraries. non-UMI Adapter UMI Adapter MM RNA RT Primer	334855 1 1 275 µL 275 µL 115 µL
(DNA and RNA indexing for 96 samples) Catalog no. MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A) Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for RNA Libraries. non-UMI Adapter UMI Adapter MM RNA TSO Primer	334855 1 1 275 μL 275 μL 115 μL

QIAseq Multimodal DNA Kit-EnzFrag Catalog no. Number of samples	(24) 335022 24	(96) 335025 96
10x FX Buffer	48 µL	225 μL
5X WGS FX Mix	96 µL	475 μL
Side Reaction Reducer	48 µL	192 μL
FG Solution	170 μL	170 µL
DNA Ligase	120 µL x 2	1100 pL
UPH Ligation Buffer, 2.5x	1152 µL	1500 µL x 3
Nuclease-free Water	10 mL	10 mL
QIAseq Beads	10 mL	38.4 mL
QIAseq Multimodal DNA Kit-MechFrag Catalog no. Number of samples	(24) 335032 24	(96) 335035 96
ERA Buffer, 10X	60 µL	480 μL
ERA Enzyme	120 µL	960 µL
DNA Ligase	120 µL x 2	1100 μL
UPH Ligation Buffer, 2.5x	1152 μL	1500 pL x 3
Nuclease-free Water	10 mL	10 mL
QIAseq Beads	10 mL	38.4 mL

QIAseq Multimodal DNA UDI (24) (DNA indexing for 24 samples)	(24)
Catalog no.	334972
MDNA24X (QIAseq Multimodal MDNA Index Plate 24)	1
Each plate allows indexing of 24 DNA samples. Each well in the plate is single-use and contains 9 μ L of UDI index pairs for DNA Libraries.	
non-UMI Adapter	60 µL
UMI Adapter	60 µL
HiFi Ultra Buffer	384 µL
HiFi Ultra Polymerase	192 µL
MM F-R Primer Mix	77 µL
QIAseq Multimodal DNA UDI Set A	(96)
QIAseq Multimodal DNA UDI Set A (DNA indexing for 96 samples) Catalog no	(96) 334975
(DNA indexing for 96 samples)	•
(DNA indexing for 96 samples) Catalog no	334975
(DNA indexing for 96 samples) Catalog no MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and	334975
(DNA indexing for 96 samples) Catalog no MDNA-96AX (QlAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries.	334975
(DNA indexing for 96 samples) Catalog no MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. non-UMI Adapter	334975 1 275 μL
(DNA indexing for 96 samples) Catalog no MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A) Each plate allows indexing of 96 DNA samples. Each well in the plate is single-use and contains 9 µL of UDI index pairs for DNA Libraries. non-UMI Adapter UMI Adapter	334975 1 275 μL 275 μL

QlAseq Multimodal RNA Kit Catalog no. Number of samples	(24) 335012 24	(96) 335015 96	
10x FX Buffer	48 µL	225 µL	
QIAseq FastSelect TM –rRNA HMR (8)	12 µL	12 µL	
ATP Solution	36 μL	290 µL	
PAP Enzyme	96 µL	96 µL	
PAP Dilution Buffer	192 µL	192 pL	
T4 Polynucleotide Kinase	125 µL	125 µL	
Buffer GE2 gDNA Elimination Buffer	72 µL	250 µL	
US RT Buffer, 5X	150 µL	450 µL	
100 mM DTT	20 μL	80 µL	
10 mM dNTP	55 µL	235 µL	
EZ Reverse Transcriptase	36 µL	96 µL x 2	
RNase Inhibitor	12 µL	96 µL	
Nuclease-free Water	10 mL	10 mL	
QIAseq Beads	10 mL	38.4 mL	
QlAseq Multimodal RNA UDI (24) (RNA indexing for 24 samples) Catalog no.			(24) 334822
MRNA-24X (QIAseq Multimodal MRNA Index PI Each plate allows indexing of 24 RNA samples. UDI index pairs for RNA Libraries.	•	ise and contains 9 µL of	1
MM RNA RT Primer			24 µL
MM RNA TSO Primer			24 µL
HiFi Ultra Buffer			384 µL
HiFi Ultra Polymerase			192 µL
MM F-R Primer Mix			<i>77</i> µL

QIAseq Multimodal RNA UDI Set A (RNA indexing for 96 samples)	(96)
Catalog nos.	334825
MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A)	1
Each plate allows indexing of 96 RNA samples. Each well in the plate is single-use and contains 9 μ L of UDI index pairs for RNA Libraries.	
MM RNA RT Primer	115 pL
MM RNA TSO Primer	115 µL
HiFi Ultra Buffer	1536 µL
HiFi Ultra Polymerase	850 µL
MM F-R Primer Mix	340 µL

Shipping and Storage

QlAseq Multimodal DNA/RNA Library Kit (except QlAseq Beads and Nuclease-free Water) is shipped on dry ice and should be stored immediately upon receipt at -30° C to -15° C in a constant-temperature freezer. QlAseq Beads and Nuclease-free Water are shipped in a separate box on cold packs and should be stored immediately upon receipt at $2-8^{\circ}$ C.

QlAseq Multimodal DNA/RNA Index Kits are shipped on dry ice and should be stored immediately upon receipt at -30° C to -15° C in a constant-temperature freezer.

Under these conditions, the components are stable until the expiry date indicated on the label.

Intended Use

QIAseq Multimodal DNA/RNA Library Kits and QIAseq Multimodal DNA/RNA Index Kits are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend all users of QIAGEN® products to adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at www.qiagen.com/safety where you can find, view, and print the SDS for each QIAGEN kit and kit component.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each QIAseq Multimodal DNA/RNA Library Kit and QIAseq Multimodal DNA/RNA Index Kit is tested against predetermined specifications to ensure consistent product quality.

Introduction

Next-Generation Sequencing (NGS) revolutionizes the analysis of various genomic features, including single nucleotide variants (SNVs), insertions-deletions (indels), copy number variants (CNVs), fusions, and gene expression levels. However, existing solutions present a limitation: users are typically required to employ separate workflows for DNA and RNA analysis, particularly for whole genome sequencing (WGS) and whole transcriptome sequencing (WTS). This not only increases complexity but also poses challenges, especially when dealing with low-yield samples. As a result, there is a growing need for integrated solutions that streamline both DNA and RNA analyses within a single workflow. Such integration would not only simplify the analysis process but also improve efficiency, particularly for samples with limited yields. By consolidating DNA and RNA inputs and analyses, researchers can more effectively explore the comprehensive genomic landscape, leading to deeper insights and discoveries in genomics research and clinical applications.

QIAseq Multimodal DNA/RNA Library Kit enables construction of WGS and WTS libraries from total nucleic acid or separately isolated DNA and RNA. Workflows are provided to tag all DNA and RNA molecules with unique molecular indexes (UMIs). Resulting libraries can be sequenced directly or hybrid captured; for hybrid capture, the libraries are compatible with both QIAseq xHYB catalog and custom panels as well as third-party offerings. QIAseq Multimodal DNA/RNA Library Kit facilitates sensitive DNA variant detection as well as fusions and gene expression detection from RNA on a genome- and transcriptome-wide scale from cells, tissue, and biofluids.

