April 2022

QIAseq[®] Multimodal Panel HT Handbook

Consolidated targeted next-generation sequencing of DNA and RNA

Sample to Insight

Contents

Kit Contents	4
Storage	9
Intended Use	9
Safety Information	9
Quality Control	10
Introduction	11
Principle and procedure	12
Important Notes	
Total nucleic acid isolation	18
Simultaneous purification of DNA and RNA into separate eluates	
Specific recommendations for FFPE samples (total nucleic acid or DNA)	19
Equipment and Reagents to Be Supplied by User	20
Protocol: Nucleic Acid Fragmentation, Standard Samples	21
Protocol: Nucleic Acid Fragmentation, FFPE Samples	24
Protocol: RNA Polyadenylation	27
Protocol: DNA Ligation	
Protocol: Reverse Transcription	
Protocol: Separated Workflow (SW) for Targeted Enrichment	35
Protocol: qPCR Determination of Universal PCR Cycles	41
Protocol: Universal PCR	44
Recommendations: Library QC and Quantification	50
NGS library QC	

Preferred library quantification method	50
Protocol: Sequencing Setup on Illumina MiSeq and NextSeq	51
Sequencing preparations for MiSeq	52
Sequencing preparations for NextSeq	54
Troubleshooting Guide	56
References	57
Appendix A: FFPE Sample Quality and Quantity	58
Appendix B: Combined Workflow for Targeted Enrichment	60
Appendix C: Combining an Existing Panel with a Booster Panel	65
Appendix D: Principle of variant detection with UMIs	66
Appendix E: Nucleic acid input amount and sequencing depth	67
Appendix F: Sample multiplexing recommendations for Illumina sequencing platforms	69
Appendix G: Legacy Multimodal Index Formats	78
Ordering Information	86
Document Revision History	89

Kit Contents

QIAseq Multimodal Panel HT Catalog no. Number of samples	(12) 334932 12	HC (12) 334942 12	(96) 334935 96	HC (96) 334945 96	Custom (96) 334955 96
Multimodal DHS Panel (DNA)	120 µl	120 µl	960 µl	960 µl	960 µl
Multimodal VHS Panel (RNA)	96 µl	96 µl	768 µl	768 µl	768 µl
Fragmentation Buffer, 10x	40 µl	40 µl	192 µl	192 µl	192 µl
Fragmentation Enzyme Mix	90 µl	90 µl	384 µl	384 µl	384 µl
FERA Solution	15 µl	15 µl	60 µl	60 µl	60 µl
Side Reaction Reducer	48 µl	48 µl	192 µl	192 µl	192 µl
FG Solution	170 µl	170 µl	170 µl	170 µl	170 µl
DNA Ligase	75 µl	75 µl	600 µl	600 µl	600 µl
UPH Ligation Buffer, 2.5x	288 µl	288 µl	1152 µl x 2	1152 µl x 2	1152 µl x 2
DNA Ligation Adapter	42 µl	42 µl	325 µl	325 µl	325 µl
ATP Solution	36 µl	36 µl	290 µl	290 µl	290 µl
PAP Enzyme	12 µl	12 µl	96 µl	96 µl	96 µl
PAP Dilution Buffer, 10x	24 µl	24 µl	192 µl	192 µl	192 µl
T4 Polynucleotide Kinase	12 µl	12 µl	125 µl	125 µl	125 µl
EZ Reverse Transcriptase	15 µl	15 µl	150 µl	150 µl	150 µl
RNase Inhibitor	12 µl	12 µl	96 µl	96 µl	96 µl
Multimodal RT Primer	12 µl	12 µl	96 µl	96 µl	96 µl
Multimodal RT Buffer, 5x	60 µl	60 µl	480 µl	480 µl	480 µl
Multimodal RT Enhancer	12 µl	12 µl	48 µl	48 µl	48 µl
TEPCR Buffer, 5x	60 µl x 2	60 µl x 2	500 µl x 2	500 µl x 2	500 µl x 2
QN Taq Polymerase	60 µl	60 µl	450 µl	450 µl	450 µl
Nuclease-free Water	1 tube	1 tube	10 ml	10 ml	10 ml
QIAseq Beads	10 ml	10 ml	38.4 ml x 2	38.4 ml x 2	38.4 ml x 2
QIAseq Bead Binding Buffer	10.2 ml	10.2 ml	10.2 ml x 3	10.2 ml x 3	10.2 ml x 3

Indexing for Separated Workflow (SW) for Targeted Enrichment

Note: Follow "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35.

QIAseq Multimodal Index I SW (12) (DNA and RNA indexing for 12 samples using the Separated Workflow for Targeted Enrichment)	(12)
Catalog no. Number of samples	333982 12
Multimodal N7 Plate SW (12): MTIN-12SWK	1
Each plate allows N7 indexing of 12 samples: 12 for DNA and 12 for RNA, with each well in the plate being single use. There are dried N7 index primers for DNA and RNA libraries, in separate wells of the same plate. The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate (12): MTIS-12K	1
Each plate allows S5 indexing of 12 samples: 12 for DNA and 12 for RNA, with each well in the plate being single use. The dried S5 indexes for DNA libraries are pre-mixed with universal DNA primer. The dried S5 indexes for RNA libraries are pre-mixed with universal RNA primer. The plates can be cut in columns to enable indexing of the desired number of samples.	
UPCR Buffer, 5x	60 µl x 3
DNA qPCR AMP Set	12 µl
RNA qPCR AMP Set	12 µl
QlAseq A Read 1 Primer I (100 µM)	24 µl
Multimodal Read 2 Primer (100 µM)	24 µl
Optical Thin-wall 8-cap Strips	24 strips

QIAseq Multimodal HT SW 96 UDI* (DNA and RNA indexing for 96 samples using the Separated Workflow for Targeted Enrichment)	(96)
Catalog no.	333986 MTSW-96A MTSW-96X MTSW-96K 96
Multimodal N7 Plate SW (96) for DNA: MTIN-96DNA/K/X	1
Each plate allows N7 indexing of 96 DNA samples. Each well in the plate is single use and contains dried N7 index primers for DNA libraries.	
Multimodal N7 Plate SW (96) for RNA: MTIN-96RNA/K/X	1
Each plate allows N7 indexing of 96 RNA samples. Each well in the plate is single use and contains dried N7 index primers for RNA libraries.	
Multimodal S5 Plate (96) for DNA: MTIS-96DNA/K/X	1
Each plate allows S5 indexing of 96 DNA samples: Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre-mixed with universal DNA primer.	
Multimodal S5 Plate (96) for RNA: MTIS-96RNA/K/X	1
Each plate allows S5 indexing of 96 RNA samples: Each well in the plate is single use and contains dried S5 indexes for RNA libraries pre-mixed with universal RNA primer.	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

* QlAseq Multimodal HT SW 96 UDI is a variant configuration product under the umbrella of cat. no. 333986, meaning that it is available in a variety of plastics. MTSW-96A is a hard-shell, full-skirted clear plate; MTSW-96X is a hard-shell, full-skirted white plate; and MTSW-96K is a non-skirted cuttable (in columns) plate.

Indexing for Combined Workflow (CW) for Targeted Enrichment

Note: Follow "Appendix B: Appendix B: Combined Workflow for Targeted Enrichment", page 60.

QIAseq Multimodal Index I (12) (DNA and RNA indexing for 12 samples using the Combined Workflow for Targeted Enrichment)	(12)
Catalog no.	333962
Number of samples	12
Multimodal N7 Plate (12): MTIN-12K	1
Each plate allows N7 indexing of 12 samples: 12 for DNA and 12 for RNA. Each well in the plate is single use. There are dried N7 index primers for both DNA and RNA, mixed in the same well. The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate (12): MTIS-12K	1
Each plate allows S5 indexing of 12 samples: 12 for DNA and 12 for RNA, with each well in the plate being single use. The dried S5 indexes for DNA libraries are pre-mixed with universal DNA primer. The dried S5 indexes for RNA libraries are pre-mixed with universal RNA primer. The plates can be cut in columns to enable indexing of the desired number of samples.	
UPCR Buffer, 5x	60 µl x 3
DNA qPCR AMP Set	12 µl
RNA qPCR AMP Set	12 µl
QIAseq A Read 1 Primer I (100 µM)	24 µl
Multimodal Read 2 Primer (100 µM)	24 µl
Optical Thin-wall 8-cap Strips	24 strips

QIAseq Multimodal HT CW 96 UDI* (DNA and RNA indexing for 96 samples using the Separated Workflow for Targeted Enrichment)	(96)
Catalog no.	333979 MTCW-96A MTCW-96X MTCW-96K 96
Multimodal N7 Plate (96): MTIN-96ABA/K/X	1
Each plate allows N7 indexing of 96 samples. Each well in the plate is single use, containing dried N7 index primers specific for DNA libraries mixed with N7 index primers specific for RNA libraries.	
Multimodal S5 Plate (96) for DNA: MTIS-96DNA/K/X	1
Each plate allows S5 indexing of 96 DNA samples: Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre-mixed with universal DNA primer.	
Multimodal S5 Plate (96) for RNA: MTIS-96RNA/K/X	1
Each plate allows S5 indexing of 96 RNA samples: Each well in the plate is single use and contains dried S5 indexes for RNA libraries pre-mixed with universal RNA primer.	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

* QIAseq Multimodal HT CW 96 UDI is a variant configuration product under the umbrella of cat. no. 333979, meaning that it is available in a variety of plastics. MTCW-96A is a hard-shell, full-skirted clear plate; MTCW-96X is a hard-shell, full-skirted white plate; and MTCW-96K is non-skirted cuttable (in columns) plate.

Storage

QlAseq Multimodal Panels (except QlAseq Beads, QlAseq Bead Binding Buffer, and Nuclease-free Water) are shipped on dry ice and should be stored immediately upon receipt at -30 to -15° C in a constant-temperature freezer.

QIAseq Beads, QIAseq Bead Binding Buffer, and Nuclease-free Water are shipped in a separate box on cold packs. Upon receipt, QIAseq Beads, QIAseq Bead Binding Buffer, and Nuclease-free Water should be stored at 2–8°C.

QIAseq Multimodal Index kits are shipped on dry ice and should be stored at -30 to -15° C upon arrival.

Intended Use

QIAseq Multimodal Panels and QIAseq Multimodal Index kits are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend all users of QIAGEN® products to adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety** where you can find, view, and print the SDS for each QIAGEN kit and kit component.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of QIAseq Multimodal Panels is tested against predetermined specifications to ensure consistent product quality.

Introduction

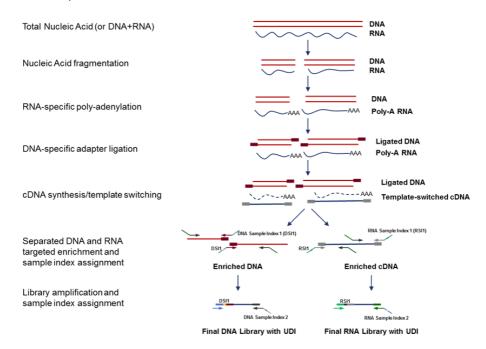
Recent advancements in NGS have enabled the analysis of single nucleotide variants (SNVs), InDels, and copy number variants (CNVs) from DNA, and the analysis of fusions and gene expression levels from RNA. Existing solutions, however, only allow users to perform such DNA and RNA analyses using 2 separate workflows: one for DNA and one for RNA. Additionally, these solutions require separate inputs of DNA and RNA, making the sequencing of low-yielding samples very difficult.

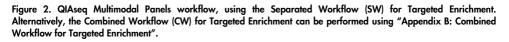
To overcome the limitations of existing solutions, the QIAseq Multimodal Panels have been developed. QIAseq Multimodal Panels enable Sample to Insight[®], simultaneous targeted next-generation sequencing (NGS) of DNA and RNA using total nucleic acids in a single-tube workflow. Resulting DNA and RNA libraries can be sequenced together for cost effectiveness. This highly optimized solution facilitates ultrasensitive DNA variant detection as well as fusions and gene expression detection from RNA using integrated unique molecular indices (UMIs) from cells, tissue, and biofluids. The starting material for QIAseq Multimodal can be total nucleic acid or separately isolated DNA and RNA.

The QIAseq Multimodal Panels use a targeted approach to sequencing by enriching specific genomic or transcriptomic regions. This enhances DNA and RNA NGS by enabling users to sequence specific regions of interest, which in turn effectively increases sequencing depth and sample throughput while minimizing cost. More importantly, QIAseq Multimodal Panels enable simultaneous enrichment for both DNA and RNA regions of interest using total nucleic acids as input, thereby saving precious biological material, maximizing library prep efficiency, and reducing handling errors. Using a robust chemistry with integrated UMIs, QIAseq Multimodal Panels enable sensitive detection of DNA and RNA analytes of interest. Furthermore, data analysis tools have been developed to perform all steps necessary to generate both a DNA sequence variant report as well as an RNA fusion and gene expression report from NGS data. Collectively, QIAseq Multimodal Panels are a Sample to Insight solution for consolidated targeted DNA and RNA analysis using NGS (Figure 1).

