A NEW IDH1/2 PCR ASSAY FOR ONE-STEP DETECTION OF 12 IDH1 AND IDH2 MUTATIONS IN GLIOMA

H. Girardi¹, F. Monville¹, S. Carpentier¹, M. Giry², J. Voss³, R. Jenkins³, B. Boisselier², V. Frayssinet¹,

A. Catteau¹, K. Mokhtari², M. Sanson², H. Peyro-Saint-Paul¹, C. Giannini³

¹ QIAGEN Marseille, France - ² AP-HP, Pitié-Salpêtrière Hospital, Paris, France - ³ Mayo Clinic, Rochester, MN, USA

BACKGROUND	RESULTS								
te dehydrogenase (IDH) mutational status is a strong diagnostic and prognostic in glioma which will probably be introduced in the next WHO classification system.			IDH1/2 AS	SAY DESIGN	CLINICAL PERFORMANCE				
ion to the established 1p/19q codeletion and MGMT methylation, a series of new	Gene / Codon	Mutation	Base change	Detection of 12 mutations by PCR CLAMPING:	1- Comparisons of PCR to IHC and Sanger sequencing				
ers such as IDH1/2, EGFR or BRAF mutations, and FGFR gene fusions, are		R132H *	395 G>A	 6 within IDH1 codon R132 	Overall concordance between IHC and PCR for IDH1 R132H detection was 99% (Tab 2) - The only				
ngly documented to play a role as prognostic or predictive markers, and should		R132C *	394 C>T	 5 within the homologous codon 172 of 	PCR/IHC discordant case was a sample of the commercial series				
ively be introduced in the diagnostic and treatment decision algorithm for		R132S	394 C>A	IDH2					
	IDH1 / R132	R132G	394 C>G		 Overall concordance between Sanger sequencing and PCR was 96% 				
IDH mutations screening is performed with an IHC assay specific for IDH1		R132L	394 G>T	 one within IDH1 codon 100 	 PCR detected 5 additional mutated cases (2 IDH1 R132H, 1 IDH1 R132C, 1 IDH1 R132, 1 IDH 				
		R132V	394_395 CG>GT		172) compared to Sequencing (Tab 3)				
the most common mutation. Sequencing is recommended as a second-step test negative or -equivocal cases. However, sequencing is not readily accessible in all	IDH1 / R100	R100Q	299 G>A	 Identification of 3 major IDH1/2 mutations by 	Positive agreement between PCR and IHC was 98.4 % [91.3;99.7] and was 100% between PCR an				
and its use generally leads to additional delay in providing a comprehensive		R172K *	515 G>A	<u>ARMS:</u>	sequencing [94.6;100], meeting predefined target (PA ≥95%, lower CI limit ≥90%)				

- IDH1/2 mutational status assessment. Moreover, IDH sequencing procedures can sometimes lead to inter-laboratory variability.
- Beyond IDH1 R132H, 11 other IDH mutations, 6 IDH1 and 5 IDH2, have been reported so far in literature, in large cohorts of gliomas.
- Recent data indicate that mutant specific IDH1-inhibitors impair growth of mutant-IDH1 gliomas in mice.
- A real-time PCR assay was designed to detect the 12 IDH1/2 mutations in one single step in FFPE samples, and identify the most frequent ones.

OBJECTIVES

- 1. Establish the analytical performance of the new IDH1/2 PCR assay
- 2. Validate the IDH1/2 PCR assay performance on FFPE glioma clinical samples by comparing PCR IDH mutational status to IHC and Sanger sequencing.

MATERIAL & METHODS

IDH1/2 one-step qPCR assay:

PCR Clamping was used for the qualitative detection of IDH1 R132H and 11 additional IDH1/2 mutations. ARMS PCR technology was combined to selectively identify the most frequent IDH1 (R132H / R132C) and IDH2 (R172K) mutations (Table 1).