The QIAseq Multimodal DNA/RNA Library Kit is part of a Sample to Insight solution for DNA and RNA analysis using NGS (Figure 1).

Figure 1. Overview of the Sample to Insight NGS workflow with QIAseq Multimodal DNA/RNA Library Kit.

The complete Sample to Insight procedure begins with total nucleic acid or AllPrep® (separate DNA and RNA) extractions. Next is library construction with the QIAseq Multimodal DNA/RNA Library Kit and optional hybrid capture with QIAseq Exome or xHYB catalog/custom panels. Following NGS, data analysis is performed using the

extractions. Next is library construction with the QlAseq Multimodal DNA/RNA Library Kit and optional hybrid capture with QlAseq Exome or xHYB catalog/custom panels. Following NGS, data analysis is performed using the QlAseq Multimodal Analysis Software pipeline in Genomics Workbench. Ultimately, detected variants can be interpreted with QlAGEN Clinical Insight Interpret (QCI®4) for QlAseq.

Principle and Procedure

QIAseq Multimodal DNA/RNA Library Kit enables construction of WGS and WTS libraries. For DNA, the recommended input range is 10–100 ng for fresh samples or 50–250 ng for FFPE samples. For RNA, the recommended amount input range is 20–200 ng for fresh samples or 100–500 ng for FFPE samples. When working with total nucleic acid samples, input amounts should be based on DNA, because RNA is usually in vast excess to DNA. Lower input amounts are possible: input for DNA could be as low as 100 pg and RNA could be reduced to 10 ng; however, for the preparation of indexed WGS or WTS libraries to be used for hybridization capture, we recommend using 50 ng of input DNA or 100 ng of input RNA. The following reactions occur in a streamlined, single-tube workflow (Figure 2).

QIAseq Multimodal DNA/RNA Lib Kit workflow DNA library Optional hybrid indexing capture Isolated total nucleic acids (DNA + RNA) Whole blood RNA synthetic Fragmentation DNA adapter Bead poly-adenylation Next-generation sequencing ligation cleanup · End repair Tissues A-tailing Saliva rRNA removal FFPE cfDNA RNA library Ontional hybrid capture transcription cleanup indexina cleanup

Figure 2. QIAseq Multimodal DNA/RNA Library Kit workflow.

Nucleic acid fragmentation

RNA molecules are heat fragmented and DNA molecules are enzymatically fragmented, end repaired, and A-tailed within a single controlled multienzyme reaction. Built into the reaction is the elimination of human, mouse, and rat ribosomal RNA (rRNA) using QIAseq FastSelect–rRNA HMR. QIAseq FastSelect–Globin can also be added to eliminate globin mRNA when using samples derived from whole blood.

RNA polyadenylation

Specific to RNA, synthetic polyadenylation is performed to create a binding site for subsequent reverse transcription.

DNA ligation

Specific to DNA, two adapter options are provided. The non-UMI Adapter does not contain a UMI, while the UMI Adapter includes a 14-base fully random sequence UMI sequence and is additionally phased for optimal base diversity during sequencing. When hybrid capture is considered, the DNA adapters contain the TruSeq® adapter sequence. The non-UMI Adapter is recommended for the preparation of WGS libraries to be used for hybridization capture for QIAseq Human Exome or third-party vendor human Exome kits. For hybrid capture with QIAseq xHYB Custom Panel for somatic mutation detection applications, the use of the UMI Adapter is recommended.

Reverse transcription and template switching

Specific to RNA, reverse transcription and template switching are performed. For reverse transcription, the anchored oligo-dT primer is both phased and contains a 10-base fully random UMI sequence, allowing each RNA molecule to be tagged with a UMI. As the heat fragmentation is random, and each random fragment has been poly-adenylated, whole transcriptome library prep is achieved. When hybrid capture is considered, the reverse transcription and template switching oligos contain the Nextera® adapter sequence. QIAseq N-blockers are available (purchased separately) for effectively binding and blocking Nextera-compatible NGS adapters.

Library amplification/indexing

Universal PCR reactions, carried out separately on DNA and RNA libraries, enable optimal amplification of each library as well as unique dual indexing. Collectively, DNA and RNA libraries for a given sample have discrete unique dual indexes (UDIs). The UDI pairs are listed in "Appendix A: DNA and RNA Index Layouts" on page 50.

Modularity of the QIAseq Multimodal Library workflow

This handbook describes the simultaneous preparation of both DNA and RNA libraries from a single sample containing Total Nucleic Acids. The same QlAseq Multimodal reagents can also be used for DNA-only or RNA-only Library preparation. The instructions can be found in supplementary protocols.

Hybrid Capture (purchased separately)

While QIAseq Multimodal DNA/RNA libraries are WGS and WTS, they are additionally compatible with the following hybrid capture solutions. The prepared DNA libraries include TruSeq® adapter sequence, while the RNA libraries include Nextera adapter sequence. As a result, specific N-blockers are required (and discussed in "Recommendations: Hybrid Capture" on page 45).

- QlAseq Human Exome: Selectively captures exonic regions of interest, allowing for
 comprehensive analysis of protein-coding genes in the genome. Researchers can efficiently
 identify and analyze genetic variations such as single nucleotide variants (SNVs),
 insertions-deletions (indels), and other genomic alterations associated with diseases or
 traits of interest.
- QlAseq xHYB Human Hybrid Capture Panels: Curated genome-wide content including Carrier, Actionable Exome, and Mitochondrial Panels.
- QIAseq xHYB Custom Panels: Fully customizable panels, specifically for individual research needs.
- Third-party human exome vendors that were tested include: Integrated DNA Technologies (IDT), KAPA (Roche® Group), Agilent® (Agilent Technologies, Inc.), and Twist Bioscience.

Next-generation sequencing

QIAseq Multimodal DNA/RNA libraries are compatible with Illumina NGS platforms including iSeq® 100, MiniSeq®, MiSeq®, Miseq i100 Series, NextSeq® 500/550, NextSeq 1000/2000, HiSeq® 2500, HiSeq 3000/4000, NovaSeq® 6000, and NovaSeq X Plus. Additionally, QIAseq Multimodal DNA/RNA libraries are directly compatible with the Element AVITITM benchtop sequencer.

With an added conversion step, QIAseq Multimodal DNA/RNA libraries are compatible with Complete Genomics/MGI, Singular Genomics, and Ultima Genomics sequencers.

Data analysis

Data from QIAseq Multimodal DNA/RNA Library Kit can be analyzed using the QIAGEN CLC Genomics Workbench, which allows you to optimize analysis parameters for your specific panels. The parameters can then be locked for routine use. All detected variants can be further interpreted using QCI-I for QIAseq.