Figure 1. Overview of the Sample to Insight NGS workflow with QIAseq Multimodal Panels. The complete Sample to Insight procedure begins with total nucleic acid or AllPrep® (separate DNA and RNA) extractions. Next is library construction and target enrichment with QIAseq Multimodal Panels. Following NGS, data analysis is performed using the QIAseq Multimodal Panel Analysis Software pipeline in Genomics Workbench. Ultimately, detected variants can be interpreted with QIAGEN Clinical Insight Interpret (QCI®4) for QIAseq.

Principle and procedure


QlAseq Multimodal Panels enable the simultaneous enrichment and library prep of DNA+RNA, with up to 40,000 primers per panel (20,000 DNA + 20,000 RNA). For DNA, the recommended input range is 10–40 ng for fresh samples or 40–250 ng for FFPE samples. For RNA, the optimal amount of starting material depends on the relative abundance of the transcripts of interest. Lower-abundance transcripts require more RNA; high-abundance transcripts require less RNA. The recommended amount input range is 10–250 ng for fresh samples or 100–250 ng for FFPE samples (up to 500 ng for "severely" fragmented FFPE sample, with "severely" being defined as samples that have less than 40% of fragments >200 nt by smear analysis on the Bioanalyzer[®]). When working with total nucleic acid samples, input amounts should be based on DNA, because RNA is usually in vast excess to DNA. Lower input amounts are possible; however, this will lead to fewer sequenced UMIs and reduced variant detection sensitivity. The following reactions occur in a streamlined, single-tube workflow (Figure 2).


Nucleic acid fragmentation

RNA molecules are heat fragmented and DNA molecules are enzymatically fragmented, end repaired, and A-tailed within a single controlled multienzyme reaction.

RNA polyadenylation

Specific to RNA, synthetic polyadenylation is performed to create a binding site for subsequent reverse transcription.

DNA ligation

Specific to DNA, UMI-containing adapters are ligated at the 3' ends of the molecules. The UMI is a 12-base fully random sequence, which statistically provides 4¹² possible sequences per adapter and ensures that each molecule receives a UMI sequence. In addition, this adapter contains a binding site for subsequent target enrichment.

RNA reverse transcription and template switching

Specific to RNA, reverse transcription and template switching are performed. For reverse transcription, the anchored oligo-dT primer contains a 10-base fully random UMI sequence, and the template switching oligonucleotide also contains a 10-base fully random UMI sequence. This allows each RNA molecule to be tagged with a unique UMI, regardless of which strand it was derived from. Lastly, the reverse transcription and template switching oligonucleotides each contain the same binding site for subsequent target enrichment.

Target enrichment

Two protocols are provided for target enrichment. The recommended, default workflow is "Separated Workflow (SW) for Targeted Enrichment":

- "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35.
- "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60.

IMPORTANT: Table 1 outlines important points to consider when choosing between the 2 protocols.

Table 1. Target enrichment	options
----------------------------	---------

For	Notes
Maximal panel specificity	With this protocol, when considering sequencing read budgets, the DNA panel and the RNA panel can be considered separately. For example, if you are working with a DNA panel of 10,000 primers and an RNA panel of 1,000 primers, the read
	budget ultimately needed for the DNA library must be based on 10,000 primers and the read budget ultimately needed for the RNA library must be based on 1,000 primers.
Flexibility for Custom Multimodal Primer Panel design	Separated targeted DNA and RNA enrichment prevents the need to account for potential interactions (i.e., dimerization potential) between DNA and RNA primer pool
Custom Multimodal Primer Panels with specific primer numbers	When the number of DNA+RNA primers is ≥ 12,000
QIAseq Multimodal Panel UHS-5000Z	QIAseq Multimodal Pan Cancer Panel (UHS- 5000Z) is designed exclusively for the "Separated Targeted DNA and RNA Enrichment in Separate Tubes" workflow
Maximal detection sensitivity of DNA and RNA variants, but at the expense of sequencing read allocation, since there is no splitting of samples	Points to note with the combined protocol are that RNA primers will amplify DNA, and DNA primers have the possibility of amplifying RNA. As a result, when considering sequencing read budgets, the panel size needs to be accounted for as "DNA+RNA" primers. For example, if you are working with a DNA panel of 10,000 primers and an RNA panel of 1,000 primers, the read budget ultimately needed for both the DNA and the RNA library must be based on 11,000
	Maximal panel specificity Flexibility for Custom Multimodal Primer Panel design Custom Multimodal Primer Panels with specific primer numbers QIAseq Multimodal Panel UHS-5000Z Maximal detection sensitivity of DNA and RNA variants, but at the expense of sequencing read allocation, since there is no splitting of

For both DNA and RNA, target enrichment is performed post-UMI assignment to ensure that molecules containing UMIs are sufficiently enriched in the sequenced library. For enrichment, ligated DNA molecules and reverse-transcribed/template-switched cDNA molecules are subject to several cycles of targeted PCR using a single primer extension (SPE) approach. This reaction includes highly optimized chemistry to amplify traditionally difficult regions using pools of DNA and RNA region-specific primers. Universal primers complementary to the DNA adapter-binding sequence and reverse-transcription/template-switching oligonucleotides ensure specificity for DNA and RNA molecules and assign the N7 index, which is one of the 2 sample uniaue dual indexes (UDIs). The N7 indexes are listed on www.giagen.com/QIAsegMultimodalPanels.

Library amplification

A Universal PCR is ultimately carried out separately on DNA and RNA libraries to both optimally amplify each library as well as add the second UDI. Collectively, DNA and RNA libraries for a given sample have their own unique dual indexes. The S5 indexes are listed on **www.qiagen.com/QIAseqMultimodalPanels**.

Important: The sample recommendations for the UDIs should be maintained between the N7 and S5 indexes.

Next-generation sequencing

QIAseq Multimodal Panels are compatible with Illumina NGS platforms including MiniSeq[®], MiSeq[®], NextSeq[®] 500/550, NextSeq 1000/2000, HiSeq[®] 2500, HiSeq 3000/4000, and NovaSeq[™] 6000. The QIAseq Multimodal Panels cannot be used on Illumina's iSeq 100 platform. When using Illumina NGS systems, QIAseq Multimodal libraries require a custom sequencing primer for Read 1 (QIAseq A Read 1 Primer I), custom sequencing primer for Read 2 (Multimodal Read 2 Primer), and 149 bp paired-end reads.

Data analysis

Data from QIAseq Multimodal Panels can be analyzed using the QIAGEN CLC Genomics Workbench, which allows you to optimize analysis parameters for your specific panels. The parameters can then be locked for routine use. All detected variants can be further interpreted using QCI-I for QIAseq.

Important Notes

The most important prerequisite for sequence analysis is consistent, high-quality DNA and RNA from every experimental sample. Therefore, sample handling and isolation procedures are critical to the success of the experiment. Residual traces of proteins, salts, or other contaminants may either degrade the nucleic acids or decrease the efficiency of – if not block completely – the enzymatic activity necessary for optimal targeted enrichment.

Total nucleic acid isolation

Supplementary protocols for the simultaneous isolation of total nucleic acid (DNA+RNA) from cells and tissue, blood, or FFPE samples are available at **www.qiagen.com/TotalNucleicAcid**.

Note: For quantification of DNA and RNA from total nucleic acid samples, we recommend the high-sensitivity Quant-iT[™] dsDNA Assay Kit (Thermo Fisher Scientific, cat. no. Q33120) for DNA and the Quant-iT RNA Assay Kit (Thermo Fisher Scientific, cat. no. Q33140) for RNA. When working with total nucleic acid samples, input amounts should be based on DNA because RNA is usually in vast excess to DNA.

Simultaneous purification of DNA and RNA into separate eluates

The QIAGEN kits listed in Table 2 are recommended for the preparation of DNA and RNA samples from cells, tissues, and FFPE tissues. For whole blood, we recommend the PAXgene Blood DNA Kit (cat. no. 761133) and the PAXgene Blood RNA Kit (cat. no. 762174).

Note: If samples must be harvested from biological samples for which kits are not available, please contact QIAGEN Technical Services (**support.qiagen.com**) for suggestions.

Kit	Starting material	Cat. no.	
AllPrep DNA/RNA Mini Kit	Cells and tissue	80204	
AllPrep DNA/RNA FFPE Kit	FFPE samples	80234	

Table 2. Recommended AllPrep kits for simultaneous purification of DNA and RNA into separate eluates

Specific recommendations for FFPE samples (total nucleic acid or DNA)

If FFPE samples are used for QIAseq Multimodal Panels, the QIAseq DNA QuantiMIZE kits (cat. no. 333404 or 333414) are strongly recommended for determining the quality of each FFPE sample. Appendix A provides detailed information for FFPE DNA quality assessment and input amount.

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

In addition to the QIAseq Multimodal Panels and the QIAseq Multimodal Index kit, the following are required:

- EvaGreen[®], 20x, in water (Biotium, cat. no. 31000-T or 31000)
- 80% ethanol (made fresh daily) *
- Nuclease-free pipette tips and tubes
- 1.5 ml LoBind[®] tubes (Eppendorf, cat. no. 022431021)
- PCR tubes (0.2 ml individual tubes [VWR, cat. no. 20170-012] or tube strips [VWR, cat. no. 93001-118]) or plates
- Ice
- Microcentrifuge
- Thermal cycler
- Magnet for bead cleanups:
 - Tubes: MagneSphere® Technology Magnetic Separation Stand (Promega, cat. no. Z5342)
 - Plates: DynaMag[™]-96 Side Magnet (Thermo Fisher Scientific Inc., cat. no. 12331D)
- 2100 Bioanalyzer (Agilent[®], cat. no. G2939BA)
- Agilent High Sensitivity DNA Kit (Agilent, cat. no. 5067-4626)

* Do not use denatured alcohol, which contains other substances, such as methanol or methylethylketone.

Protocol: Nucleic Acid Fragmentation, Standard Samples

Important points before starting

- This protocol describes fragmentation of nucleic acids from "standard samples" (i.e., cells or tissue). For fragmentation of FFPE samples, please refer to "Protocol: Nucleic Acid Fragmentation, FFPE Samples", page 24.
- This protocol is designed to work with either total nucleic acid eluates (those containing DNA+RNA) or separate DNA and RNA eluates.
- When performing "Protocol: Separated Workflow (SW) for Targeted Enrichment", the recommended amount of DNA is 20–80 ng.
- When performing "Appendix B: Combined Workflow (CW) for Targeted Enrichment", the recommended amount of DNA is 10–40 ng.
- The recommended amount of RNA is 10 ng to 250 ng total RNA. When working with total nucleic acid samples, we recommend basing the input on the amount of quantified DNA.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.

Procedure

- 1. Thaw nucleic acid samples on ice. Gently mix, briefly centrifuge to collect residual liquid from the sides of the tubes, and then return to ice.
- 2. Prepare the reagents required for the fragmentation.
 - Thaw Fragmentation Buffer, 10x, and FERA Solution at room temperature (15–25°C).
 - 2b. Mix by flicking the tube, and then centrifuge briefly.

Note: Fragmentation Enzyme Mix should be removed from the freezer just before use and placed on ice. After use, immediately return the enzymes to the freezer.

3. On ice, prepare the fragmentation mix according to Table 3a (standard samples) or Table 3b (cfDNA samples). Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Component	Volume/reaction
DNA (see input recommendation in the "Important points before starting" section)*	Variable A
RNA (see input recommendation in the "Important points before starting" section)*	Variable B
Fragmentation Buffer, 10x	2 µl
FERA Solution	0.6 µl
Fragmentation Enzyme Mix	4 µl
Nuclease-free Water	13.4 µl – variable A (DNA) – variable B (RNA)
Total	20 µl

Table 3a. Reaction mix for nucleic acid fragmentatio	Table 3a.	Reaction	mix for	nucleic	acid	fraamentatio
--	-----------	----------	---------	---------	------	--------------

* Instead of adding DNA and RNA separately, total nucleic acid containing both DNA and RNA can be added. If adding total nucleic acid, base the input amount on DNA.

Component	Volume/reaction (pure cfDNA)	Volume/reaction (cfDNA contaminated with cellular DNA)
DNA (see input recommendation in the "Important points before starting" section)*	Variable A	Variable A
RNA (see input recommendation in the "Important points before starting" section)*	Variable B	Variable B
Fragmentation Buffer, 10x	2 µl	2 µl
FERA Solution	0.6 µl	0.6 µl
FG Solution	_	1.25
Fragmentation Enzyme Mix	4 µl	4 µl
Nuclease-free Water	Variable	Variable
Total	20 µl	20 µl

Table 3b. Reaction mix for nucleic acid fragmentation of cfDNA samples

* Instead of adding DNA and RNA separately, total nucleic acid containing both DNA and RNA can be added. If adding total nucleic acid, base the input amount on DNA.

4. Program the thermal cycler according to Table 4. Use the instrument's heated lid.

Table 4. Incubation conditions for nucleic acid fragmentation

Step	Incubation temperature	Incubation time for standard sample	Incubation time for cfDNA
1	4°C	1 min	1 min
2	32°C	24 min	14 min
3	72°C	30 min	30 min
4	4°C	Hold	Hold

5. Prior to adding the tubes/plate to a thermal cycler, start the program. When the thermal cycler reaches 4°C, pause the program.

Important: The thermal cycler must be prechilled and paused at 4°C.

- 6. Transfer the tubes/plate prepared in step 3 to the prechilled thermal cycler and resume the program.
- 7. Upon completion, allow the thermal cycler to return to 4°C.
- 8. Place the samples on ice and immediately proceed to "Protocol: RNA Polyadenylation", page 27.