Evaluation of analytical sensitivity:

	R172M	515 G>T	 IDH1 R132H
IDH2 / R172	R172W	514 A>T	 IDH1 R132C
	R172S	516 G>T	 IDH2 R172K
	R172G	514 A>G	

Table 1 - IDH1/2 mutations detected and identified * with the IDH1/2 PCR Assay

ANALYTICAL SENSITIVITY

- Analytical sensitivity ranged from 0,6 % to 15% according to mutations (mean = 3.3 %)
- LOD was < 5% for 11/12 mutations and \leq 3% for 9 of them.
- The identification of the 3 major IDH1/2 mutations showed very high sensitivity with LOD of 0.78% (R132H), 1.19% (R132C) and 0.61 % (R172K) respectively

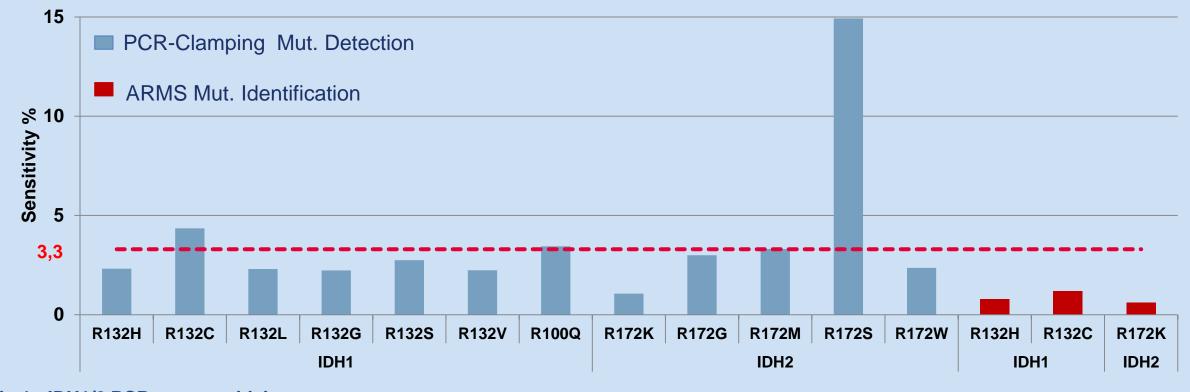


Fig 1 - IDH1/2 PCR test sensitivity

CLINICAL VALIDATION COHORT

• 147 samples met the selection criteria (103 academic and 44 commercial)

- Sequencing did not identify 3 IHC-positive cases (incl. the PCR-neg case, Tab 2-4)
- Out of the IHC-negative cases (n=72), PCR identified 12 rare mutations (17%, 10 IDH1, 2 IDH2), while only 9 (12 %) were detected by sequencing (Tab 4)

		<u>II</u>	<u>IC</u>				SEQUE	ENCING	
		R132H POS	R132H NEG	TOTAL			IDH1/2 MUT+	IDH1/2 MUT-	TOTAL
	R132H	60	0	60		IDH1/2 MUT+	67	5	72
IDH1/2 PCR	NON-R132H	1	72	73	IDH1/2 PCR	IDH1/2 MUT-	0	61	61
. ex	TOTAL	61	72	133	. on	TOTAL	67	66	133
Table 2 - IH	C vs PCR for dete	ction of IDH	1/2 R132H m	utation	Table 3 - Se	quencing vs PCR	for IDH1/2 m	utational sta	tus

			IDH1	Мит		IDH2	MUT		
	WT	R132H	R132C	R132 OTHER	R100	R172K	R172 OTHER	<u>% Mutated</u> <u>Cases</u>	
IHC	72	61	0	0	0	0	0	46 %	
SEQUENCING	66	58	2	6*	0	1	0	50 %	
IDH1/2 PCR	61	60	3	7	0	1	1	54 %	

* 3 R132S; 2 R132G; 1 R132L

Table 4 - Number and types of IDH 1/2 mutations detected by IHC, sequencing and PCR (n=133)