Important Notes

The most important prerequisite for sequence analysis is consistent, high-quality DNA and RNA from every experimental sample. Therefore, sample handling and isolation procedures are critical to the success of the experiment. Residual traces of proteins, salts, or other contaminants may either degrade the nucleic acids or decrease the efficiency of, if not block completely, the enzymatic activity necessary for optimal library preparation.

It is important to remove all cations and chelators from DNA or RNA preparations, therefore, make sure DNA or RNA is eluted in QIAGEN's Buffer EB or H_2O , not 1XTE buffer containing 1mM EDTA.

Total nucleic acid isolation

Supplementary protocols for the simultaneous isolation of total nucleic acid (DNA+RNA) from cells and tissue, blood, or FFPE samples are available at www.qiagen.com/TotalNucleicAcid

Note: For quantification of DNA and RNA from total nucleic acid samples, we recommend the high-sensitivity Quant-iT[™] dsDNA Assay Kit (Thermo Fisher Scientific, cat. no. Q33120) for DNA and the Quant-iT RNA Assay Kit (Thermo Fisher Scientific, cat. no. Q33140) for RNA. When working with total nucleic acid samples, input amounts should be based on DNA because RNA is usually in vast excess to DNA.

Simultaneous purification of DNA and RNA into separate eluates

The QIAGEN kits listed in Table 1 are recommended for the preparation of DNA and RNA samples from cells, tissues, and FFPE tissues. For whole blood, we recommend the PAXgene® Blood DNA Kit (cat. no. 761133) and the PAXgene Blood RNA Kit (cat. no. 762174).

Note: If samples must be harvested from biological samples for which kits are not available, please contact QIAGEN Technical Services (**support.giagen.com**) for suggestions.

Table 1. Recommended AllPrep kits for simultaneous purification of DNA and RNA into separate eluates

Kit	Starting material	Cat. no.	
AllPrep DNA/RNA Mini Kit	Cells and tissue	80204	
AllPrep DNA/RNA FFPE Kit	FFPE samples	80234	
QIAamp® ccfDNA/RNA Kit	Plasma and serum	55184	

Equipment and Reagents to be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs) available from the product supplier.

The following are required:

- 80% ethanol (made fresh daily)*
- Nuclease-free pipette tips and tubes
- 1.5 mL LoBind® tubes (Eppendorf, cat. no. 022431021)
- PCR tubes (0.2 mL individual tubes [VWR, cat. no. 20170-012] or tube strips [VWR, cat. no. 93001 118]) or plates
- Ice
- Microcentrifuge
- Thermal cycler
- Magnet for bead cleanups:
 - Tubes: MagneSphere[®] Technology Magnetic Separation Stand (Promega, cat. no. Z5342)
 - Plates: DynaMag™_96 Side Magnet (Thermo Fisher Scientific Inc., cat. no. 12331D)
- QIAxcel® Connect System: QIAxcel DNA High Resolution Kit

^{*}Do not use denatured alcohol, which contains other substances, such as methanol or methylethylketone.

Protocol: Nucleic Acid Fragmentation

Important points before starting

- This protocol describes fragmentation of nucleic acids samples.
- · Recommended starting amounts of nucleic acid:
 - The recommended starting amount of DNA is 10–100 ng. For samples where hybrid-capture will be performed, the minimal recommendation is 50ng.
 - The recommended amount of RNA is 20–200 ng total RNA. When working with total nucleic acid samples, we recommend basing the input on the amount of quantified DNA.
 - For FFPE samples, the recommended amount of FFPE DNA is 50–250 ng. For better results, we recommend that first-time users start with 250 ng FFPE RNA. When working with total nucleic acid samples, we recommend basing the input on the amount of quantified DNA.
 - For cfDNA samples, the recommended starting amount is 20 ng.
- Set up reactions on ice.
- Unless specifically indicated, do not vortex any reagents or reactions.

Procedure

- 1. Thaw nucleic acid sample(s) on ice. Gently mix, briefly centrifuge to collect residual liquid from the sides of the tubes, and then return to ice.
- 2. Prepare the reagents required for the fragmentation.
 - a. Thaw 10x FX Buffer, QIAseq FastSelect -rRNA HMR (8) at room temperature (15–25°C).

b. Mix by flicking the tube, and then centrifuge briefly.

Note: 5x WGS FX Mix and Side Reaction Reducer should be removed from the freezer and placed on ice just before use. After use, immediately return the enzymes to the freezer.

- 3. Dilute an aliquot of QIAseq Fastselect –rRNA HMR 1:10 with Nuclease-free Water. Mix by flicking the tube, and then centrifuge briefly.
- 4. On ice, prepare the fragmentation mix according to Table 2 (standard samples) or Table 3 (cfDNA samples). Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 2. Reaction mix for Standard or FFPE samples

Component	Volume/reaction
DNA (see input recommendation in the "Important points before starting" section)*	Variable A
RNA (see input recommendation in the "Important points before starting" section)*	Variable B
10x FX Buffer	2 µL
5x WGS FX Mix	4 µL
QIAseq FastSelect –rRNA HMR (diluted 1:10)	1 pL
Side Reaction Reducer	1.6 µL
Nuclease-free Water	11.4 µL – variable A (DNA) – variable B (RNA)
Total	20 µL

^{*}Instead of adding DNA and RNA separately, total nucleic acid containing both DNA and RNA can be added. If adding total nucleic acid, base the input amount on DNA.

Table 3. Reaction mix for nucleic acid fragmentation of cfDNA samples

Component	Volume/reaction
DNA (see input recommendation in the "Important points before starting" section)	Variable A
RNA (see input recommendation in the "Important points before starting" section)*	Variable B
10x FX Buffer	2 μL
5x WGS FX Mix	4 µL
FG Solution	1.25 μL
QIAseq FastSelect –rRNA HMR (diluted 1:10)	1 pL
Nuclease-free Water	11.75 µL – Variable A (DNA) – Variable B (RNA)
Total	20 μL

^{*}Instead of adding DNA and RNA separately, total nucleic acid containing both DNA and RNA can be added. If adding total nucleic acid, base the input amount on DNA.

5. Program the thermal cycler according to Table 4. Use the instrument's heated lid.

Important: The thermal cycler must be prechilled and paused at 4°C.

Table 4. Incubation conditions for nucleic acid fragmentation

Step	Incubation temperature (°C)	Incubation time tor standard sample (min)	or FFPE (min)
1	4	1	1
2	32	16	12
3	65	30	30
4	60	2	2
5	55	2	2
6	37	5	5
7	25	5	5
8	4	Hold	Hold

- 6. Transfer the tubes/plate prepared in step 3 to the prechilled thermal cycler and resume the program.
- 7. Upon completion, allow the thermal cycler to return to 4° C.
- 8. Place the samples on ice and immediately proceed to "Protocol: RNA Polyadenylation".

Protocol: RNA Polyadenylation

Important points before starting

- The product from "Protocol: Nucleic Acid Fragmentation" is the starting material for this
 protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.

Procedure

- 1. Prepare the reagents required for the polyadenylation.
 - a. Thaw PAP Dilution Buffer, 10x, and ATP Solution on ice.
 - b. Mix by flicking the tube, and then centrifuge briefly.