Protocol: Nucleic Acid Fragmentation, FFPE Samples

Important points before starting

- This protocol describes fragmentation of nucleic acids from FFPE samples. For fragmentation of "standard samples" (i.e., cells or tissue), please refer to "Protocol: Nucleic Acid Fragmentation, Standard Samples", page 21.
- This protocol is designed to work with either total nucleic acid eluates (those containing DNA+RNA) or separate DNA and RNA eluates.
- The recommended amount of FFPE DNA is up to 250 ng DNA if QIAseq QuantiMIZE kits have been used (See "Appendix A: FFPE Sample Quality and Quantity", page 58). If an alternative method was used to determine the concentration of FFPE DNA, then up to 100 ng DNA can be used. For better results, we recommend that first-time users start with 250 ng FFPE RNA (up to 500 ng for "severely" fragmented FFPE sample, with "severely" being defined as samples that have less than 40% of fragments >200 nt by smear analysis on the Bioanalyzer). When working with total nucleic acid samples, we recommend basing the input on the amount of quantified DNA.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.

Procedure

- 1. Thaw nucleic acid samples on ice. Gently mix, briefly centrifuge to collect residual liquid from the sides of the tubes, and then return to ice.
- 2. Prepare the reagents required for the fragmentation.
 - 2a. Thaw Fragmentation Buffer, 10x, and FERA Solution at room temperature.
 - 2b. Mix by flicking the tube, and centrifuge briefly.

Note: Side Reaction Reducer and Fragmentation Enzyme Mix should be removed from the freezer just before use and placed on ice. After use, immediately return the enzymes to the freezer.

3. On ice, prepare the fragmentation mix according to Table 5. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Component	Volume/reaction
DNA (see input recommendation in the "Important points before starting" section)*	Variable A
RNA (see input recommendation in the "Important points before starting" section)*	Variable B
Fragmentation Buffer, 10x	2 µl
FERA Solution	0.6 µl
Side Reaction Reducer	1.6 µl
Nuclease-free Water	11.8 µl – variable A (DNA) – variable B (RNA)
Total	16 µl

Table 5. Re	action mix	for nucleic	acid frag	gmentation
-------------	------------	-------------	-----------	------------

* Instead of adding DNA and RNA separately, total nucleic acid containing both DNA and RNA can be added. If adding total nucleic acid, base the input amount on DNA.

- 4. Incubate for 15 min at 37°C and then place on ice.
- Add 4 µl of Fragmentation Enzyme Mix to each reaction. Briefly centrifuge, mix by pipetting up and down 10–12 times (do not vortex), and then briefly centrifuge again.
 Important: Keep the reaction tubes/plate on ice during the entire reaction setup.
- 6. Program the thermal cycler according to Table 6. Use the instrument's heated lid.

Table 6. Incubation conditions for nucleic acid fragmentation

Step	Incubation temperature	Incubation time
1	4°C	1 min
2	32°C	14 min
3	72°C	30 min
4	4°C	Hold

7. Prior to adding the tubes/plate to a thermal cycler, start the program. When the thermal cycler reaches 4°C, pause the program.

Important: The thermal cycler must be prechilled and paused at 4°C.

- 8. Transfer the tubes/plate prepared in step 5 to the prechilled thermal cycler and resume the program.
- 9. Upon completion, allow the thermal cycler to return to 4°C.
- Place the samples on ice, and immediately proceed to "Protocol: RNA Polyadenylation", page 27.

Protocol: RNA Polyadenylation

Important points before starting

- The product from "Protocol: Nucleic Acid Fragmentation, Standard Samples", page 21, or "Protocol: Nucleic Acid Fragmentation, FFPE Samples", page 24, is the starting material for this protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.

Procedure

- 1. Prepare the reagents required for the polyadenylation.
 - 1a. Thaw PAP Dilution Buffer, 10x, and ATP Solution on ice.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: T4 Polynucleotide Kinase and PAP Enzyme should be removed from the freezer just before use and placed on ice. After use, immediately return the enzymes to the freezer.

- 2. Prepare 1x PAP Dilution Buffer by diluting 2 μl of the 10x PAP Dilution Buffer with 18 μl Nuclease-free Water.
- Use the 1x PAP Dilution Buffer to dilute an aliquot of the PAP Enzyme from 5 U/µl to 2 U/µl. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.
- 4. Prepare the RNA polyadenylation mix according to Table 7. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 7. Reaction mix for RNA polyadenylation

Component	Volume/reaction	
Fragmentation reaction (already in tube)	20 µl	
ATP Solution	1.25 µl	
T4 Polynucleotide Kinase	1 µl	
Diluted PAP Enzyme (2 U/µl)*	1 µl	
Nuclease-free Water	1.75 µl	
Total	25 µl	

* Ensure PAP Enzyme has been diluted from its stock 5U/µl concentration to 2U/µl using 1x PAP Dilution Buffer.

5. Incubate the reactions in a thermal cycler according to Table 8. Use the instrument's heated lid.

Table 8. Incubation conditions for RNA polyadenylation

Step	Incubation temperature	Incubation time
1	4°C	1 min
2	30°C	10 min
3	4°C	Hold

6. Upon completion, place the reactions on ice and proceed to "Protocol: DNA Ligation", page 29.

Protocol: DNA Ligation

Important points before starting

- The product from "Protocol: RNA Polyadenylation", page 27, is the starting material for this protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Important: Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working quickly and resuspending the beads immediately before use. If a delay in the protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for the DNA ligation.
 - 1a. Thaw DNA Ligation Adapter; UPH Ligation Buffer, 2.5x, at room temperature.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: DNA Ligase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzyme to the freezer.

2. Prepare the DNA ligation mix according to Table 9. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 9. Reaction mix for DNA ligation

Component	Volume/reaction	
RNA polyadenylation reaction (already in tube)	25 µl	
UPH Ligation Buffer, 2.5x	24 µl	
DNA Ligation Adapter	3.36 µl	
DNA Ligase	6 µl	
Nuclease-free Water	1.64 µl	
Total	60 µl	

3. Incubate the reactions in a thermal cycler according to Table 10.

Important: Do not use the heated lid.

Table 10. Incubation conditions for DNA ligation

Step	Incubation temperature	Incubation time
1	4°C	1 min
2	20°C	15 min
3	4°C	Hold

- 4. Add 40 µl of Nuclease-free Water to bring each sample to 100 µl.
- 5. Add 130 µl QlAseq Beads, and then mix by vortexing.
- 6. Incubate for 5 min at room temperature.
- 7. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates). Once the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest.

Tip: For plates, the following may improve performance. After 8 min, remove 130 μ l supernatant. Leave it on the magnetic stand for 2 min and remove 90 μ l supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 μ l pipette to remove the remaining supernatant.

- Add 80 µl of Nuclease-free Water to resuspend the beads and then 128 µl of QlAseq NGS Bead Binding Buffer. Mix by vortexing and incubate for 5 min at room temperature.
- 9. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates). Once the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest. **Tip**: For plates, the following may improve performance. After 8 min, remove 108µl supernatant. Leave it on the magnetic stand for 2 min and remove 90 µl supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 µl pipette to remove the remaining supernatant.

- 10. With the beads still on the magnetic stand, add 200 µl of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 11. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after the second wash. Remove the ethanol with a 200 µl pipette tip first, spin down briefly and then use a 10 µl pipette tip to remove any residual ethanol.

- 12. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min. Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.
- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 19 µl Nuclease-free Water. Mix well by pipetting.
- 14. Return the tube/plate to the magnetic rack until the solution has cleared.
- 15. Transfer 16.62 µl of the supernatant to clean tubes/plate.

Proceed to "Protocol: Reverse Transcription", page 32. Alternatively, the samples can be stored at -30 to -15° C in a constant-temperature freezer.

Protocol: Reverse Transcription

Important points before starting

- The 16.62 µl product from "Protocol: DNA Ligation", page 29, is the starting material for this protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- Important: Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working quickly and resuspending the beads immediately before use. If a delay in the protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for the reverse transcription.
 - Thaw the Multimodal RT Primer; Multimodal RT Buffer, 5x; and Multimodal RT Enhancer at room temperature.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: The RNase Inhibitor and EZ Reverse Transcriptase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzymes to the freezer.

2. Prepare the reverse transcription mix according to Table 11. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 11. Reaction mix for reverse transcription

Component	Volume/reaction
Sample (from "Protocol: DNA Ligation", page 29)	16.62 µl
Multimodal RT Primer	1 µl
Multimodal RT Buffer, 5x	5 µl
Multimodal RT Enhancer	0.5 µl
RNase Inhibitor	0.63 lu
EZ Reverse Transcriptase	1.25 µl
Total	25 µl

3. Incubate the reactions in a thermal cycler according to Table 12. Use the instrument's heated lid.

Table 12. Incubation conditions for reverse transcription

Step	Incubation temperature	Incubation time	
1	4°C	1 min	
2	25°C	10 min	
3	42°C	45 min	
4	70°C	15 min	
5	4°C	Hold	

- 4. Add 75 µl of Nuclease-free Water to bring each sample to 100 µl.
- 5. Add 130 µl QlAseq Beads and mix by vortexing or by pipetting up and down several times.
- 6. Incubate for 5 min at room temperature.
- 7. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates). After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest.

Tip: For plates, the following may improve performance. After 8 min, remove 130μ l supernatant. Leave it on the magnetic stand for 2 min and remove 90 μ l supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 μ l pipette to remove the remaining supernatant.

- 8. With the beads still on the magnetic stand, add 200 µl of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 9. Repeat the ethanol wash.

universal PCR step will affect PCR efficiency.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 µl pipette tip first, spin down briefly, and then use a 10 µl pipette tip to remove any residual ethanol.

- With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.
 Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required. Ethanol carryover to the next
- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 22.4 µl Nuclease-free Water.

Important: If performing the Combined Workflow (CW) for Targeted Enrichment (Appendix B, page 60), elute by adding 15 µl Nuclease-free Water.

- 12. Return the tube/plate to the magnetic rack until solution the solution has cleared.
- 13. Transfer 10.2 µl of the eluate to each of 2 clean tubes/plate wells per sample.

Important: If performing the Combined Workflow (CW) for Targeted Enrichment (Appendix B, page 60), transfer 12.4 µl of the eluate to clean tubes/plate wells and proceed to the Appendix B protocol.

 Proceed to "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35. Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Protocol: Separated Workflow (SW) for Targeted Enrichment

Important points before starting

- Two 10.2 µl aliquots of the product from "Protocol: Reverse Transcription", page 32, is the starting material for this protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- The final library dual sample index is determined by the combination of the QIAseq Multimodal N7 Plate and the QIAseq Multimodal S5 Plate. QIAseq Beads are used for all reaction cleanups.

Important: The required combinations of indexes are described in the sequencing sample setup sheets:

- O Sample Sheet Multimodal UDI Set 96: www.qiagen.com/PROM-20735
- Important: Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates
 working quickly and resuspending the beads immediately before use. If a delay in the
 protocol occurs, simply vortex the beads.
- Important: To use this protocol, one of the following QIAseq Multimodal N7 index plates is required:
 - QIAseq Multimodal Index I SW (12) (cat. no. 333982): MTIN-12SWK (shown in Table 14)
 - QIAseq Multimodal HT SW 96 UDI (cat. no. 333986): MTIN-96DNA/K/X and MTIN-96RNA/K/X (shown in Table 15)

MTIN-12SWK is a 12-reaction format enabling the indexing of 12 DNA and 12 RNA libraries. There are dried N7 index primers for DNA and RNA libraries, in separate wells of the same plate. The plates can be cut in columns to enable indexing of the desired number of samples.

MTIN-96DNA/K/X and MTIN-96RNA/K/X enable the N7 indexing of 96 DNA samples and 96 RNA samples, respectively, using separate plates.

Procedure

- 1. Prepare the reagents required for target enrichment.
 - Thaw TEPCR Buffer, 5x; Multimodal DHS Panel (DNA); and Multimodal VHS Panel (RNA); and bring the QIAseq Multimodal N7 index plate to room temperature.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: QN Taq Polymerase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzyme to the freezer.

2. Prepare the target enrichment mix according to Table 13. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Component	Separate DNA	Separate RNA
Sample (from "Protocol: Reverse Transcription", page 32)	10.2 µl	10.2 µl
TEPCR Buffer, 5x	4 µl	4 µl
Multimodal DHS Panel (DNA)	5 µl	Ο μΙ
Multimodal VHS Panel (RNA)	اµ O	4 µl
QN Taq Polymerase	0.8 µl	0.8 µl
Nuclease-free Water	اµ O	1 µl
Total	20 µl	20 µl

Table 13. Reaction mix for separated target enrichment

Add the 20 μ l target enrichment reaction mix into a well of a QIAseq Multimodal N7 index plate (Table 14 and Table 15).

Important: Put any unused plate(s) back in the foil back and keep in -30 to -15° C for long-term storage.

Important: Index primers for DNA and RNA should be used in pairs. For example, in MTIN-12SWK (Table 14), use well A1 for DNA and well A7 for RNA for sample 1, use well B1 for DNA and well B7 for RNA for sample 2, etc. For MTIN-96DNA/K/X and MTIN-96RNA/K/X (Table 15), well A1 for DNA (MTIN-96DNA/K/X) should be paired with well A1 for RNA (MTIN-96RNA/K/X), well A2 for DNA should be paired with well A2 for RNA, etc.

