QlAseq™ Immune Repertoire RNA Library Kit

Part 2: Adapter ligation, cleanup of adapter-ligated DNA, target enrichment

Further information

- QIAseg Immune Repertoire RNA Library Kit Handbook: www.qiagen.com/HB-2479
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.giagen.com

Notes before starting

- Prepare the reagents as described in the handbook.
- Important: Ensure reactions are thoroughly mixed (7 to 8 times unless otherwise stated),
 prepared and incubated at recommended temperatures.

Adapter ligation

 $1. \ \, \text{On ice, prepare the adapter ligation reactions as described in Table } \, 1.$

Important: Only one single-indexed adapter should be used per ligation reaction. Each sample will have a different IL-N7## adapter. For 12-index adapter, open one tube at a time. For 96-index adapters supplied in a plate (layout described in the *QlAseq Immune Repertoire RNA Library Kit Handbook*), use a multichannel pipettor.

Important: Pipet slowly to mix. The reaction mix is very viscous. Do not vortex.

Table 1. Preparation of adapter ligation reactions

	1 reaction (µl)	
End-repair and A-addition reaction (from step 16 of Part 1)	50	
IL-N7## adapter*	2.5	
5x Ligation Buffer	20	
DNA Ligase	10	
Ligation solution [†]	15	
Nuclease-free water	2.5	
Total	100	

^{*} This component applies to QIAseq IL-N7## adapters with up to a 12 sample index for QIAseq 12-index I or QIAseq 96-index I A, B, C or D set.

2. With the thermal cycler lid open, incubate for 15 min at 20°C.

Important: Do not use a heated lid.

3. Proceed with "Cleanup of adapter-ligated DNA". Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer for up to 3 days.

Cleanup of adapter-ligated DNA

- 4. Transfer the 100 μ l adapter ligation product into a 1.5 ml LoBind® tube or a 300 μ l 96-well PCR plate.
- 5. Add 80 μl QlAseq Beads. Mix well by pipetting up and down 10 times.
- 6. Incubate for 5 min at room temperature.
- 7. Place the tubes/plate on a magnetic rack. After the solution has cleared (10 min for 1.5 ml LoBind tube or ~15 min for 300 µl plate), carefully remove and discard supernatant.

Important: Do not discard the beads as they contain the DNA of interest.

8. With the beads still on the magnetic stand, completely remove residual supernatant.

[†] Ligation solution is very viscous. It should be added into each reaction individually and not pre-mixed with other components for a master mix. Do not coat the outside of the pipet tip with ligation solution or excess volume may be added.

- 9. With the beads still on the magnetic stand, add 200 µl 80% ethanol. Rotate the tube (2 to 3 times) or move the plate side-to-side between the two column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 10. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol wash after this second wash.

11. With the beads still on the magnetic stand, air dry at room temperature for 10 min.

Note: Visually inspect that the pellet is completely dry.

- 12.Remove the tube from the magnetic stand, and elute the DNA from the beads by adding 52 µl nuclease-free water. Mix well by pipetting.
- 13. Return the tubes/plate to the magnetic rack until the solution has cleared.
- 14. Transfer 50 µl of the supernatant to clean tubes/plate.
- 15. Add 35 µl QlAseq Beads to the 50 µl supernatant. Pipet up and down 10 times to mix.
- 16. Incubate for 5 min at room temperature.
- 17.Place the tubes/plate on a magnetic rack for 5 min. Once the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads as they contain the DNA of interest.

- 18. With the beads still on the magnetic stand, add 200 µl 80% ethanol. Rotate the tube (2 to 3 times) or move the plate side-to-side between the two column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 19. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol wash after this second wash.

20. With the beads still on the magnetic stand, air dry at room temperature for 10 min.

Note: Visually inspect that the pellet is completely dry. Ethanol carryover to the target enrichment PCR step will affect PCR efficiency.

- 21. Remove the beads from the magnetic stand, and elute cDNA from beads by adding 12.4 μ l nuclease-free water. Mix well by pipetting.
- 22. Return the tube/plate to the magnetic rack until the solution has cleared.
- 23. Transfer 10.4 µl supernatant to a clean tube or plate.

24. Proceed with "Target enrichment". Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer for up to 3 days.

Target enrichment

25. Prepare the target enrichment reactions as described in Table 2.

Table 2. Preparation of target enrichment reactions

	1 reaction (µl)	
Adapter-ligated DNA (from "Cleanup of adapter-ligated DNA")	10.4	
QlAseq RNA Buffer, 5x	4	
QIAseq TCR panel	4	
IL-Forward primer	0.8	
HotStarTaq® DNA Polymerase	0.8	
Total	20	

26. Program a thermal cycler using the cycling conditions in Table 3.

Table 3. Cycler setting for SPE target enrichment

Step	Cycles	Incubation temperature	Incubation time
1	1	95°C	15 min
2	8	95°C 68°C	15 s 10 min
3	1 1	72°C 4°C	5 min Hold

- $27. \\ Place the target enrichment reaction in the thermal cycler and start the run.$
- 28. Proceed with "Cleanup of target enrichment" in Quick-Start Protocol Part 3. Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer for up to 3 days.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. Trademarks: QIAGEN®, Sample to Insight®, QIAseqTM, HolStarTaq® (QIAGEN Group); LoBind® (Eppendorf AG). 1108394 10/2017 HB-2471-001 © 2017 QIAGEN, all rights reserved.