Note: T4 Polynucleotide Kinase and PAP Enzyme should be removed from the freezer and placed on ice just before use. After use, immediately return the enzymes to the freezer.

- 2. Dilute PAP Enzyme from 5 U/µL to 1 U/µL as follows:
 - a. Prepare 1x PAP Dilution Buffer by diluting $2\,\mu L$ of the 10x PAP Dilution Buffer with $18\,\mu L$ Nuclease-free Water.
 - b. Use the 1x PAP Dilution Buffer to dilute an aliquot of the PAP Enzyme from 5 U/μL to 1 U/μL. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.
- 3. Prepare the RNA polyadenylation mix according to Table 5. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 5. Reaction mix for RNA polyadenylation

Component	Volume/reaction (µL)
Fragmentation reaction (already in tube)	20
ATP Solution	1.25
T4 Polynucleotide Kinase	1
Diluted PAP Enzyme (1 U/µL)*	1
Nuclease-free Water	1.75
Total	25

^{*} Ensure PAP Enzyme has been diluted from its stock 5 U/µL concentration to 1 U/µL using 1x PAP Dilution Buffer.

4. Incubate the reactions in a thermal cycler according to Table 6. Use the instrument's heated lid.

Table 6. Incubation conditions for RNA polyadenylation

Step	Temperature (°C)	Time (min)
1	4	1
2	30	10
3	4	Hold

5. Upon completion, place the reactions on ice and proceed to "Protocol: DNA Ligation", next section.

Protocol: DNA Ligation

Important points before starting

- The product from "Protocol: RNA Polyadenylation" is the starting material for this protocol.
- In this protocol, there is the option to use the non-UMI Adapter (that does not contain a UMI) or the UMI Adapter (that contains a UMI). Depending on the experiment of choice, choose one adapter or the other.
- The non-UMI Adapter is recommended for the preparation of WGS libraries to be used for hybridization capture for QIAseq Human Exome or third-party vendor human Exome kits.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working
 quickly and resuspending the beads immediately before use. If a delay in the protocol
 occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for the DNA ligation.
 - a. Thaw DNA Ligation Adapter, Ligation Buffer (5x), and Ligation Solution at room temperature.

Note: Non-UMI Adapter does not contain a UMI while the UMI Adapter contains a UMI.

b. Mix by flicking the tube, and then centrifuge briefly.

Note: DNA Ligase should be removed from the freezer and placed on ice just before use. After use, immediately return the enzyme to the freezer.

2. Prepare the DNA ligation mix according to Table 7. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Note: Refer to Table 8 for the recommended proportion of dilution.

Table 7. Reaction mix for DNA ligation

Component	Volume/reaction (µL)
RNA polyadenylation reaction (already in tube)	25
UPH Ligation Buffer, 2.5x	40
Non-UMI Adapter or UMI Adapter*	2.5
DNA Ligase	10
Nuclease-free Water	22.5
Total	100

^{*} Non-UMI Adapter does not contain a UMI while the UMI Adapter contains a UMI.

Table 8. Adapter dilution factors for low input

Standard DNA amount	FFPE samples	Adapter dilution	
100–999 pg		1:100	
1–10 ng		1:10	
	50 ng < input < 100 ng	1:10	

3. Incubate the reactions in a thermal cycler according to Table 9.

Important: Do not use the heated lid.

Table 9. Incubation conditions for DNA ligation

Step	Temperature (°C)	Time (min)
1	4	1
2	20	15
3	4	Hold

- 4. Add 90 µL QIAseg Beads, and then mix by vortexing.
- 5. Incubate for 5 min at room temperature.
- 6. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates).

Once the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

Note: For plates, the following may improve performance. After 8 min, remove 90 μ L supernatant. Leave it on the magnetic stand for 2 min and remove 90 μ L supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 μ L pipette to remove the remaining supernatant.

- 7. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 8. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after the second wash. Remove the ethanol with a 200 μL pipette tip first, spin down briefly, and then use a 10 μL pipette tip to remove any residual ethanol.

9. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.

Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.

- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 52 µL Nuclease-free Water. Mix well by pipetting.
- 11. Return the tube/plate to the magnetic rack until the solution has cleared.
- 12. Transfer 50 µL of the supernatant to clean tubes/plate wells.
- 13. Add 55 µL QIAseq Beads and mix by vortexing.
- 14. Incubate for 5 min at room temperature.
- 15. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates).

Once the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

- 16. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 17. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after the second wash. Remove the ethanol with a 200 μL pipette tip first, spin down briefly, and then use a 10 μL pipette tip to remove any residual ethanol.

- 18. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.
 - **Note**: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.
- 19. Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 18 μ L Nuclease-free Water. Mix well by pipetting.
- 20. Return the tube/plate to the magnetic rack until the solution has cleared.
- 21. For each sample, aliquot $7.5~\mu L$ of the eluate into two separate clean tubes/plate wells.

Aliquot 1: Proceed to "Protocol: DNA Library Indexing" on the next page.

Aliquot 2: Proceed to "Protocol: RNA Reverse Transcription" on page 35

Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Protocol: DNA Library Indexing

Important points before starting

- The starting material is a 7.5 µL sample aliquot from "Protocol: DNA Ligation".
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Use MDNA index plates, either MDNA-24X or MDNA-96AX.
- Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working quickly and resuspending the beads immediately before use. If a delay in the protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for DNA Library indexing.
 - a. Thaw HiFi Ultra Buffer, 5x; MM F-R Primer Mix, and MDNA-24X or MDNA-96AX index plate at room temperature.
 - b. Mix by either flicking the tube or vortexing the index plate, and then centrifuge briefly. Plate should be centrifuged at 1000 x g for 1 min.

Note: HiFi Ultra Polymerase should be removed from the freezer and placed on ice just before use. After use, immediately return the enzyme to the freezer.

2. Prepare the reactions according to Table 10. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 10. Reaction mix for DNA indexing

Component	Volume/reaction (µL)
Sample aliquot (from "Protocol: DNA Ligation")	7.5
HiFi Ultra Buffer, 5x	8
MM F-R Primer Mix	1.6
Nuclease-free Water	16.4
Well from MDNA-24X or MDNA-96AX index plate*	2.5
HiFi Ultra Polymerase	4
Total	40

^{*}Ensure proper technique to prevent cross-contamination. Additionally ensure that every sample has a unique index and that no well is used twice.

3. Program a thermal cycler as described in Table 11, using cycle numbers described in Table 12.

Important: Set up the ramp rate of the thermal cycler at $\leq 2^{\circ}$ C/s.

Table 11. Cycling conditions for DNA indexing

Step	Time	Temperature (°C)
Hold	2 min	98
2-step cycling		
Denaturation	20 s	98
Annealing/Extension	1 min	60
Cycle number	See .	
Hold	3 min	72
Hold	∞	4

Table 12. Cycle number recommendations for DNA indexing, based on original sample input

DNA Input	Standard Sample (cycles)	FFPE sample (cycles)
100 pg	19	-
1 ng	16	-
10 ng	13	-
100 ng	10	13
250 ng	_	12

- After the reaction is complete, add 36 μL QIAseq Beads, and then mix by vortexing or pipetting up and down several times.
- 5. Incubate for 5 min at room temperature.
- 6. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates) to separate the beads from the supernatant.