Table 14. Layout of QIAseq Multimodal N7 index plate MTIN-12SWK

	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 51	DNAp-M009 \$9	Empty	Empty	Empty	Empty	RNAp-M049 51	RNAp-M057 59	Empty	Empty	Empty	Empty
В	DNAp-M002 52	DNAp-M010 \$10	Empty	Empty	Empty	Empty	RNAp-M050 52	RNAp-M058 510	Empty	Empty	Empty	Empty
с	DNAp-M003 53	DNAp-M011 \$11	Empty	Empty	Empty	Empty	RNAp-M051 53	RNAp-M059 \$11	Empty	Empty	Empty	Empty
D	DNAp-M004 54	DNAp-M012 \$12	Empty	Empty	Empty	Empty	RNAp-M052 54	RNAp-M060 512	Empty	Empty	Empty	Empty
E	DNAp-M005 55	Empty	Empty	Empty	Empty	Empty	RNAp-M053 55	Empty	Empty	Empty	Empty	Empty
F	DNAp-M006 56	Empty	Empty	Empty	Empty	Empty	RNAp-M054 S6	Empty	Empty	Empty	Empty	Empty
G	DNAp-M007 57	Empty	Empty	Empty	Empty	Empty	RNAp-M055 57	Empty	Empty	Empty	Empty	Empty
Н	DNAp-M008 58	Empty	Empty	Empty	Empty	Empty	RNAp-M056 58	Empty	Empty	Empty	Empty	Empty

(a)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 \$1	DNAp-M009 59	DNAp-M017 517	DNAp-M025 \$25	DNAp-M033 533	DNAp-M041 541	DNAp-M097 549	DNAp-M105 557		DNAp-M121 573	DNAp-M129 581	DNAp-M137 589
В	DNAp-M002 52	DNAp-M010 510	DNAp-M018 518	DNAp-M026 526	DNAp-M034 534	DNAp-M042 542	DNAp-M098 550	DNAp-M106 558		DNAp-M122 574	DNAp-M130 582	DNAp-M138 590
с	DNAp-M003 53	DNAp-M011 \$11	DNAp-M019 \$19	DNAp-M027 527	DNAp-M035 535	DNAp-M043 543	DNAp-M099 551	DNAp-M107 \$59	DNAp-M115 567	DNAp-M123 575	DNAp-M131 583	DNAp-M139 591
D	DNAp-M004 54	DNAp-M012 512	DNAp-M020 520	DNAp-M028 528	DNAp-M036 536	DNAp-M044 544	DNAp-M100 552	DNAp-M108 560		DNAp-M124 576		DNAp-M140 592
E	DNAp-M005 \$5	DNAp-M013 \$13	DNAp-M021 521	DNAp-M029 529	DNAp-M037 537	DNAp-M045 \$45	DNAp-M101 553	DNAp-M109 561		DNAp-M125 \$77	DNAp-M133 585	DNAp-M141 \$93
F	DNAp-M006 56	DNAp-M014 \$14	DNAp-M022 522	DNAp-M030 530	DNAp-M038 538	DNAp-M046 546	DNAp-M102 554	DNAp-M110 562				DNAp-M142 594
G	DNAp-M007 \$7	DNAp-M015 \$15	DNAp-M023 523	DNAp-M031 531	DNAp-M039 539	DNAp-M047 547	DNAp-M103 \$55	DNAp-M111 563		DNAp-M127 579	DNAp-M135 587	DNAp-M143 \$95
н	DNAp-M008 58	DNAp-M016 516	DNAp-M024 524	DNAp-M032 532	DNAp-M040 540	DNAp-M048 548	DNAp-M104 556	DNAp-M112 564				DNAp-M144 \$96
(b)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	RNAp-M049 \$1	RNAp-M057 59	RNAp-M065 517	RNAp-M073 525	RNAp-M081 533	RNAp-M089 541	RNAp-M0145 549	RNAp-M153 557		RNAp-M169 573		RNAp-M185 589
В	RNAp-M050 52	RNAp-M058 \$10	RNAp-M066 518	RNAp-M074 526	RNAp-M082 534	RNAp-M090 542	RNAp-M146 550	RNAp-M154 558		RNAp-M170 574	RNAp-M178 582	RNAp-M186 590
с	RNAp-M051 53	RNAp-M059 \$11	RNAp-M067 519	RNAp-M075 527	RNAp-M083 535	RNAp-M091 543	RNAp-M147 551	RNAp-M155 \$59			RNAp-M179 583	RNAp-M187 591
D	RNAp-M052 54	RNAp-M060 \$12	RNAp-M068 520	RNAp-M076 528	RNAp-M084 536	RNAp-M092 544	RNAp-M148 552	RNAp-M156 560				RNAp-M188 592
E	RNAp-M053 55	RNAp-M061 513	RNAp-M069 521	RNAp-M077 529	RNAp-M085 537	RNAp-M093 545	RNAp-M149 553	RNAp-M157 561	RNAp-M165 569	RNAp-M173 577	RNAp-M181 \$85	RNAp-M189 593
	22	0.0										
F	80 RNAp-M054		-	RNAp-M078 530	RNAp-M086 538	RNAp-M094 546	RNAp-M150 554	RNAp-M158 562				RNAp-M190 594
F G	RNAp-M054	RNAp-M062 \$14	RNAp-M070 522			S46	\$54		870 RNAp-M167	S78	S86	\$94

Table 15. Layout of QIAseq Multimodal N7 index plates (a) MTIN-96DNA/K/X and (b) MTIN-96RNA/K/X

3. Briefly centrifuge, mix by pipetting up and down 8 times, and then briefly centrifuge again.

Note: If only a column is used, cut that column from the cuttable plate and proceed to the next step.

4. Program a thermal cycler according to Table 16a or Table 16b, based on the number of DNA or RNA primers (not the combined DNA+RNA primer total).

Step	Time	Temperature
Initial denaturation	2 min	98°C
8 cycles	15 s	98°C
	2 min	68°C
Hold	∞	4°C

Table 16a. Cycling conditions for target enrichment if the number of primers is <3000

Table 16b. Cycling conditions for target enrichment if the number of primers is ≥3000/tube

Step	Time (3000–12,000 primers/tube)	Time (>12,000 primers/tube)	Temperature
Initial denaturation	2 min	2 min	98°C
6 cycles	15 s 4 min	15 s 8 min	98℃ 65℃
Hold	00	~	4°C

- 5. Place the target enrichment reaction in the thermal cycler and start the run.
- 6. Once the run has finished, add 80 μl of Nuclease-free Water to bring each sample to 100 $\mu l.$
- Add 80 µl QlAseq Beads for standard/FFPE sample or 100 µl QlAseq Beads for cfDNA sample and mix by vortexing or by pipetting up and down several times.
- 8. Incubate for 5 min at room temperature.
- 9. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates). After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest.

Important: For FFPE samples or cfDNA/RNA, the following may improve performance. Add 65 μ l of Nuclease-free Water to resuspend beads, and then add 65 μ l of QIAseq Bead Binding Buffer. Mix by vortexing or pipetting up and down. Repeat steps 8 and 9. **Tip**: For plates, the following may improve performance. After 8 min, remove 100 μ l supernatant. Leave it on the magnetic stand for 2 min and remove the remaining supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 μ l pipette to remove the residues.

- With the beads still on the magnetic stand, add 200 μl of 80% ethanol. Rotate the tube
 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 11. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 μ l pipette first, spin down briefly, and then use a 10 μ l pipette to remove any residual ethanol.

- 12. With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min. Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required. Ethanol carryover to the next universal PCR step will affect PCR efficiency.
- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 14 µl Nuclease-free Water. Mix well by pipetting.
- 14. Return the tube/plate to the magnetic rack until the solution has cleared.
- 15. Transfer 12 µl of the supernatant to clean tubes/plate.
- Proceed to "Protocol: qPCR Determination of Universal PCR Cycles", page 41. Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Protocol: qPCR Determination of Universal PCR Cycles

Important points before starting

- 2 µl of the product from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35, or "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60, is the starting material for each of the reaction mixes.
- Important: EvaGreen, 20x in water, is required for this procedure and must be purchased from Biotium (cat. nos. 31000-T, 31000)
- Set up reactions on ice.
- Do not vortex any reagents or reactions.

Procedure

- 1. Prepare the reagents required for the qPCR.
 - Thaw UPCR Buffer, 5x; DNA qPCR AMP Set; and RNA qPCR AMP. Set at room temperature.
 - Mix by flicking the tube, and then centrifuge briefly.
 Note: QN Taq Polymerase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzyme to the freezer.
- Prepare the qPCR reactions according to Table 17 for DNA library or Table 18 for RNA library. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 17. Reaction mix for qPCR of DNA library
--

Component	Volume/reaction
DNA Sample [from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35]	
or	2 µl
Sample [from "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60]	
UPCR Buffer, 5x	2 µl
Nuclease-free Water	4.1 µl
DNA qPCR AMP Set	1 µl
QN Taq Polymerase	0.4 µl
EvaGreen, 20x in water*	0.5 µl
Total	10 µl

* Must be purchased from Biotium (cat. nos. 31000-T, 31000).

Table 18. Reaction mix for qPCR of RNA library

Component	Volume/reaction
RNA Sample [from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35]	
or	2 µl
Sample [from "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60]	
UPCR Buffer, 5x	2 µl
Nuclease-free Water	4.1 µl
RNA qPCR AMP Set	1 µl
QN Taq Polymerase	0.4 µl
EvaGreen, 20x in water*	0.5 µl
Total	10 µl

* Must be purchased from Biotium (cat. nos. 31000-T, 31000).

3. Program a qPCR instrument using the cycling conditions in Table 19.

Note: No melting curve is required.

Tuble 17. Reaction this for gree o		
Step	Time	Temperature
Hold	2 min	98°C
2-step cycling		
Denaturation	15 s	98°C
Annealing/Extension*	30 s	62°C
Cycle number	30 cycles	
Hold	∞	4°C

Table 19. Reaction mix for qPCR of RNA library

* Perform fluorescence data collection.

 Following the reaction, determine the C_T values. Based on the C_T values, the number of universal PCR cycles is defined as C_T^(qPCR)+3, for both the DNA and RNA libraries.

For example, if the DNA qPCR is $C_T=19$, then perform 22 cycles for DNA universal PCR. If the RNA qPCR is $C_T=15$, then perform 18 cycles for RNA universal PCR.

Alternative method:

When the run has finished, observe the amplification plot in "Log View" and define the baseline using "auto baseline". Using the "Log View" of the amplification plot, determine the cycle in which the amplification curve reaches its Plateau Phase, and use 2 cycles fewer. For example, if the plateau phase is reached when the C_T is 18, then 16 is the required number of universal PCR amplification cycles.

5. Once the amplification cycles for universal PCR have been determined, proceed to "Protocol: Universal PCR", page 44.

Protocol: Universal PCR

Important points before starting

- 9 ul of the product from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35, or "Appendix B: Combined Workflow (CW) for Targeted Enrichment, page 60, is the starting material for each of the reaction mixes.
- The number of cycles required for amplification are determined in "Protocol: qPCR Determination of Universal PCR Cycles", page 39.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- QIAseq Multimodal S5 index plates enable indexing of 12 or 96 samples via the following plates.
 - QIAseq Multimodal Index I SW (12) (cat. no. 333982): MTIS-12K (shown in Table 22)
 - QIAseq Multimodal HT SW 96 UDI (cat. no. 333986): MTIS-96DNA/K/X and MTIS-96RNA/K/X (shown in Table 23)
 - QIAseq Multimodal Index I (12) (cat. no. 333962): MTIS-12K (shown in Table 22)
 - QIAseq Multimodal HT CW 96 UDI (cat. no. 333979): MTIS-96DNA/K/X and MTIS-96RNA/K/X (shown in Table 23)
 - Note: MTIS-12K is the same plate found in cat. nos. 333982 and 333962. MTIS-96DNA/K/X and MTIS-96RNA/K/X are the same plates found in cat. nos. 333986 and 333979.

MTIS-12K enables the S5 indexing of 12 DNA and 12 RNA libraries. The dried S5 indexes for DNA libraries are pre-mixed with universal DNA primer. The dried S5 indexes for RNA libraries are pre-mixed with universal RNA primer. The plates can be cut in columns to enable indexing of the desired number of samples.

MTIN-96DNA/K/X and MTIN-96RNA/K/X enable the S5 indexing of 96 DNA samples and 96 RNA samples, respectively, using separate plates. The dried S5 indexes for DNA libraries are pre-mixed with universal DNA primer. The dried S5 indexes for RNA libraries are pre-mixed with universal RNA primer.

- **Important**: The required combinations of indexes are described in the sequencing sample setup sheets:
 - O Sample Sheet Multimodal UDI Set 96: www.qiagen.com/PROM-20735
- Important: Prepare fresh 80% ethanol daily.
- Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates working quickly and resuspending the beads immediately before use. If a delay in the protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for universal PCR.
 - Thaw UPCR Buffer, 5x, and bring the QIAseq Multimodal S5 Plate to room temperature.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: QN Taq Polymerase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzyme to the freezer.