2- Analysis of discordant cases

CASE	IHC	IDH1/2 PCR	Sanger Seq.	Pyro Seq.	LNA- Seq.	CONCL.	Comment	
# 1 (COMMERCIAL)	POS	WT	WT	WT	WT	WT	IHC False-Pos	
# 2	POS	R132H	WT	_	_	R132H	Low Mut Allele % (15%)*	
# 3	POS	R132H	WT	_	_	R132H	Low Mut Allele % (10%)*	
# 4 (COMMERCIAL)	NEG	R132C	WT	R132C	_	R132C	Low Mut Allele % (14%)*	
# 5 (COMMERCIAL)	NEG	R132	WT	WT	WT	WT	PCR False-Pos**	
# 6	NEG	R172	WT	WT	WT	WT	PCR False-Pos**	
 * Theoretical Mutant Allele % acc. to PCR LOD analysis - ** PCR test result close to LOD value Table 5 - Analysis of the IHC/PCR and PCR/Sanger sequencing discordant cases 								
 <u>Cases #1, #5, #6</u>: <u>Cases #2, #3, #4</u>: 								
Based on consister	ncy of res	ults obtai	ined with	the I	Lack of n	nutation c	letection by Sanger Sequen	
additional and hig	hly sens	itive tecl	nniques,	the I	likely resu	lts from a	a low mutant allele content in	

• The IDH1/2 assay correctly detected the 11 IDH1/2 rare mutations at the two tested mutation

respective samples

- Limit of Detection (LOD) (min. % mutant DNA detected in a WT background) was determined following CLSI/NCCLS EP17-A guidelines.
- 5 low positive samples (2-5-10-15 and 20%) obtained by mixing IDH mutant plasmid DNA with glioma IDH1/2 WT DNA were tested per mutation (n= 30 to 110 measurements per mutation and mutation percentage)

Validation of the IDH1/2 PCR assay:

Samples

Isocitrat

In addition

biomark

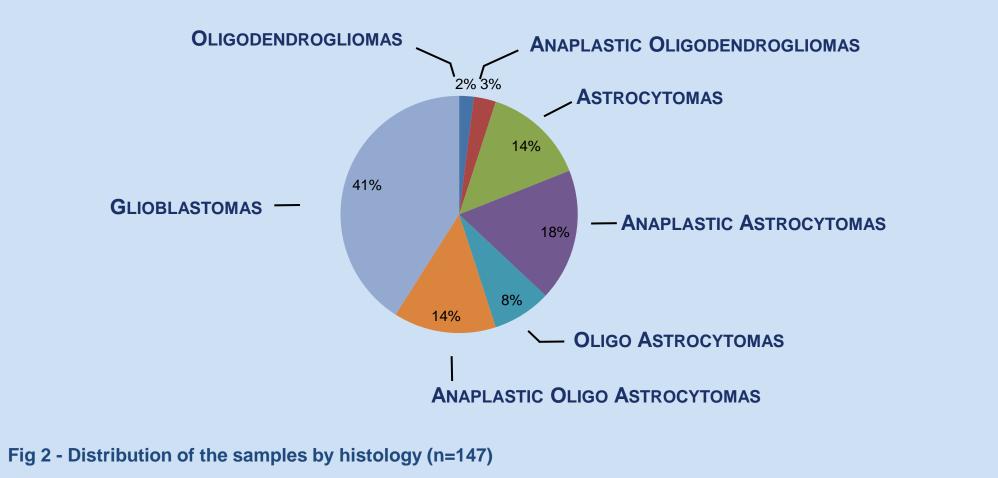
increasi

progress

glioma.