After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

- 7. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 8. Repeat the ethanol wash twice, for a total of 3 washes.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 μ L pipette tip first, spin down briefly, and then use a 10 μ L pipette tip to remove any residual ethanol.

9. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.

Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.

- 10. Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding $24~\mu L$ Nuclease-free Water. Mix well by pipetting.
- 11. Return the tube/plate to the magnetic rack until the solution has cleared.
- 12. Transfer 22 µL of the supernatant to clean tubes/plate wells.
- 13. The library is now ready for sequencing or hybrid capture. Proceed to "Recommendations: Library QC & Quantification" on page 44. Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer.

Protocol: RNA Reverse Transcription

Important points before starting

- The starting material is a 7.5 µL sample aliquot from "Protocol: DNA Ligation".
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working
 quickly and resuspending the beads immediately before use. If a delay in the protocol
 occurs, simply vortex the beads.

Procedure

1. Prepare the reagents required for sample pre-treatment.

Note: Buffer GE2 gDNA elimination buffer should be removed from the freezer and placed on ice just before use. After use, immediately return the tube to the freezer.

2. Prepare the sample pretreatment mix according to Table 13. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 13. Reaction mix for sample pretreatment

Component	Volume/reaction (µL)
Sample aliquot (from "Protocol: DNA Ligation")	7.5
Buffer GE2 gDNA elimination buffer	2
Total	9.5

3. Incubate the reactions in a thermal cycler according to Table 14. Use the instrument's heated lid.

Table 14. Incubation conditions for sample pretreatment

Step	Incubation temperature (°C)	Incubation time (min)
1	42	5
2	75	10
3	4	Hold

- 4. Prepare the reagents required for reverse transcription.
 - a. Thaw US RT Buffer, 5x; DTT (100 mM); dNTP (10 mM); MM RNA RT Primer; and MM RNA TSO at room temperature.
 - b. Mix by flicking the tubes and then centrifuge briefly.

Note: The RNase Inhibitor and EZ Reverse Transcriptase should be removed from the freezer and placed on ice just before use. After use, immediately return the enzymes to the freezer.

 To the treated sample, prepare the reverse transcription mix according to Table 15, next page. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 15. Reaction mix for reverse transcription

Component	Volume/reaction (µL)
Treated Sample	9.5
US RT Buffer, 5x	4
DTT (100 mM)	0.5
dNTP (10 mM)	2
MM RNA RT Primer	1
MM RNA TSO	1
RNase Inhibitor	0.5
EZ Reverse Transcriptase	1.5
Total	20

6. Incubate the reactions in a thermal cycler according to Table 16. Use the instrument's heated lid.

Table 16. Incubation conditions for reverse transcription

Step	Incubation temperature (°C)	Incubation time (min)	
1	4	1	
2	42	90	
3	70	10	
4	4	1	
5	4	Hold	

- 7. Add 20 μ L Nuclease-Free Water and 44 μ L QIAseq Beads and mix by vortexing or by pipetting up and down several times.
- 8. Incubate for $5 \min$ at room temperature.
- 9. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates).

After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

- 10. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 11. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 µL pipette tip first, spin down briefly, and then use a 10 µL pipette tip to remove any residual ethanol.

12. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.

Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required. Ethanol carryover to the next universal PCR step will affect PCR efficiency.

- 13. Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 42 μ L Nuclease-free Water.
- 14. Return the tube/plate wells to the magnetic rack until solution the solution has cleared.
- 15. Transfer 40 μL of the eluate to clean tubes/plate wells.
- 16. Add 44 μ L QIAseq Beads and mix by vortexing or by pipetting up and down several times.
- 17. Incubate for 5 min at room temperature.
- 18. Place the tubes/plate wells on a magnetic rack for 2 min (for tubes) or 10 min (for plates). After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

- 19. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 20. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 μ L pipette tip first, spin down briefly, and then use a 10 μ L pipette tip to remove any residual ethanol.

21. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.

Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required. Ethanol carryover to the next universal PCR step will affect PCR efficiency.

- 22. Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 22 μ L Nuclease-free Water.
- 23. Return the tube/plate wells to the magnetic rack until solution the solution has cleared.
- 24. Transfer 20 µL of the eluate to clean tubes/plate wells.
- 25. Proceed to "Protocol: RNA Library Indexing" on the next page. Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer.

Protocol: RNA Library Indexing

Important points before starting

- The starting material is the 20 µL sample from "Protocol: RNA Reverse Transcription".
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Use MRNA index plates, either MRNA-24X or MRNA-96AX.
- Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working quickly and resuspending the beads immediately before use. If a delay in the protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for RNA Library indexing.
 - a. Thaw HiFi Ultra Buffer, 5x; MM F-R Primer Mix, and MRNA-24X or mRNA-96AX index plate at room temperature.
 - b. Mix by either flicking the tube or vortexing the index plate, and then centrifuge briefly. Plate should be centrifuged at 1000 x g for 1 min.

Note: HiFi Ultra Polymerase should be removed from the freezer and placed on ice just before use. After use, immediately return the enzyme to the freezer.

2. Prepare the reactions according to Table 17. Briefly centrifuge, mix by pipetting up and down 20 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 17. Reaction mix for RNA indexing

Component	Volume/reaction (µL)
Sample aliquot (from "Protocol: RNA Reverse Transcription")	20
HiFi Ultra Buffer, 5x	8
MM F-R Primer Mix	1.6
Nuclease-free Water	3.9
Well from MRNA-24X or MRNA-96AX index plate*	2.5
HiFi Ultra Polymerase	4
Total	40

^{*}Ensure proper technique to prevent cross-contamination. Additionally ensure that every sample has a unique index and that no well is used twice.

3. Program a thermal cycler as described in Table 18, using cycle numbers described in Table 19.

Important: Set up the ramp rate of the thermal cycler at $\leq 2^{\circ}$ C/s.

Table 18. Cycling conditions for RNA indexing

Step	Time	Temperature (°C)			
Hold	2 min	98			
2-step cycling					
Denaturation	20 s	98			
Annealing/Extension	1 min	60			
Cycle number	See Table 19				
Hold	3 min	72			
Hold	∞	4			

Table 19. Cycle number recommendations for RNA indexing, based on original sample input

RNA Input (ng)	Standard Sample (cycle)	FFPE sample (cycle)
10	24	-
20	23	-
100	21	24
200	20	23
500	_	22

- After the reaction is complete, add 36 μL QlAseq Beads, and then mix by vortexing or pipetting up and down several times.
- 5. Incubate for 5 min at room temperature.
- 6. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates) to separate the beads from the supernatant.

After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads because they contain the DNA of interest.