2. Prepare the universal PCR according to Table 20 for DNA library or Table 21 for RNA library. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Table 20. Reaction mix for universal PCR of DNA library	Table 20.	Reaction	mix fo	or universal	PCR	of DNA	library
---	-----------	----------	--------	--------------	-----	--------	---------

Component	Volume/reaction
DNA Sample [from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35]	
or	9 µl
Sample [from "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60]	
UPCR Buffer, 5x	5 µl
Nuclease-free Water	10 µl
QN Taq Polymerase	1 µl
Total	25 µl

Table 21. Reaction mix for universal PCR of RNA library

Component	Volume/reaction
RNA Sample [from "Protocol: Separated Workflow (SW) for Targeted Enrichment", page 35]	
or	9 µl
Sample [from "Appendix B: Combined Workflow (CW) for Targeted Enrichment", page 60]	
UPCR Buffer, 5x	5 µl
Nuclease-free Water	10 µl
QN Taq Polymerase	1 µl
Total	25 µl

3. To the QIAseq Multimodal S5 index plate (Table 22 or Table 23) add the 25 μl reaction mix for universal PCR of DNA library to the DNA wells or plate, and add the 25 μl reaction mix for universal PCR of RNA library to the RNA wells or plate.

Important: S5 index primers for DNA and RNA should be used in pairs, both within themselves and with the N7 index primers. For example: in MTIS-12K (Table 22), use well A1 for DNA and well A7 for RNA for sample 1; use well B1 for DNA and well B7 for RNA for sample 2; etc. For MTIS-96DNA/K/X and MTIS-96RNA/K/X (Table 23), well A1 for DNA (MTIS-96DNA/K/X) should be paired with well A1 for RNA (MTIS-96RNA/K/X), well A2 for DNA should be paired with well A2 for RNA, etc.

		1	2	3	4	5	6	7	8	9	10	11	12
Α	S 1	SQDIB001 uDNA Pr	S9	Empty	Empty	Empty	Empty	SQDIB049 \$1 uRNA Pr	59	Empty	Empty	Empty	Empty
В	S 2	SQDIB002 uDNA Pr	\$10	Empty	Empty	Empty	Empty	SQDIB050 52 uRNA Pr	\$10	Empty	Empty	Empty	Empty
с	53	SQDIB003 uDNA Pr	\$11	Empty	Empty	Empty	Empty	SQDIB051 53 uRNA Pr	SQDIB059 \$11 uRNA Pr	Empty	Empty	Empty	Empty
D	S 4	SQDIB004 uDNA Pr	\$12	Empty	Empty	Empty	Empty	SQDIB052 54 uRNA Pr	\$12	Empty	Empty	Empty	Empty
E	S5	SQDIB005 uDNA Pr	Empty	Empty	Empty	Empty	Empty	SQDIB053 55 uRNA Pr	Empty	Empty	Empty	Empty	Empty
F	S 6	SQDIB006 uDNA Pr	Empty	Empty	Empty	Empty	Empty	SQDIB054 56 uRNA Pr	Empty	Empty	Empty	Empty	Empty
G	S7	SQDIB007 uDNA Pr	Empty	Empty	Empty	Empty	Empty	SQDIB055 57 uRNA Pr	Empty	Empty	Empty	Empty	Empty
н	58	SQDIB008 uDNA Pr	Empty	Empty	Empty	Empty	Empty	SQDIB056 58 uRNA Pr	Empty	Empty	Empty	Empty	Empty

Table 22. Layout of QIAseq Multimodal S5 index plate MTIS-12K

Table 23. Layout of QIAseq Mu	ultimodal S5 index plates (a) MTIS-96DNA/K/X and	(b) MTIS-96RNA/K/X
-------------------------------	-----------------------------	-----------------------	--------------------

(a)																								
		1		2		3		4		5		6		7		8		9		10		11		12
Α	\$1	SQDIB001 uDNA Pr	S 9	uDNA Pr	S 17	sqDiB017 uDNA Pr	S25	SQDIB025 uDNA Pr	S 33	SQDIB033 uDNA Pr	S 41	SQDIB041 uDNA Pr	S49	SQDIB097 uDNA Pr	S57	SQDIB105	S65	SQDIB113 uDNA Pr	S 73	SQDIB121 uDNA Pr	S8 1	SQDIB129	S 89	SQDIB137 uDNA Pr
В	S 2	SQDIB002 uDNA Pr	S10	SQDIB010 uDNA Pr	\$18	SQDIB018 uDNA Pr	S26	SQDIB026 uDNA Pr	S 34	SQDIB034 uDNA Pr	S42	SQDIB042 uDNA Pr	S50	SQDIB098 uDNA Pr	\$58	SQDIB106 uDNA Pr	S66	SQDIB114 uDNA Pr	S74	SQDIB122 uDNA Pr	S82	UDNA P	S90	SQDIB138 UDNA Pr
с	S 3	SQDIB003 uDNA Pr	S 11	UDNA Pr	\$19	UDNA Pr	S27	SQDIB027 uDNA Pr	S35	SQDIB035 uDNA Pr	S4 3	SQDIB043 uDNA Pr	S5 1	UDNA Pr	\$59	SQDIB107 uDNA Pr	S67	SQDIB115 uDNA Pr	S75	SQDIB123 uDNA Pr	S8 3	UDNA P	S 91	SQDIB764 uDNA Pr
D	S 4	SQDIB004 uDNA Pr	\$12	sqDiB012 uDNA Pr	S20	SQDIB020 uDNA Pr	S28		S 36	SQDIB036 uDNA Pr	S44	SQDIB044 uDNA Pr	S52	SQDIB100 uDNA Pr	S60	SQDIB108 uDNA Pr	S68	SQDIB116 uDNA Pr	S 76	SQDIB124 uDNA Pr	S 84	UDNA P	S92	SQDIB140 UDNA Pr
E	S 5	SQDIB005 uDNA Pr	\$13	sQDIB013 uDNA Pr	S21	SQDIB021 uDNA Pr	S29		S37	SQDIB037 uDNA Pr	S45	SQDIB045 uDNA Pr	S53	SQDIB101 uDNA Pr	S61	SQDIB109 uDNA Pr	S69	SQDIB117 uDNA Pr	S77	SQDIB125 uDNA Pr	S85	SQDIB133	S9 3	SQDIB141 uDNA Pr
F	S 6	SQDIB006 uDNA Pr	S 14	uDNA Pr	S22	SQDIB761 uDNA Pr	S 30		S 38	SQDIB038 uDNA Pr	S46	SQDIB046 uDNA Pr	S54	SQDIB102 uDNA Pr	S62	SQDIB110	S7 0	SQDIB118 uDNA Pr	S 78	SQDIB126 uDNA Pr	S86	SQDIB134	S 94	SQDIB142 uDNA Pr
G	S 7	SQDIB007 uDNA Pr	\$15	uDNA Pr	S 23	SQDIB023 uDNA Pr	\$31	SQDIB031 uDNA Pr	S 39	SQDIB763 uDNA Pr	S47	SQDIB047 uDNA Pr	S55	SQDIB103 uDNA Pr	S63	SQDIB111	S7 1	SQDIB119 uDNA Pr	S 79	SQDIB127 uDNA Pr	S 87	UDNA P	S95	SQDIB143 uDNA Pr
Н	58	SQDIB008 uDNA Pr	\$16	SQDIB016 uDNA Pr	S24	SQDIB024 uDNA Pr	S 32	SQDIB032 uDNA Pr	S40		S48		S56	sqDIB104 uDNA Pr	S64	SQDIB112 uDNA Pr	S72	SQDIB120 uDNA Pr	S80	SQDIB128 uDNA Pr	S88	SQDIB136	S96	SQDIB144 uDNA Pr

(b)																								
		1		2		3		4		5		6		7		8		9		10		11		12
A	\$1	SQDIB049 uRNA Pr	S 9	SQDIB057 uRNA Pr	S17	SQDIB065 uRNA Pr	S25	SQDIB073 uRNA Pr	S 33	SQDIB081 uRNA Pr	S41	SQDIB089 uRNA Pr	S49	uRNA Pr	S57	SQDIB153 uRNA Pr	S65	SQDIB161 uRNA Pr	S73	SQDIB169 uRNA Pr	S 81	SQDIB177 uRNA Pr	S 89	SQDIB185 uRNA Pr
В	S 2	SQDIB050 uRNA Pr	S10	SQDIB058 uRNA Pr	S 18	SQDIB066 uRNA Pr	S26	SQDIB074 uRNA Pr	S 34	SQDIB082 uRNA Pr	S42	SQDIB090 uRNA Pr	S50	SQDIB146 uRNA Pr	S58	SQDIB154 uRNA Pr	S66	SQDIB162 uRNA Pr	S74	SQDIB170 uRNA Pr	S82	SQDIB178 uRNA Pr	S90	SQDIB186 uRNA Pr
с	53	SQDIB051 uRNA Pr	S 11	SQDIB059 uRNA Pr	S 19	SQDIB067 uRNA Pr	S27		S35		S4 3	SQDIB091 uRNA Pr	S5 1	URNA Pr	S59	SQDIB155 uRNA Pr	S67	SQDIB163 uRNA Pr	S75	uRNA Pr	S8 3	SQDIB179 uRNA Pr	S 91	SQDIB187 uRNA Pr
D	54	SQDIB052 uRNA Pr	S12	SQDIB060 uRNA Pr	S20	SQDIB068 uRNA Pr	S28	SQDIB076 uRNA Pr	S 36		S44	SQDIB092 uRNA Pr	S52	SQDIB148 uRNA Pr	S60	SQDIB156 uRNA Pr	S68	SQDIB164 uRNA Pr	S76	SQDIB172 uRNA Pr	S84	SQDIB180 uRNA Pr	S92	SQDIB188 uRNA Pr
E	S 5	SQDIB053 uRNA Pr	\$13	SQDIB061 uRNA Pr	S 21	SQDIB069 uRNA Pr	S29		S37		S45	SQDIB093 uRNA Pr	S53	SQDIB149 uRNA Pr	S61	SQDIB157 uRNA Pr	S69	SQDIB165 uRNA Pr	S77	SQDIB173 uRNA Pr	S85	SQDIB181 uRNA Pr	S9 3	SQDIB189 uRNA Pr
F	S 6	SQDIB054 uRNA Pr	S14	SQDIB062 uRNA Pr	S22	SQDIB070 uRNA Pr	S 30		S 38		S46	SQDIB094 uRNA Pr	S54	SQDIB150 uRNA Pr	S62	SQDIB158 uRNA Pr	S70	SQDIB166 uRNA Pr	S7 8	SQDIB174 uRNA Pr	S86	SQDIB182 uRNA Pr	S94	SQDIB190 uRNA Pr
G	S 7	SQDIB055 uRNA Pr	\$15	SQDIB063 uRNA Pr	S23	SQDIB071 uRNA Pr	\$31	SQDIB077 uRNA Pr	S 39	SQDIB087 uRNA Pr	S47	SQDIB095 uRNA Pr	S55	SQDIB151 uRNA Pr	S63	SQDIB159 uRNA Pr	S71	SQDIB167 uRNA Pr	S79	SQDIB175 uRNA Pr	S87	SQDIB183 uRNA Pr	S95	SQDIB191 uRNA Pr
н	58	SQDIB056 uRNA Pr	S16	SQDIB064 uRNA Pr	S 24	SQDIB072 uRNA Pr	S 32		S40		S48	SQDIB096 uRNA Pr	S56		S64	SQDIB160 uRNA Pr	S72	SQDIB168 uRNA Pr	S80	SQDIB176 uRNA Pr	S88	SQDIB184 uRNA Pr	S96	SQDIB192 uRNA Pr

4. Program a thermal cycler using the cycling conditions in Table 24.

Table 24	1. Cvclina	conditions	for	universal	PCR
Table 1-	. cycnig	containionis		on versui	

Step	Time	Temperature
Hold	2 min	98°C
2-step cycling		
Denaturation	15 s	98°C
Annealing/Extension	30 s	62°C
Cycle number	Based on "Protocol: qPCR Determination of Universal PCR Cycles", page 39	
Hold	∞	4°C

- 5. After the reaction is complete, add 75 μl of Nuclease-free Water to bring each sample to 100 $\mu l.$
- 6. Add 80 µl QlAseq Beads for standard/FFPE sample or 100 µl QlAseq Beads for cfDNA sample, and then mix by vortexing or pipetting up and down several times.
- 7. Incubate for 5 min at room temperature.

8. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates) to separate the beads from the supernatant.

After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest.

Tip: For plates, the following may improve performance. After 8 min, remove 100 μ l supernatant. Leave it on the magnetic stand for 2 min and remove 80 μ l supernatant. Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 μ l pipette to remove the remaining supernatant.

- 9. With the beads still on the magnetic stand, add 200 µl of 80% ethanol. Rotate the tube 2–3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 10. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 µl pipette tip first, spin down briefly, and then use a 10 µl pipette tip to remove any residual ethanol.

- With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min.
 Note: Visually inspect the pellet to confirm that it is completely dry. If the pellet is not completely dry, additional drying time may be required.
- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 20 µl Nuclease-free Water. Mix well by pipetting.
- 13. Return the tube/plate to the magnetic rack until the solution has cleared.
- 14. Transfer 18 µl of the supernatant to clean tubes/plate.
- 15. Proceed to "Recommendations: Library QC and Quantification", page 50. Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Recommendations: Library QC and Quantification

NGS library QC

QC can be performed with the Agilent Bioanalyzer or TapeStation[®]. Check for the correct size distribution of library fragments (~400–500 bp median size) and for the absence of adapters or adapter-dimers (~<200 bp) (Figure 3).

