RNeasy® Midi Kit

The RNeasy Midi Kit (cat. no. 75142) can be stored for at least 9 months at room temperature (15–25°C) if not otherwise stated on label.

Further information

- RNeasy Midi/Maxi Handbook: www.giagen.com/HB-0436
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.giagen.com

Notes before starting

- If purifying RNA from cell lines rich in RNases, or from tissue, add either 10 μl β-mercaptoethanol (β-ME), or 20 μl 2 M dithiothreitol (DTT),* to 1 ml Buffer RLT before use. Buffer RLT containing β-ME or DTT can be stored at room temperature for up to 1 month.
- Add 4 volumes of ethanol (96–100%) to Buffer RPE for a working solution.
- Remove RNAlater® stabilized tissue from the reagent using forceps.
- For RNeasy Protect Midi Kit (cat. no. 75154), please start with the Quick-StartProtocol
 RNAlater RNA Stabilization Reagent, RNAlater TissueProtect Tubes, and RNeasy Protect Kits.
- * This option not included in handbook; handbook to be updated.
- Cells: Harvest a maximum of 1 x 10⁸ cells. Add the appropriate volume of Buffer RLT and homogenize the lysate (see Table 1).
 - **Tissues**: Disrupt and homogenize the tissue (\leq 250 mg) in the appropriate volume of Buffer RLT (see Table 1). Centrifuge the lysate for 10 min at 3000–5000 x g. Remove the supernatant by pipetting and use it in step 2.
- 2. Add 1 volume of 70% ethanol to the lysate, and mix well by shaking vigorously. Do not centrifuge. Proceed immediately to step 3.

- 3. Transfer the sample (maximum 4 ml) to an RNeasy Midi column placed in a 15 ml centrifuge tube (supplied). Close the tube gently, and centrifuge for 5 min at 3000–5000 x g. Discard the flow-through.
- 4. Add 4 ml Buffer RW1 to the RNeasy spin column. Close the lid gently, and centrifuge for 5 min at 3000–5000 x g. Discard the flow-through.
 - **Optional**: For on-column DNase digestion, follow steps in Appendix F of the *RNeasy Midi/Maxi Handbook*.
- 5. Add 2.5 ml Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge for 2 min at $3000-5000 \times g$. Discard the flow-through.
- 6. Add 2.5 ml Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge for 5 min at $3000-5000 \times g$ to dry the RNeasy silica membrane.
- 7. To elute, transfer the RNeasy column to a new 15 ml collection tube (supplied). Add the appropriate volume of RNase-free water (see Table 1) directly to the spin column membrane. Close the tube gently. Let it stand for 1 min, then centrifuge for 3 min at 3000–5000 x g.
- 8. Repeat step 7 as described with a second volume of RNase-free water.

Table 1. Volumes for sample homogenization and elution of RNA

	Buffer RLT (ml)	homogenization	and elution volume
$\times 10^6 - 3 \times 10^7$	2	Add Buffer RLT, use QIAshredder, TissueRuptor®; or needle and syringe	≤150 µg in 150 µl
$\times 10^{7}$ –5 $\times 10^{7}$	2 or 4*		150 µg-1 mg in 250 µl
$\times 10^{7}$ –1 $\times 10^{8}$	4		
0-75 mg	2	TissueLyser II; TissueRuptor; or	≤150 µg in 150 µl
75–130 mg 2 or 4 [†] mortar and pestle followed by QIAshredder or needle and	150 µg-1 mg in 250 µl		
30-250 mg	4	syringe	
0	× 10 ⁷ –5 × 10 ⁷ × 10 ⁷ –1 × 10 ⁸ 0–75 mg	$\times 10^{7} - 5 \times 10^{7}$ 2 or 4* $\times 10^{7} - 1 \times 10^{8}$ 4 0-75 mg 2 5-130 mg 2 or 4 [†]	Add Buffer RLT, use \[\text{AlO}^2 - 5 \times 10^7 \] \[\times 10^7 - 1 \times 10^8 \times 10^7 \] \[\times 10^7 - 1 \times 10^8 \times 10^7

^{*} If expected RNA yield is higher than 150 µg per 10⁷ cells.

[†] If using difficult-to-lyse tissue samples >75 mg.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. Trademarks: QIAGEN®, Sample to Insight®, RNeasy®, TissueRuptor® (QIAGEN Group). "RNAlater®" is a trademark of AMBION, Inc., Austin, Texas and is covered by various U.S. and foreign patents. 1101296 03/2016 HB0569-002 © 2016 QIAGEN, all rights reserved.