- 7. With the beads still on the magnetic stand, add 200 µL of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 8. Repeat the ethanol wash twice, for a total of 3 washes.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 μ L pipette tip first, spin down briefly, and then use a 10 μ L pipette tip to remove any residual ethanol.

9. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.

Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.

- 10. Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding $24 \,\mu L$ Nuclease-free Water. Mix well by pipetting.
- 11. Return the tube/plate to the magnetic rack until the solution has cleared.
- 12. Transfer 22 µL of the supernatant to clean tubes/plate.
- 13. The library is now ready for sequencing or hybrid capture. Proceed to "Recommendations: Library QC & Quantification" on the next page. Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer.

Recommendations: Library QC & Quantification

NGS Library QC

Perform QC with the QIAxcel Connect or similar instrument. Check for the correct size distribution of library fragments (~400–500 bp median size) and for the absence of adapters or adapter-dimers (~<200 bp) (Figure 3).

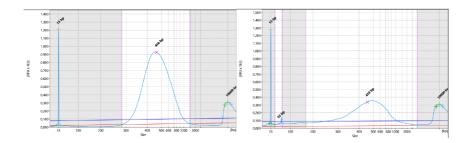


Figure 3. QIAseq Multimodal WGS DNA (left) and WTS RNA (right) Libraries.

Preferred library quantification method

Quantify the library using Nanodrop[®] or QlAexpert if proceeding to "Hybrid Capture", or qPCR-based method if proceeding to sequencing. Once quantified, proceed to either "Recommendations: Hybrid Capture" on the next page or "Recommendations: NGS" on page 47.

Recommendations: Hybrid Capture

While QIAseq Multimodal DNA/RNA libraries are WGS and WTS, they are additionally compatible with hybrid capture solutions (see "Ordering Information" on page 53). The prepared DNA libraries include TruSeq adapter sequence, while the RNA libraries include Nextera adapter sequence. As a result, when WTS are proceeded to hybridization, QIAseq One-4-All Blocking Oligos are required to be replaced with QIAseq N Blocking Oligos (cat. no. 334871).

Please refer to QIAseq Human Exome Kit Handbook or QIAseq xHYB Human Hybrid Capture Panel Handbook for human exome or capture panels (including Actionable Exome Panel, Carrier Panel, Mitochondrial Spike-in panel, or Custom Panels).

Determine the per-library amount (ng) according to the desired pool size referring to the guidelines in Table 20 or follow the recommendations in Table 21. Make sure to not exceed 3200 ng total input per capture pool.

Table 20. Guidelines for pooling indexed libraries for hybridization capture
Library pooling guidelines

Recommended number of libraries per capture pool	8
Maximum total input per capture pool	3200 ng
Minimal input per library	200 ng

Table 21. Recommended library pooling strategy for hybridization capture

Number of indexed samples per pool	Amount of each indexed library per pool (ng)
1	200–500
2	200–500
3	200–500
4	200–500
5	200–500
6	200–500
7	200–500
8	200-400*

^{*}Do not exceed a total DNA input of 3200 ng per pool.

Note: To maintain equal representation of libraries during sequencing, use the same input amount for all libraries. Using less than 200 ng input per library may result in reduced complexity.

Recommendations: NGS

Important points before starting

- Recommendations for library dilution concentrations and library loading concentrations are based on QIAseq Library Quant System.
- Paired-end sequencing should be used for QIAseq Multimodal libraries on Illumina platforms.

o Read 1: 149 bp

o Read 2: 149 bp

o Index 1: 10 bp

o Index 2: 10 bp

- For complete instructions on how to denature sequencing libraries and set up a sequencing run, please refer to the system-specific Illumina documents.
- If only RNA libraries are sequenced, spike in 20% PhiX to increase diversity.

Recommended loading concentrations for sequencers

Table 22. Recommended loading concentrations for main sequencers

Instrument	Final Loading Concentration (pM)
iSeq	75
MiSeq	10
MiSeq i 100 Series	80
NextSeq 500/550	1.2
NextSeq 1000/2000	650
NovaSeq 6000	300
iSeq	75

General read allocation recommendations for WGS and WTS

For WGS library sequencing, 600M reads is recommended for 30x coverage.

For WTS library sequencing, refer to Table 23 for read allocation:

Table 23. Recommended read allocation for WTS library sequencing

Total RNA input (ng)	Number of reads per WTS library (M)
20	20
50	40
100	50
200	60

For WTS library from FFPE sample, 50–100 M reads is recommended.

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQList.aspx (for contact information, visit www.qiagen.com).

Comments and suggestions

	Comments and suggestions
Low library yield	
a) Suboptimal reaction conditions due to low sample quality	Make sure to use high-quality samples to ensure optimal activity of the library enzymes.
b) Inefficient targeted enrichment or universal PCR	QIAseq beads need to be completely dried before elution. Ethanol carryover to targeted enrichment and universal PCR will affect PCR reaction efficiency.
Unexpected signal peaks	
a) Short peaks <200 bp	These are primer-dimers from targeted enrichment or universal PCR (<200 bp). The presence of primer-dimers indicates either not enough DNA/RNA input or inefficient PCR reactions or handling issues with bead purifications.
b) Larger DNA fragments after universal PCR	After the universal PCR, library fragments are larger than the intended peak and can be a PCR artifact due to overamplification of the DNA Library. Overamplification of the library won't affect the sequencing performance. Decreasing the number of universal PCR cycle numbers can reduce overamplification.
Sequencing issues	
a) Too low or too high cluster density	Accurate library quantification is the key for optimal cluster density on any sequencing instrument. PCR-based quantification method is recommended. Other methods may lead to incorrect quantification of the library, especially when there is overamplification.
b) Very low clusters passing filter	Make sure the library is accurately quantified and that the correct amount is loaded onto the sequencing instrument. In addition, the QIAseq A Read 1 Primer I (100 µM) Custom Read 1 Sequencing Primer and Custom Multimodal Read 2 Primer (100 µM) must be used when sequencing on any Illumina platform.
Variant detection issues	

Appendix A: DNA and RNA Index Layouts

Sample sheets including index sequences for MDNA and MRNA can be downloaded from the "Resources" section of the product page.