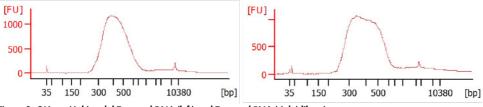


Figure 3. QIAseq Multimodal Targeted DNA (left) and Targeted RNA (right) libraries.

Preferred library quantification method

The library yield measurements from the Bioanalyzer or TapeStation rely on fluorescence dyes that intercalate into DNA or RNA. These dyes cannot discriminate between molecules with or without adapter sequences, yet only complete QIAseq Multimodal libraries with full adapter sequences will be sequenced. As a result, a real-time PCR-based method is highly recommended for accurate quantification of the prepared QIAseq Multimodal library.

Protocol: Sequencing Setup on Illumina MiSeq and NextSeq

Important points before starting

- **Important**: Recommendations for library dilution concentrations and library loading concentrations are based on QIAseq Library Quant System.
- Important: QIAseq A Read 1 Primer I (Custom Read 1 Sequencing Primer) and Multimodal Read 2 Primer (Custom Read 2 Sequencing Primer) must be used when performing sequencing on Illumina platform.
- Important: QIAseq A Read 1 Primer I (Custom Read 1 Sequencing Primer) goes into the following specific reagent cartridge positions:
 - MiSeq position #18
 - NextSeq position #7
 - Important: Multimodal Read 2 Primer (the Custom Read 2 Sequencing Primer) goes into the following specific reagent cartridge positions: MiSeg position #20
 - NextSeq position #8
- Important: Paired-end sequencing should be used for QIAseq Multimodal libraries on Illumina platforms.
 - Read 1: 149 bp
 - Read 2: 149 bp
 - Custom Index 1: 10 bp
 - Custom Index 2: 10 bp
- For complete instructions on how to denature sequencing libraries, prepare custom index primers, and set up a sequencing run, please refer to the system-specific Illumina documents.
- Instrument-specific imagery is included to aid in sequencing preparations.

Sequencing preparations for MiSeq

- 1. Download the appropriate template from the "Resource" tab of the QIAseq Multimodal Panel:
 - Sample Sheet Multimodal 96 UDI: www.qiagen.com/PROM-20735 (also used for Indexes 1–12)
- 2. On the template:
 - 2a. Modify Investigator Name, Date, Sample_ID, and Sample Name. Important: We recommend adding -DNA in the Sample name of a DNA library and -RNA for an RNA library, to allow automatic parsing of the DNA and RNA libraries during data analysis. If the libraries are not labeled, they must be manually parsed into either the DNA or RNA box.
 - 2b. Delete any unused index pairs and save the sample sheet for uploading.
 - 2c. Read 1 is 149 bp, Read 2 is 149 bp, and each Index Read is 10 bp.
- 3. **Sample dilution and pooling**: Dilute libraries to 2 or 4 nM for MiSeq. Then combine libraries with different sample indexes in equimolar amounts if similar sequencing depth is needed for each library.

Note: If combining libraries with the same number of primers, pool equal volumes of the individual libraries at 4 nM together. If the libraries have different primer numbers, then combine the libraries at volume ratios according to their number of primers. For example, Library A has 5000 primers at 4 nM, and Library B has 600 primers at 4 nM; combining 50 µl Library A with 6 µl Library B will result in similar coverage depth for both libraries A and B in the same sequencing run.

 Library preparation and loading: Prepare and load library on a MiSeq according to the MiSeq System Denature and Dilute Libraries Guide. The final library concentration is 10–12 pM on MiSeq.

Note: Recommendations for library loading concentrations are based on the QIAseq Library Quant System.

 Custom sequencing primer for Read 1 preparation and loading: Use 597 µl HT1 (hybridization buffer) from the Illumina Sequencing Kit to dilute 3 µl of QlAseq A Read 1 Primer I (provided) to obtain a final concentration of 0.5 μ M. Load 600 μ I of the diluted QIAseq A Read 1 Primer I to position 18 of the MiSeq reagent cartridge (Figure 4). For more details, please refer to Illumina's *MiSeq System: Custom Primers Guide*.

6. Custom sequencing primer for Read 2 preparation and loading: Use 597 μl HT1 (hybridization buffer) from the Illumina Sequencing Kit to dilute 3 μl of Multimodal Read 2 Primer (provided) to obtain a final concentration of 0.5 μM. Load 600 μl of the diluted QIAseq Read 2 Primer to position 20 of the MiSeq reagent cartridge (Figure 4). For more details, please refer to Illumina's *MiSeq System: Custom Primers Guide*.

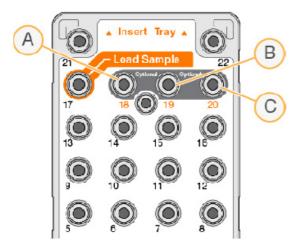


Figure 4. MiSeq reagent cartridge. A: position 18 for Read 1 Custom Primer; C: position 20 for Read 2 Custom Primer.

Sequencing preparations for NextSeq

1. **Sample dilution and pooling**: Dilute libraries to 0.5, 1, 2, or 4 nM for NextSeq. Then combine libraries with different sample indexes in equimolar amounts if similar sequencing depth is needed for each library.

Note: Recommendations for library dilution concentrations are based on the QlAseq Library Quant System.

Note: If combining libraries with the same number of primers, pool equal volumes of the individual libraries at 4 nM together. If the libraries have different primer numbers, then combine the libraries at volume ratios according to their number of primers. For example, Library A has 5000 primers at 4 nM, and Library B has 600 primers at 4 nM; combining 50 µl Library A with 6 µl Library B will result in similar coverage depth for both libraries A and B in the same sequencing run.

 Library preparation and loading: Prepare and load library onto a NextSeq according to the NextSeq System Denature and Dilute Libraries Guide. The final library concentration is 1.2–1.5 pM on NextSeq.

Note: Recommendations for library loading concentrations are based on the QIAseq Library Quant System.

3. Custom sequencing primer for Read 1 preparation and loading: Use 1994 µl HT1 (hybridization buffer) from the Illumina Sequencing Kit to dilute 6 µl of QlAseq A Read 1 Primer I (provided) to obtain a final concentration of 0.3 µM. Load 2 ml of the diluted QlAseq A Read 1 Primer I to position 7 of the NextSeq reagent cartridge (Figure 5). Note: All other steps refer to run setup workflow as described in the NextSeq 500 System Guide (part # 15046563) or NextSeq 550 System Guide (part # 15069765-02).

4. Custom sequencing primer for Read 2 preparation and loading: Use 1994 μl HT1 (hybridization buffer) from the Illumina Sequencing Kit to dilute 6 μl of Multimodal Read 2 Primer to obtain a final concentration of 0.3 μM. Load 2 ml of the diluted Multimodal Read 2 Primer to position 8 of the NextSeq reagent cartridge (Figure 5).

Figure 5. NextSeq reagent cartridge.

5. When working with the QIAseq Multimodal custom UDIs, use Local Run Manager (LRM) V2 on the instrument to upload sample sheet (see page 66 for downloading the appropriate template and modifying the template) and proceed with sequencing: Read 1 is 149 bp, Read 2 is 149 bp, and each Index Read is 10 bp.

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: **www.qiagen.com/FAQ/FAQList.aspx**. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocols in this handbook or sample and assay technologies (for contact information, visit **www.qiagen.com**).

		Comments and suggestions
Lo	w library yield	
a)	Suboptimal reaction conditions due to low sample quality	Make sure to use high-quality samples to ensure optimal activity of the library enzymes.
b)	Inefficient targeted enrichment or universal PCR	QIAseq beads need to be completely dried before elution. Ethanol carryover to targeted enrichment and universal PCR will affect PCR reaction efficiency.
U	nexpected signal peaks	
a)	Short peaks <200 bp	These are primer–dimers from targeted enrichment or universal PCR (<200 bp). The presence of primer–dimers indicates either not enough DNA/RNA input or inefficient PCR reactions or handling issues with bead purifications.
b)	Larger DNA fragments after universal PCR	After the universal PCR, library fragments are larger than the intended peak and can be a PCR artifact due to overamplification of the DNA library. Overamplification of the library won't affect the sequencing performance. Decreasing the number of universal PCR cycle numbers can reduce overamplification.
S	equencing issues	
a)	Too low or too high cluster density	Accurate library quantification is the key for optimal cluster density on any sequencing instrument. PCR-based quantification method is recommended. Other methods may lead to incorrect quantification of the library, especially when there is overamplification.
b)	Very low clusters passing filter	Make sure the library is accurately quantified and that the correct amount is loaded onto the sequencing instrument. In addition, the QIAseq A Read 1 Primer I (100 µM) Custom Read 1 Sequencing Primer and Custom Multimodal Read 2 Primer (100µM) must be used when sequencing on any Illumina platform.
Va	riant detection issues	
Kn	own variants not detected	Variant detection sensitivity is directly related to the input DNA and read depth. Check Table 32 (page 68), Table 33 (page 70), and Table 34 (page 74) to determine if the required input DNA, UMI numbers, and read depth are met for the specific variant detection application.

References

 Xu, C., Nezami Ranjbar, M.R., Wu, Z., DiCarlo, J., Wang, Y. (2017). Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genomics. 18, 5.

Appendix A: FFPE Sample Quality and Quantity

High-sensitivity Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific, cat. no. Q33120) is recommended for quantification of DNA from FFPE total nucleic acid samples. This kit or other methods like Nanodrop[®] or QIAxpert[®] can be used for quantification of FFPE DNA (in separate elutes with RNA).

Genomic DNA present in FFPE archives is usually damaged and fragmented to an uncertain extent. The QIAseq DNA QuantiMIZE System is a qPCR-based approach that determines the quantity and quality of the DNA amenable to PCR-based targeted enrichment prior to NGS. The system provides a cost-effective approach to qualify and quantify the DNA isolated from biological samples – mainly for FFPE samples. Please refer to the corresponding handbook for determining FFPE DNA quantity and quality with the QIAseq DNA QuantiMIZE System.

FFPE DNA input can be determined by the following: If FFPE DNA is defined as high quality (quality control [QC] score ≤ 0.04) by QuantiMIZE, then up to 100 ng of DNA can be used. If the DNA is determined as low quality (QC score > 0.04) then up to 250 ng of DNA can be used. The QC score of QuantiMIZE reflects the amount of amplifiable DNA present in the sample, therefore correlating with the number of UMIs that can be sequenced in the library (Figure 6).

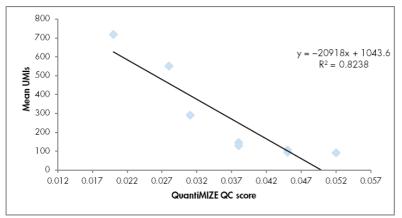


Figure 6. Correlation between QIAseq QuantiMIZE QC Score and the number of UMIs.

Compared to the same amount of fresh DNA, only 10–50% of UMIs can be captured from FFPE DNA, depending on the quality. This is due to a lower amplifiable DNA amount present in the FFPE samples. Therefore, a higher input amount is recommended for FFPE DNA samples to ensure that enough UMIs can be sequenced for variant detection.

However, if the quality of the FFPE DNA is not assessed by QIAseq QuantiMIZE kits, up to 100 ng can be used. If the FFPE DNA quality is high, an input of more than 100 ng will potentially overload the QIAseq Multimodal Panels system.

Appendix B: Combined Workflow for Targeted Enrichment

Important points before starting

- The 12.4 µl product from "Protocol: Reverse Transcription", page 32, is the starting material for this protocol.
- Set up reactions on ice.
- Do not vortex any reagents or reactions.
- The final library dual sample index is determined by the combination of the QIAseq Multimodal N7 Plate and the QIAseq Multimodal S5 Plate. QIAseq Beads are used for all reaction cleanups.
- Important: To use this protocol, one of the following is required:
 - QIAseq Multimodal Index I (12) (cat. no. 333962): MTIN-12K (shown in Table 26)
 - QIAseq Multimodal HT CW 96 UDI (cat. no. 333979): MTIN-96ABA/K/X (shown in Table 27)

MTIN-12K is a 12-reaction format enabling the indexing of 12 DNA and 12 RNA libraries. There are dried N7 index primers for both DNA and RNA, mixed in the same well. The plates can be cut in columns to enable indexing of the desired number of samples.

MTIN-96ABA/K/X is a 96-reaciton format enabling the indexing of 96 DNA and 96 RNA libraries. There are dried N7 index primers for both DNA and RNA, mixed in the same well.

- **Important**: The required combinations of indexes are described in the sequencing sample setup sheets:
 - O Sample Sheet Multimodal UDI Set 96: www.qiagen.com/PROM-20735
- Important: Prepare fresh 80% ethanol daily.

Ensure that the QIAseq Beads are thoroughly mixed at all times. This necessitates
working quickly and resuspending the beads immediately before use. If a delay in the
protocol occurs, simply vortex the beads.

Procedure

- 1. Prepare the reagents required for target enrichment.
 - Thaw TEPCR Buffer, 5x; Multimodal DHS Panel (DNA); and Multimodal VHS Panel (RNA); and bring QIAseq Multimodal N7 index plate to room temperature.
 - 1b. Mix by flicking the tube, and then centrifuge briefly.

