miScript® PreAMP PCR Kit and miScript PreAMP Primer Mixes

The miScript PreAMP PCR Kit (cat. nos. 331451, 331452) and miScript PreAMP Primer Mixes should be stored at –20°C upon arrival. For more information, please refer to the *miScript PreAMP Handbook*, which can be found at www.qiagen.com/handbooks. For technical assistance, please call toll-free 00800-22-44-6000, or find regional phone numbers at www.qiagen.com/contact.

Notes before starting

- IMPORTANT: Only cDNA prepared using the miScript II RT Kit with miScript HiSpec Buffer should be used as starting material for preamplification with this protocol.
- IMPORTANT: We recommend performing a 10 μl reverse-transcription reaction prior to preamplification. Dilute the 10 μl reaction in 40 μl RNase-free water. Use exactly 5 μl of this diluted cDNA for preamplification as indicated in the protocol. Do not use any more or less than 5 μl. (If a reverse-transcription reaction has already been performed using a 20 μl reaction volume, dilute the 20 μl reaction in 80 μl RNase-free water and use exactly 5 μl diluted cDNA for preamplification.)
- The preamplification must start with an initial incubation step of 15 minutes at 95°C to activate HotStarTaq® DNA Polymerase.
- IMPORTANT: miScript PreAMP miRNome Primer Mixes may be provided in multiple tubes. In these cases, set up separate preamplification reactions and pool once the reactions are completed.
- For preamplification using a mixture of miScript Primer Assays instead of a miScript PreAMP Primer Mix, refer to the miScript PreAMP Handbook.
- Prepare the preamplification master mix at room temperature according to Table 1.
 Mix and then store on ice.

Note: 5x miScript PreAMP Buffer and HotStarTaq DNA Polymerase should be removed from the −20°C freezer just before preparation of the master mix and placed on ice. They should be returned to the freezer immediately after use.

Table 1. Preamplification reaction components

Component	Volume/reaction	
5x miScript PreAMP Buffer	5 µl	
HotStarTaq DNA Polymerase	2 µl	
miScript PreAMP Primer Mix	5 µl	
RNase-free water	7 µl	
miScript PreAMP Universal Primer	1 µl	
Template cDNA (added in step 2)	5 µl	
Total volume	25 μΙ	

- 2. Add template cDNA to each tube containing preamplification master mix. Mix gently, briefly centrifuge, and then place on ice.
- 3. Program the thermal cycler according to either Table 2 (for 96-plex preamplification reaction) or Table 3 (for 384-plex preamplification reaction).

A 96-plex preamplification reaction amplifies 96 cDNA targets and is used with a miScript PreAMP Pathway Primer Mix or with a miScript PreAMP Custom Primer Mix (up to 96 assays) for subsequent miRNA profiling with a Pathway-Focused or Custom miScript miRNA PCR Array.

A 384-plex preamplification reaction amplifies 384 cDNA targets and is used with a miScript PreAMP miRNome Primer Mix, miScript PreAMP Pathway HC Primer Mix, or miScript PreAMP Custom Primer Mix (96–384 assays) for subsequent miRNA profiling with a miRNome or Custom miScript miRNA PCR Array or a miScript miRNA HC PCR Array.

Table 2. Cycling conditions for 96-plex preamplification

Step	Time	Temperature
Initial activation step	15 min	95°C
HotStarTaq DNA Polymerase is activated by this heating step.		
2-step cycling:		
Denaturation	30 s	94°C
Annealing/extension	3 min	60°C
Cycle number	12 cycles	

Table 3. Cycling conditions for 384-plex preamplification

Step	Time	Temperature
Initial activation step	15 min	95°C
HotStarTaq DNA Polymerase is activated by this heating step.		
3-step cycling:		
Denaturation	30 s	94°C
Annealing	60 s	55°C
Extension	60 s	70°C
Cycle number	2 cycles	
2-step cycling:		
Denaturation	30 s	94°C
Annealing	3 min	60°C
Cycle number	10 cycles	

- 4. Place the preamplification reaction in the real-time cycler and start the run.
- 5. After the run has finished, dilute the preamplified cDNA in RNase-free water according to the following recommendations. Gently mix and then store on ice.

Dilution factor for Pathway-Focused Arrays and Custom Arrays (up to 96 assays) = $ng input cDNA \times 20-fold/ng$

Dilution factor for miRNome Arrays, Custom Arrays (96 to 384 assays), and HC Arrays = ng input cDNA x 5-fold/ng

Example of dilution for Pathway-Focused Array: If 10 ng total RNA was used in the 10 μ l reverse-transcription reaction that was subsequently diluted in 40 μ l RNase free water, and 5 μ l diluted cDNA was used in the preamplification reaction, this results in 1 ng cDNA used as starting material for the preamplification reaction. According to the formula:

Dilution factor = $1 \text{ ng input cDNA} \times 20 \text{-fold/ng} = 20 \text{-fold}$

For a 20-fold dilution, dilute the 25 µl preamplification reaction in 475 µl RNase free water.

IMPORTANT: The minimum dilution factor for preamplified cDNA is 20-fold for Pathway-Focused Arrays and Custom Arrays (up to 96 assays) and 5-fold for miRNome Arrays, Custom Arrays (96 to 384 assays), and HC Arrays. Therefore if less than 1 ng input cDNA was used for preamplification, we recommend performing a 20-fold or 5-fold dilution, depending on the array type.

Note: If the input cDNA amount is not known, we recommend using miR-16 miScript Primer Assay or SNORD95 miScript Primer Assay or the miScript miRNA QC PCR Array to determine the optimal dilution factor. See the *miScript PreAMP Handbook* for more details.

Note: The real-time PCR reaction mix composition compensates for the differing dilutions (20-fold or 5-fold), ensuring the same amount of template preamplified cDNA in real-time PCR miRNA quantification.

IMPORTANT: For miScript PreAMP miRNome Primer Mixes provided in multiple tubes, separate preamplification reactions were performed. Pool the preamplification reactions prior to dilution.

6. Proceed with real-time PCR according the miScript miRNA PCR Array Handbook.

Note: For further details and a protocol for control experiments using the miScript Primer Assays provided in the miScript PreAMP PCR Kit, see the *miScript PreAMP Handbook*.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, HotStarTaq®, miScript® (QIAGEN Group). 1072581 05/2012 © 2012 QIAGEN, all rights reserved.