Table 24. Layout of MDNA-24X (QIAseq Multimodal MDNA Index Plate 24)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	MDNA-001	MDNA-009	MDNA-017	-	-	-	-	-	-	-	-	-
В	MDNA-002	MDNA-010	MDNA-018	-	-	-	-	-	-	-	-	-
С	MDNA-003	MDNA-011	MDNA-019	-	_	-	-	_	-	-	-	-
D	MDNA-004	MDNA-012	MDNA-020	-	-	-	-	-	-	-	-	-
E	MDNA-005	MDNA-013	MDNA-021	-	-	-	-	-	-	-	-	-
F	MDNA-006	MDNA-014	MDNA-022	-	-	-	-	-	-	-	-	-
G	MDNA-007	MDNA-015	MDNA-023	-	-	-	-	-	-	-	-	-
н	MDNA-008	MDNA-016	MDNA-024	-	-	-	-	-	-	-	-	-

Table 25. Layout of MDNA-96AX (QIAseq Multimodal MDNA Index 96 Set A)

	1	2	3	4	5	6	7	8	9	10	11	12
A	MDNA- 001	MDNA- 009	MDNA- 017	MDNA- 025	MDNA- 033	MDNA- 041	MDNA- 049	MDNA- 057	MDNA- 065	MDNA- 073	MDNA- 081	MDNA- 089
В	MDNA- 002	MDNA- 010	MDNA- 018	MDNA- 026	MDNA- 034	MDNA- 042	MDNA- 050	MDNA- 058	MDNA- 066	MDNA- 074	MDNA- 082	MDNA- 090
С	MDNA- 003	MDNA- 011	MDNA- 019	MDNA- 027	MDNA- 035	MDNA- 043	MDNA- 051	MDNA- 059	MDNA- 067	MDNA- 075	MDNA- 083	MDNA- 091
D	MDNA- 004	MDNA- 012	MDNA- 020	MDNA- 028	MDNA- 036	MDNA- 044	MDNA- 052	MDNA- 060	MDNA- 068	MDNA- 076	MDNA- 084	MDNA- 092
E	MDNA- 005	MDNA- 013	MDNA- 021	MDNA- 029	MDNA- 037	MDNA- 045	MDNA- 053	MDNA- 061	MDNA- 069	MDNA- 077	MDNA- 085	MDNA- 093
F	MDNA- 006	MDNA- 014	MDNA- 022	MDNA- 030	MDNA- 038	MDNA- 046	MDNA- 054	MDNA- 062	MDNA- 070	MDNA- 078	MDNA- 086	MDNA- 094
G	MDNA- 007	MDNA- 015	MDNA- 023	MDNA- 031	MDNA- 039	MDNA- 047	MDNA- 055	MDNA- 063	MDNA- 071	MDNA- 079	MDNA- 087	MDNA- 095
Н	MDNA- 008	MDNA- 016	MDNA- 024	MDNA- 032	MDNA- 040	MDNA- 048	MDNA- 056	MDNA- 064	MDNA- 072	MDNA- 080	MDNA- 088	MDNA- 096

Table 26. Layout of MRNA-24X (QIAseq Multimodal MRNA Index Plate 24)

	1	2	3	4	5	6	7	8	9	10	11	12
A	MMRN-001	MMRN -009	MMRN -017	-	-	-	-	-	-	-	-	-
В	MMRN -002	MMRN -010	MMRN -018	-	-	-	-	-	-	-	-	-
С	MMRN -003	MMRN -011	MMRN -019	-	-	-	-	-	-	-	-	_
D	MMRN -004	MMRN -012	MMRN -020	-	-	-	-	-	-	-	-	-
E	MMRN -005	MMRN -013	MMRN -021	-	-	-	-	-	-	-	-	_
F	MMRN -006	MMRN -014	MMRN -022	-	-	-	-	-	-	-	-	-
G	MMRN -007	MMRN -015	MMRN -023	-	_	-	_	_	_	_	-	_
н	MMRN -008	MMRN -016	MMRN -024	-	-	-	-	-	-	-	-	-

Table 27. Layout of MRNA-96AX (QIAseq Multimodal MRNA Index 96 Set A)

	1	2	3	4	5	6	7	8	9	10	11	12
A	MMRN											
	-001	-009	-017	-025	-033	-041	-049	-057	-065	-073	-081	-089
В	MMRN											
	-002	-010	-018	-026	-034	-042	-050	-058	-066	-074	-082	-090
С	MMRN											
	-003	-011	-019	-027	-035	-043	-051	-059	-067	-075	-083	-091
D	MMRN											
	-004	-012	-020	-028	-036	-044	-052	-060	-068	-076	-084	-092
E	MMRN											
	-005	-013	-021	-029	-037	-045	-053	-061	-069	-077	-085	-093
F	MMRN											
	-006	-014	-022	-030	-038	-046	-054	-062	-070	-078	-086	-094
G	MMRN											
	-007	-015	-023	-031	-039	-047	-055	-063	-071	-079	-087	-095
Н	MMRN											
	-008	-016	-024	-032	-040	-048	-056	-064	-072	-080	-088	-096

Ordering Information

Product	Contents	Cat. no.
QlAseq Multimodal DNA/RNA Library Kit (24)	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) library preparation of 24 samples: 24 DNA and 24 RNA libraries.	334842
QIAseq Multimodal DNA/RNA Library Kit (96)	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) library preparation of 96 samples: 96 DNA and 96 RNA libraries.	334845
QIAseq Multimodal DNA/RNA UDI (24)	Kit containing all reagents required for sample indexing of 24 samples: 24 DNA and 24 RNA libraries.	334852
QIAseq Multimodal DNA/RNA UDI Set A (96)	Kit containing all reagents required for sample indexing of 96 samples: 96 DNA and 96 RNA libraries.	334855
QIAseq Multimodal DNA Kit- EnzFrag (24)	Kit containing all reagents (except indices) sufficient to process 24 samples for WG sequencing (24 WGS libraries) using enzymatic fragmentation.	335022
QIAseq Multimodal DNA Kit- EnzFrag (96)	Kit containing all reagents (except indices) sufficient to process 96 samples for WG sequencing (96 WGS libraries) using enzymatic fragmentation.	335025
QIAseq Multimodal DNA Kit- MechFrag (24)	Kit containing ALL reagents (except indices) sufficient to process 24 samples for WG sequencing (24 WGS libraries) using mechanical fragmentation.	335032
QIAseq Multimodal DNA Kit- MechFrag (96)	Kit containing ALL reagents (except indices) sufficient to process 96 samples for WG sequencing (96 WGS libraries) using mechanical fragmentation.	335035
QIAseq Multimodal DNA UDI (24)	Kit containing DNA indexing for 24 samples - total of 24 reactions (24 sets of DNA UDIs).	334972
QIAseq Multimodal DNA UDI Set A (96)	Kit containing DNA indexing for 96 samples - total of 96 reactions (96 sets of DNA UDIs).	334975
QIAseq Multimodal RNA Kit (24)	Kit containing all reagents (except indices) sufficient to process 24 samples for WT sequencing (24 WTS libraries).	335012
QlAseq Multimodal RNA Kit (96)	Kit containing all reagents (except indices) sufficient to process 96 samples for WT sequencing (96 WTS libraries).	335015