Note: QIAseq Multimodal N7 Plate only needs to be centrifuged, not mixed.

Note: QN Taq Polymerase should be removed from the freezer just before use and placed on ice. After use, immediately return the enzyme to the freezer.

2. Prepare the target enrichment mix according to Table 25. Briefly centrifuge, mix by pipetting up and down 10–12 times, and then briefly centrifuge again.

Note: If setting up more than one reaction, prepare a volume of master mix 10% greater than what is required for the total number of reactions.

Component	Volume/reaction
Sample (from "Protocol: Reverse Transcription", page 32)	12.4 µl
TEPCR Buffer, 5x	8 Jul 8
Multimodal DHS Panel (DNA)	10 µl
Multimodal VHS Panel (RNA)	8 µl
QN Taq Polymerase	1.6 µl
Total	40 µl
QN Taq Polymerase	1.6 μl

Table 25.	Reaction	mix for	combined	taraet	enrichment
10010 20.	neuchon		combined	101.901	ern renniern

 Add the 40 µl target enrichment reaction mix into a well of a QIAseq Multimodal N7 index plate (Table 26 or Table 27).

Important: Put any unused plate(s) back in the foil back and keep in -30 to -15° C for long-term storage.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 \$1 RNAp-M049	\$9	Empty									
В	DNAp-M002 52 RNAp-M050	s10 [.]	Empty									
с	DNAp-M003 53 RNAp-M051	\$11	Empty									
D	DNAp-M004 54 RNAp-M052	\$12	Empty									
E	DNAp-M005 \$5 RNAp-M053	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
F	DNAp-M006 56 RNAp-M054	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
G	DNAp-M007 57 RNAp-M055	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
н	DNAp-M008 58 RNAp-M056	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty

Table 26. Layout of QIAseq Multimodal N7 index plate MTIN-12K

Table 27. Layout of QIAseq Multimodal N7 index plate MTIN-96ABA/K/X

	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 \$1 RNAp-M049	59	DNAp-M017 \$17 RNAp-M065	S25			S49	\$57	S65	\$73		589
В	DNAp-M002 52 RNAp-M050	\$10	\$18	S26	\$34	S42	S50	\$58	S66 .	\$74	S82	DNAp-M138 590 RNAp-M186
с	DNAp-M003 53 RNAp-M051	\$11	DNAp-M019 \$19 RNAp-M067	DNAp-M027 \$27 RNAp-M075	\$35	\$43	\$51	\$59	S67	\$75		\$91
D	DNAp-M004 54 RNAp-M052	\$12	S20	S28	S36	s44 ·	S52	S60	S68 .	\$76	S84	\$92
E	DNAp-M005 \$5 RNAp-M053	\$13	DNAp-M021 521 RNAp-M069	\$29	\$37	S45	\$53	S61	S69 ·	\$77	\$85	\$93
F	DNAp-M006 56 RNAp-M054	\$14	S22	\$30	S38	S46	\$54	S62	\$70	\$78	S86	\$94
G	DNAp-M007 57 RNAp-M055	\$15	S23		\$39	S47	\$55	\$63	\$71	\$79	\$87	\$95
н	DNAp-M008 58 RNAp-M056	\$16	\$24	\$32	s40 [.]		DNAp-M104 \$56 RNAp-M152	S64	\$72	\$80	\$88	\$96

- Briefly centrifuge, mix by pipetting up and down 8 times, and then briefly centrifuge again.
 Note: If only a column is used, cut that column from the cuttable plate and proceed to the next step.
- 5. Program a thermal cycler using the cycling conditions in Table 28a (DNA+RNA primers <3000) or Table 28b (DNA+RNA primers ≥3000).

Step	Time	Temperature
Initial denaturation	2 min	98°C
8 cycles	15 s	98°C
	2 min	68°C
Hold	∞	4°C

Table 28a. Cycling conditions for target enrichment if DNA+RNA primers <3000

Table 28b. Cycling conditions for target enrichment if number of primers ≥3000/tube

Step	Time (3000–12,000 primers/tube)	Temperature
Initial denaturation	2 min	98°C
6 cycles	15 s 4 min	98°C 65°C
Hold	∞	4°C

6. Place the target enrichment reaction in the thermal cycler and start the run.

7. Once the run has finished, add 60 µl of Nuclease-free Water to bring each sample to 100 µl.

- Add 80 µl QlAseq Beads for standard/FFPE sample or 100 µl QlAseq Beads for cfDNA and mix by vortexing or by pipetting up and down several times.
- 9. Incubate for 5 min at room temperature.
- 10. Place the tubes/plate on a magnetic rack for 2 min (for tubes) or 10 min (for plates). After the solution has cleared, with the beads still on the magnetic stand, carefully remove and discard the supernatant.

Important: Do not discard the beads, because they contain the DNA of interest.

Important: When working with FFPE or cfDNA/RNA sample, add 100 μ l of Nuclease-free Water to resuspend beads, and then, add 100 μ l of QIAseq Bead Binding Buffer. Mix by vortexing or pipetting up and down. Repeat steps 10 and 11.

Tip: For plates, the following may improve performance. After 8 min, remove $100 \ \mu$ l supernatant. Leave it on the magnetic stand for 2 min and remove 90 μ l supernatant.

Then, briefly centrifuge the plate, return it to the magnetic stand for 1 min, and use a 10 µl pipette to remove the remaining supernatant.

- With the beads still on the magnetic stand, add 200 µl of 80% ethanol. Rotate the tube
 2-3 times or move the plate side-to-side between the 2 column positions of the magnet to wash the beads. Carefully remove and discard the wash.
- 12. Repeat the ethanol wash.

Important: Completely remove all traces of the ethanol after this second wash. Remove the ethanol with a 200 μ l pipette tip first, spin down briefly, and then use a 10 μ l pipette tip to remove any residual ethanol.

 With the beads still on the magnetic stand, air-dry at room temperature for 5–10 min or longer.

Note: Visually inspect the pellet to confirm that it is completely dry. Ethanol carryover to the next universal PCR step will affect PCR efficiency.

- Remove the beads from the magnetic stand, and then elute the DNA from the beads by adding 25 µl Nuclease-free Water. Mix well by pipetting.
- 15. Return the tube/plate to the magnetic rack until the solution has cleared.
- 16. Transfer 24 µl of the supernatant to clean tubes/plate. This will be used in the next 2 protocols.
- Proceed to "Protocol: qPCR Determination of Universal PCR Cycles", page 41. Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Appendix C: Combining an Existing Panel with a Booster Panel

If additional primers need to be added into an existing panel, a Booster Panel with up to 100 primers can be ordered. To combine the existing panel with a Booster Panel, follow the volume ratio indicated in Table 29 or Table 30.

No. of primers in existing panel	Volume of existing panel to combine	Volume of booster panel to combine
1–2000	50 µl	5 µl
2001–4000	50 µl	3.75 µl
4001-12000	50 µl	2.5 µl
12001–20000	50 µl	1.25 µl

Table 29. Combining an existing DNA panel (at 50 µl) with a booster panel

No. of primers in existing panel	Volume of existing panel to combine	Volume of booster panel to combine
1–2000	40 µl	5 µl
2001–4000	40 µl	3.75 µl
4001-12000	40 µl	2.5 µl
12001–20000	40 µl	1.25 µl

Table 30. Combining an existing RNA panel (at 40 µl) with a booster panel

Appendix D: Principle of variant detection with UMIs

The principle of variant detection with UMIs is described in Figure 7. Due to intrinsic noise and sequence-dependent bias, indexed molecules may be amplified unevenly across the target regions. Target region coverage can be better achieved, however, by counting the number of UMIs rather than counting the number of total reads for each region. Sequence reads having different UMIs represent different original molecules, while sequence reads having the same UMIs are the result of PCR duplication from one original molecule. Errors from PCR amplification and from the sequencing process may also be present in final reads that lead to false positive variants in sequencing results. These artifactual variants can be greatly reduced by calling variants across all reads within a unique UMI instead of picking up variants at the original read level.

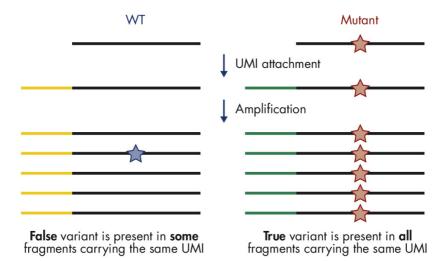


Figure 7. Principle of variant detection with UMIs. Each original molecule is tagged by a UMI. True variants are those mutations present in the majority of reads within a UMI, while false positives are mutations present in only one or a few reads within a UMI. Description of the variant calling algorithm can be found and downloaded from doi.org/10.1186/s12864-016-3425-4 (1).

Appendix E: Nucleic acid input amount and sequencing depth

The number of UMIs captured from the original DNA sample correlates with the DNA input amount and sequencing read depth. Adequate sequencing of captured UMIs requires relatively deep sequencing coverage. Table 31 provides guidance on variant detection with fresh DNA amounts at different depths of coverage. Additionally, the number of UMIs sequenced directly impacts the variant detection sensitivity. Therefore, low-frequency mutation detection usually requires more DNA input and sequencing at deeper coverage (i.e., more reads/UMI) to generate a sufficient amount of UMIs.

Variant frequency	Input (ng)	Read pairs/UMI	Mean read depth (coverage)
5%	20†	4	7200x
5%	40†	2	3640x
1%	80†	4	25,600x

Table 31. Suggested fresh DNA input amount and read depth coverage for variant detection*

* Variant detection is based on 90% sensitivity on the entire region of the QIAseq Multimodal DHS (DNA) Panel.

[†] If performing Appendix B: Combined Workflow (CW) for Targeted Enrichment, use one-half of the input amounts listed.

As RNA expression levels for each transcript varies broadly between different samples, there is no definitive calculation for a required number of reads. Based on previous testing with RNA libraries, allocation of 5000 reads per primer is a reasonable starting point. Table 32a (Separated Targeted DNA and RNA Enrichment) and Table 32b (Combined Targeted DNA+RNA Enrichment) provide recommendations for the number of reads that should be allocated for the prepared QIAseq Multimodal DNA and RNA libraries. As a note, the QIAseq Multimodal Pan Cancer Panel (UHS-5000Z) is designed exclusively for the Separated Targeted DNA and RNA Enrichment workflow.

		Primer Number	UHS-005Z	UHS-009Z	UHS-006Z	UHS-5000Z*
		DNA primer #	4149	6244	11243	19995
		RNA primer #	487	1116	665	2571
Per DNA library	Input	Coverage (X)	Reads allocc	ited to each DN	IA library (M)†	
5% VAF	20 ng‡	7200	30	45	81	144
5% VAF	40 ng‡	3640	15	23	41	73
1% VAF	80 ng‡	25600	106	160	288	512
			Reads allocc	ited to each RN	A library (M)*	
Per RNA library		5000	2	6	3	13

Table 32a. Read allocation for cataloged QIAseq Multimodal DNA and RNA libraries (Separated Targeted DNA and RNA Enrichment)

* QIAseq Multimodal Pan Cancer Panel (UHS-5000Z) is designed exclusively for the "Separated Targeted DNA and RNA Enrichment" workflow.

[†] Reads allocated to each library (M) = Coverage X Primer number/10⁶

[‡] Since samples are split before targeted enrichment, the recommend DNA input is doubled, compared to combined targeted enrichment workflow.

Table 32b. Read allocation for cataloged QIAseq Multimodal DNA and RNA libraries (Combined Targeted DNA+RNA Enrichment)

		Primer Number DNA primer #	UHS-005Z 4149	UHS-009Z 6244	UHS-006Z 11243
		RNA primer #	487	1116	665
Per DNA library	Input	Coverage (X)	Reads alloca	ited to each DN	A library (M)*
5% VAF	10 ng	7200	33	53	86
5% VAF	20 ng	3640	17	27	43
1% VAF	40 ng	25600	119	188	305
			Reads alloca	ited to each RN	A library (M)*
Per RNA library		5000	23	37	60

* Reads allocated to each library (M) = Coverage X Primer number/10⁶

Appendix F: Sample multiplexing recommendations for Illumina sequencing platforms

Sample multiplexing level is determined by the size of the panel, required depth of coverage, and sequencing platform total output. For the Illumina platforms, sample indexes are available to multiplex up to 96 samples, one targeted DNA, and one targeted RNA library per sample, per run. General guidelines are provided for the number of samples that can be multiplexed in different sequencing platforms, based on panel size and read depth calculated for QIAseq Multimodal DNA and RNA libraries prepared using the Separated Targeted DNA and RNA Enrichment workflow (Table 33a through Table 33d) or the Combined Targeted DNA+RNA Enrichment workflow (Table 34a through Table 34d). Fine-tuning the read depth is possible after the first run. See read allocation and sample multiplexing template for the custom panel on **www.qiagen.com/PROM-16466**.