R132H.

for IHC-n


centers

Current

marker

- 171 FFPE glioma samples: 121 samples retrospectively collected in a reverse chronological order from 2 academic centers (C1=102; C2=19) and 50 additional commercial samples. No specific selection criteria beyond tumor characteristics assessed by local pathologists.
- Samples selection: < 10 yrs; ≥ 50mm² tissue area with ≥ 40% tumoral cells.
- DNA extracted from 10 µm FFPE sections (QIAamp DNA FFPE Tissue Kit, Qiagen)
- qPCRs performed on 25 ng DNA acc. to therascreen IDH1/2 RGQ PCR Kit IFU (Qiagen) and Rotor-Gene Q 5plex HRM instrument (Qiagen)
- Molecular biology methods
- IHC performed locally using the IDH1 R132H monoclonal antibody Clone H09 (Dianova)
- Bidirectional Sequencing (centrally) using recommended primers for IDH1 codon 132 and IDH2 codon 172⁽³⁾ and newly designed primers for IDH1 codon 100.
- Discordant PCR/Sanger Sequencing cases additionally tested by pyrosequencing +/-LNA-based sequencing (centrally).
- Rare mutations testing
 - 22 synthetic samples (30% and 40% Mutant DNA in WT DNA) for the 11 rare mutations, processed similarly to clinical samples

- The histological distribution reflected the observed subtypes in clinical routine in an academic center, with > 40% GBMs (**Fig 2**)
- IDH1/2 PCR technical success was 100% on samples collected in academic centers (Fig 3)

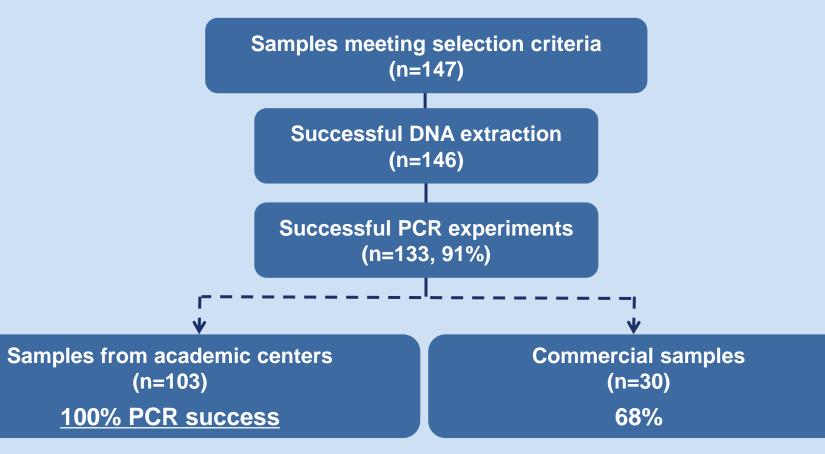


Fig 3 - IDH1/2 kit experimental flowchart: technical success rate

- SUMMARY AND CONCLUSION The newly developed IDH1/2 PCR assay showed High technical success rate
 - confirmed by other sensitive techniques highlighting a higher sensitivity of the IDH1/2 PCR assay.
 - The IDH1/2 PCR assay can reliably be performed on FFPE samples of up to 10 yrs of age, which should allow the assay to be used to retrospectively analyse clinical cohorts
 - This new IDH1/2 PCR assay is able to detect the major IDH1R132H mutation and 11 rare IDH1/2 mutations in one step. This should facilitate the implementation of a comprehensive IDH1/2 testing protocol in routine clinical practice

assay but not by Sanger Sequencing were

• High analytical sensitivity, with an LOD <

5% for all but one (rare IDH2) mutations,

below published references for sequencing

Positive concordance with IHC (R132H) and

Out of the 5 PCR/Sanger sequencing discordant

cases (< 4%), 3 mutations detected by the PCR

sequencing was high (98% & 100% resp.)

mutations detected by IHC (1 case) or PCR (2

cases) are likely false-positive

frequencies (30% and 40%).

3- Synthetic samples

techniques

1. Parsons DW et al. 2008; Science 321(5897):1807-12

2. Yan H et al. 2009 N Engl J Med 360(8):765-73.

3. Preusser M *et al.* 2011 ; Clin Neuropath 30:217-230

4. Hartmann C, et al. Acta Neuropathol. 2009

5. Pusch S et al. 2011; Neuropathol Appl Neurobiol. 37(4):428-30

7. van den Bent MJ et al. 2013 ; J Neurooncol. 112(2):173-8