Product	Contents	Cat. no.
QIAseq Multimodal RNA UDI (24)	Kit containing RNA indexing for 24 samples - total of 24 reactions (24 sets of RNA UDIs).	334822
QIAseq Multimodal RNA UDI Set A (96)	Kit containing RNA indexing for 96 samples - total of 96 reactions (96 sets of RNA UDIs).	334825
One-4-All Blocking Oligos (12rxn)	One-4-All Blocking Oligos (12rxn) contains oligos designed to bind and block all Illumina TruSeq®compatible NGS adapters for 12 reactions of hybridization capture.	334861
QIAseq N Blocking Oligos (12rxn)	QIAseq N Blocking Oligos (12rxn) contains oligos designed to bind and block all Illumina Nexter®compatible NGS adapters for 12 reactions of hybridization capture.	334871
QIAseq Multimodal Blocking Oligos (24rxn)	QIAseq Multimodal DNA/RNA UDI (96) contains One-4-All Blocking Oligos (12rxn) and QIAseq N Blocking Oligos (12rxn) - 24 reactions in total.	334881
QIAseq Human Exome Kit (24)	For 3 hybridization reactions: Buffers, blocking reagents, Human Exome Probe Set, Streptavidin beads, wash buffers, and postcapture enrichment reagents for hybrid capture of up to 24 whole genome libraries.	333937
QIAseq Human Exome Kit (96)	For 12 hybridization reactions: Buffers, blocking reagents, Human Exome Probe Set, Streptavidin beads, wash buffers, and post capture enrichment reagents for hybrid capture of up to 96 whole genome libraries.	333939
QIAseq xHYB Actionable Exome Panel (24)	For 3 hybridization reactions: Buffers, blocking reagents, Actionable Exome Probe Set, Streptavidin beads, wash buffers, and postcapture enrichment reagents for hybrid capture of up to 24 whole genome libraries.	333372
QIAseq xHYB Actionable Exome Panel (96)	For 12 hybridization reactions: Buffers, blocking reagents, Actionable Exome Probe Set, Streptavidin beads, wash buffers, and post-capture enrichment reagents for hybrid capture of up to 96 whole genome libraries.	333375
QIAseq xHYB Carrier Panel (24)	For 3 hybridization reactions: Buffers, blocking reagents, Carrier Screening Probe Set, Streptavidin beads, wash buffers, and post-capture enrichment reagents for hybrid capture of up to 24 whole genome libraries.	333362

Product	Contents	Cat. no.
QIAseq xHYB Carrier Panel (96)	For 12 hybridization reactions: Buffers, blocking reagents, Carrier Screening Probe Set, Streptavidin beads, wash buffers, and post-capture enrichment reagents for hybrid capture of up to 96 whole genome libraries.	333365
QlAseq xHYB Mitochondrial Panel (24)	Mitochondrial Probe Set for spike-in for 3 hybridization reactions.	333382
QlAseq xHYB Mitochondrial Panel (96)	Mitochondrial Probe Set for spike-in for 12 hybridization reactions.	333385
QIAseq xHYB CGP DNA/RNA Panels (24)	xHYB probe panels for DNA and RNA target enrichments for comprehensive genomic profiling, fixed panel for 24 samples.	335122
QIAseq xHYB CGP DNA/RNA Panels (96)	xHYB probe panels for DNA and RNA target enrichments for comprehensive genomic profiling, fixed panel for 96 samples.	335125
QIAseq xHYB CGP DNA Panel (24)	xHYB probe panel for DNA target enrichment for comprehensive genomic profiling, fixed panel for 24 samples.	333122
QIAseq xHYB CGP DNA Panel (96)	xHYB probe panel for DNA target enrichment for comprehensive genomic profiling, fixed panel for 96 samples.	333125
QIAseq xHYB CGP RNA Panel (24)	xHYB probe panel for RNA target enrichment for comprehensive genomic profiling, fixed panel for 24 samples.	334122
QIAseq xHYB CGP RNA Panel (96)	xHYB probe panel for RNA target enrichment for comprehensive genomic profiling, fixed panel for 96 samples.	334125
QIAseq xHYB DNA Fusion & MSI+ Panel (24)	xHYB probe panel for DNA target enrichment for translocations, fixed panel for 24 samples.	336122
QIAseq xHYB DNA Fusion & MSI+ Panel (96)	xHYB probe panel for DNA target enrichment for translocations, fixed panel for 96 samples.	336125
QIAseq xHYB Automation Kit	Excess volume of Streptavidin beads, wash buffers, and Post Capture Binding Buffer for automation purposes.	333430
QIAseq xHYB Custom Human Panel	Only includes the custom probe set(s) needed for hybridization capture as well as 12 hybrid capture reactions, which are typically sufficient for 96 samples.	333175

Product	Contents	Cat. no.	
QIAseq xHYB Human Reagent Kit	Contains all reagents required for hybrid capture-based target enrichment and must be purchased in addition to QIAseq xHYB Custom Human Panels. The kit contains 12 hybrid capture reactions, which are typically sufficient for 96 samples.	333195	
Related products			
QIAamp® DNA Mini Kit (50)	For 50 DNA preps: 50 QIAamp Mini Spin Columns, QIAGEN Proteinase K, collection tubes (2 mL), reagents and buffers.	51304	
QlAamp Circulating Nucleic Acid Kit (50)	For 50 DNA preps: QIAamp Mini Columns, Tube Extenders (20 ml.), QIAGEN Proteinase K, carrier RNA, buffers, VacConnectors, and collection tubes (1.5 mL and 2 ml.).	55114	
AllPrep DNA/RNA Mini Kit (50)	For 50 minipreps: AllPrep DNA Spin Columns, RNeasy Mini Spin Columns, collection tubes, RNase-free water, and buffers.	80204	
AllPrep DNA/RNA FFPE Kit (50)	50 RNeasy MinElute Spin Columns, 50 QlAamp MinElute Spin Columns, collection tubes, RNase-free reagents, and buffers.	80234	
PAXgene Blood DNA Kit (25)	Processing tubes and buffers for 25 preparations.	761133	
PAXgene Blood RNA Kit (50)	50 PAXgene Spin Columns, 50 PAXgene Shredder Spin Columns, processing tubes, RNase-Free DNase I, RNase-free reagents, and buffers.	762164	

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Service or your local distributor.

Document Revision History

Date	Description
06/2024	Initial release
05/2025	Fixed typos and added kit content section for: 335022, 335025, 335032, 335035, 334972, 334975, 335012, 335015, 334822, and 334825.

Limited License Agreement for QIAseq Multimodal DNA/RNA Kit

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- 1. The product may be used solely in accordance with the protocols provided with the product and this Instructions for Use and for use with components contained in the panel only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this panel with any components not included within this panel except as described in the protocols provided with the product, this Instructions for Use, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users for QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this panel and/or its use(s) do not infringe the rights of third-parties.
- 3. This panel and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the panel agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the panel and/or its components.

For updated license terms, see www.qiagen.com.

Trademarks: QIAGEN®, Sample to Insight®, QIAseq®, QIAamp®, AllPrep®, FastSelect™, QCI®, PAXgene®, QIAxcel® (QIAGEN Group); Agilent® B (Agilent Technologies); LoBind® (Eppendorf AG); Nextera®, Illumina®, iSeq®, TruSeq®, HiSeq®, MiniSeq®, Miseq®, NextSeq®, NovaSeq® (Illumina, Inc.); MagneSphere® (Promega Corporation); DynaMag™, NanoDrop®, Quant-iT™ (Thermo Fisher Scientific Inc.); KAPA (Roche® Group); Element AVITI™ (Element Biosciences). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

05/2025 HB-3579-003© 2025 QIAGEN, all rights reserved.

This page intentionally left blank