` *			UHS-005Z	UHS-009Z	UHS-006Z	UHS-5000Z
		DNA primer #	4149	6244	11243	19995
		RNA primer #	487	1116	665	2571
Instrument	Version	Capacity (paired-	end reads)			
MiniSeq	Mid output	16M	3	1	1	N/A
MiniSeq	High output	50M	11	5	5	2
MiSeq	v2	30M	6	3	3	1
NextSeq 500/550	Mid output	260M	57	29	29	11
NextSeq 500/550	High output	800M	177	91	89	35
NextSeq 1000/2000	P1	200M	44	22	22	8
NextSeq 1000/2000	P2	800M	177	91	89	35
NextSeq 1000/2000	P3	2400M	531	273	267	105
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	266	137	134	52
HiSeq 3000	8 lanes per flow cell	5B	1108	574	558	218
HiSeq 4000	8 lanes per flow cell	1 OB	2217	1149	1117	437
NovaSeq 6000	SP (per flow cell)	1.6B	354	183	178	70

Table 33a. Number of multiplexed samples (one DNA and one RNA library for each sample) based on DNA or RNA panel size (Separated targeted DNA and RNA Enrichment workflow) with 500x mean coverage for DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

* Based on 2 x 149 bp paired-end reads.

-	r.		UHS-005Z	UHS-009Z	UHS-006Z	UHS-5000Z
		DNA primer #	4149	6244	11243	19995
		RNA primer #	487	1116	665	2571
Instrument	Version	Capacity(paired-e	end reads)			
MiniSeq	Mid output	16M	N/A	N/A	N/A	N/A
MiniSeq	High output	50M	2	1	1	N/A
MiSeq	v2	30M	1	1	N/A	N/A
NextSeq 500/550	Mid output	260M	14	9	5	3
NextSeq 500/550	High output	800M	45	28	18	9
NextSeq 1000/2000	P1	200M	11	7	4	2
NextSeq 1000/2000	P2	800M	45	28	18	9
NextSeq 1000/2000	P3	2400M	135	84	54	27
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	68	42	27	14
HiSeq 3000	8 lanes per flow cell	5B	285	176	112	58
HiSeq 4000	8 lanes per flow cell	1 OB	570	353	225	116
NovaSeq 6000	SP (per flow cell)	1.6B	91	56	36	18

Table 33b. Number of multiplexed samples (one DNA and one RNA library for each sample) based on DNA or RNA panel size (Separated targeted DNA and RNA Enrichment workflow) with 3640x mean coverage for DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

* Based on 2 x 149 bp paired-end reads.

			UHS-005Z	UHS-009Z	UHS-006Z	UHS-5000Z
		DNA primer #	4149	6244	11243	19995
		RNA primer #	487	1116	665	2571
Instrument	Version	Capacity (paired-	end reads)			
MiniSeq	Mid output	16M	N/A	N/A	N/A	N/A
MiniSeq	High output	50M	1	N/A	N/A	N/A
MiSeq	v2	30M	N/A	N/A	N/A	N/A
NextSeq 500/550	Mid output	260M	8	5	3	1
NextSeq 500/550	High output	800M	24	15	9	5
NextSeq 1000/2000	P1	200M	6	3	2	1
NextSeq 1000/2000	P2	800M	24	15	9	5
NextSeq 1000/2000	Р3	2400M	72	45	27	15
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	37	23	14	7
HiSeq 3000	8 lanes per flow cell	5B	154	98	59	31
HiSeq 4000	8 lanes per flow cell	1 OB	309	197	118	63
NovaSeq 6000	SP (per flow cell)	1.6B	49	31	18	10

Table 33c. Number of multiplexed samples (one DNA and one RNA library for each sample) based on DNA or RNA panel size (Separated targeted DNA and RNA Enrichment workflow) with 7200x mean coverage for DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

* Based on 2 x 149 bp paired-end reads.

•	L. L		UHS-005Z	UHS-009Z	UHS-006Z	UHS-5000Z
		DNA primer #	4149	6244	11243	19995
		RNA primer #	487	1116	665	2571
Instrument	Version	Capacity (paired-	end reads)			
MiniSeq	Mid output	16M	N/A	N/A	N/A	N/A
MiniSeq	High output	50M	N/A	N/A	N/A	N/A
MiSeq	v2	30M	N/A	N/A	N/A	N/A
NextSeq 500/550	Mid output	260M	2	1	N/A	N/A
NextSeq 500/550	High output	800M	7	4	2	1
NextSeq 1000/2000	P1	200M	1	1	N/A	N/A
NextSeq 1000/2000	P2	800M	7	4	2	1
NextSeq 1000/2000	P3	2400M	21	12	6	3
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	11	7	4	2
HiSeq 3000	8 lanes per flow cell	5B	46	30	17	9
HiSeq 4000	8 lanes per flow cell	10B	92	60	34	19
NovaSeq 6000	SP (per flow cell)	1.6B	14	9	5	3

Table 33d. Number of multiplexed samples (one DNA and one RNA library for each sample) based on DNA or RNA panel size (Separated targeted DNA and RNA Enrichment workflow) with 25,600x mean coverage for DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

			UHS-005Z	UHS-009Z	UHS-006Z
		DNA primer #	4149	6244	11243
		RNA primer #	487	1116	665
Instrument	Version	Capacity (paired	-end reads)		
MiniSeq	Mid output	16M	N/A	N/A	N/A
MiniSeq	High output	50M	1	1	N/A
MiSeq	v2	30M	1	N/A	N/A
NextSeq 500/550	Mid output	260M	10	6	3
NextSeq 500/550	High output	800M	31	19	12
NextSeq 1000/2000	P1	200M	7	4	3
NextSeq 1000/2000	P2	800M	31	19	12
NextSeq 1000/2000	Р3	2400M	93	57	36
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	47	29	18
HiSeq 3000	8 lanes per flow cell	5B	196	123	76
HiSeq 4000	8 lanes per flow cell	10B	392	247	152
NovaSeq 6000	SP (per flow cell)	1.6B	62	39	24

Table 34a. Number of multiplexed samples (one DNA and one RNA library for each sample) based on a DNA+RNA panel size (Combined targeted DNA+RNA Enrichment workflow) with 500x mean coverage for the DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

			UHS-005Z	UHS-009Z	UHS-006Z
		DNA primer #	4149	6244	11243
		RNA primer #	487	1116	665
Instrument	Version	Capacity (paired	-end reads)		
MiniSeq	Mid output	16M	N/A	N/A	N/A
MiniSeq	High output	50M	1	N/A	N/A
MiSeq	v2	30M	N/A	N/A	N/A
NextSeq 500/550	Mid output	260M	6	4	2
NextSeq 500/550	High output	800M	19	12	7
NextSeq 1000/2000	P1	200M	4	3	1
NextSeq 1000/2000	P2	800M	19	12	7
NextSeq 1000/2000	РЗ	2400M	57	36	21
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	29	18	11
HiSeq 3000	8 lanes per flow cell	5B	124	78	48
HiSeq 4000	8 lanes per flow cell	10B	249	157	97
NovaSeq 6000	SP (per flow cell)	1.6B	39	25	15

Table 34b. Number of multiplexed samples (one DNA and one RNA library for each sample) based on a DNA+RNA panel size (Combined targeted DNA+RNA Enrichment workflow) with 3640x mean coverage for the DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

			UHS-005Z	UHS-009Z	UHS-006Z
		DNA primer #	4149	6244	11243
		RNA primer #	487	1116	665
Instrument	Version	Capacity (paired	-end reads)		
MiniSeq	Mid output	16M	N/A	N/A	N/A
MiniSeq	High output	50M	N/A	N/A	N/A
MiSeq	v2	30M	N/A	N/A	N/A
NextSeq 500/550	Mid output	260M	4	2	1
NextSeq 500/550	High output	800M	14	8	5
NextSeq 1000/2000	P1	200M	3	2	1
NextSeq 1000/2000	P2	800M	14	8	5
NextSeq 1000/2000	РЗ	2400M	42	24	15
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	21	13	8
HiSeq 3000	8 lanes per flow cell	5B	88	55	34
HiSeq 4000	8 lanes per flow cell	10B	176	111	68
NovaSeq 6000	SP (per flow cell)	1.6B	28	17	11

Table 34c. Number of multiplexed samples (one DNA and one RNA library for each sample) based on a DNA+RNA panel size (Combined targeted DNA+RNA Enrichment workflow) with 7200x mean coverage for the DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

			UHS-005Z	UHS-009Z	UHS-006Z
		DNA primer #	4149	6244	11243
		RNA primer #	487	1116	665
Instrument	Version	Capacity (paired	-end reads)		
MiniSeq	Mid output	16M	N/A	N/A	N/A
MiniSeq	High output	50M	N/A	N/A	N/A
MiSeq	v2	30M	N/A	N/A	N/A
NextSeq 500/550	Mid output	260M	1	1	N/A
NextSeq 500/550	High output	800M	5	3	2
NextSeq 1000/2000	P1	200M	1	N/A	N/A
NextSeq 1000/2000	P2	800M	5	3	2
NextSeq 1000/2000	Р3	2400M	15	9	6
HiSeq 2500 rapid run	Dual Flowcell v2	1200M	8	5	3
HiSeq 3000	8 lanes per flow cell	5B	35	22	13
HiSeq 4000	8 lanes per flow cell	10B	70	44	27
NovaSeq 6000	SP (per flow cell)	1.6B	11	7	4

Table 34d. Number of multiplexed samples (one DNA and one RNA library for each sample) based on a DNA+RNA panel size (Combined targeted DNA+RNA Enrichment workflow) with 25,600x mean coverage for the DNA library and 5000 reads/primer for the RNA library*

N/A: not applicable, no samples can be run.

Appendix G: Legacy Multimodal Index Formats

Legacy QIAseq Multimodal Index kits for the Separated Workflow (SW) for Target enrichment are listed below (Set A, Table 35 and Set B, Table 36). The layouts for these plates are listed in Table 37 and Table 38). These index kits can still be used for the Separated Workflow, but will be discontinued.

QIAseq Multimodal Index I Set A SW (Two identical sets of 48 DNA + 48 RNA sample indexes using the Separated Workflow for Targeted Enrichment)	(96) 333985
Catalog no. Number of samples	96
Multimodal N7 Plate Set A (48): MTIN-96ASWK	2
Each plate allows N7 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried N7 index primers for DNA libraries (columns 1–6) and RNA libraries (columns 7–12). The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate Set A (48): MTIS-96AK	2
Each plate allows S5 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre- mixed with universal DNA primer (columns 1–6) and dried S5 indexes for RNA libraries pre-mixed with universal RNA primer (columns 7–12).	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

Table 35. Legacy QIAseq Multimodal Index Set A for the Separated Workflow

QIAseq Multimodal Index I Set B SW (Two identical sets of 48 DNA + 48 RNA sample indexes using the Separated Workflow for Targeted Enrichment)	(96)
Catalog no.	333995
Number of samples	96
Multimodal N7 Plate Set B SW (48): MTIN-96BSWK	2
Each plate allows N7 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried N7 index primers for DNA libraries (columns 1–6) and RNA libraries (columns 7–12). The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate Set B (48): MTIS-96BK	2
Each plate allows S5 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre- mixed with universal DNA primer (columns 1–6) and dried S5 indexes for RNA libraries pre-mixed with universal RNA primer (columns 7–12).	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

Table 36. Legacy QIAseq Multimodal Index Set B for the Separated Workflow

Table 37. Layout of (a) MTIN-96ASWK and (b) MTIS-96AK	WK and (b) MTIS-96AK
---	----------------------

(a)

(~)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 \$1	DNAp-M009 \$9	DNAp-M017 \$17	DNAp-M025 525	DNAp-M033 533	DNAp-M041 541	RNAp-M049 51	RNAp-M057 59	RNAp-M065 \$17	RNAp-M073 525	RNAp-M081 \$33	RNAp-M089 541
В	DNAp-M002 52	DNAp-M010 \$10	DNAp-M018 \$18	DNAp-M026 526		DNAp-M042 542		RNAp-M058 510	RNAp-M066 518	RNAp-M074 526	RNAp-M082 \$34	RNAp-M090 542
с	DNAp-M003 53	DNAp-M011 \$11	DNAp-M019 519	DNAp-M027 527	DNAp-M035 \$35	DNAp-M043 543	RNAp-M051 53	RNAp-M059 \$11	RNAp-M067 \$19	RNAp-M075 \$27	RNAp-M083 \$35	RNAp-M091 543
D	DNAp-M004 54	DNAp-M012 \$12	DNAp-M020 \$20	DNAp-M028 528		DNAp-M044 544		RNAp-M060 \$12	RNAp-M068 520	RNAp-M076 \$28		RNAp-M092 544
E	DNAp-M005 55	DNAp-M013 \$13	DNAp-M021 521	DNAp-M029 529	DNAp-M037 537	DNAp-M045 545		RNAp-M061 \$13	RNAp-M069 521	RNAp-M077 \$29	RNAp-M085 \$37	RNAp-M093 545
F	DNAp-M006 56	DNAp-M014 \$14	DNAp-M022 522	DNAp-M030 530	DNAp-M038 538	DNAp-M046 546	RNAp-M054 S6	RNAp-M062 \$14	RNAp-M070 522	RNAp-M078 530	RNAp-M086 538	RNAp-M094 546
G	DNAp-M007 57	DNAp-M015 \$15	DNAp-M023 523	DNAp-M031 531	DNAp-M039 539	DNAp-M047 \$47	RNAp-M055 \$7	RNAp-M063 \$15	RNAp-M071 523	RNAp-M077 \$31	RNAp-M087 539	RNAp-M095 547
Н	DNAp-M008 58	DNAp-M016 \$16	DNAp-M024 \$24	DNAp-M032 532		DNAp-M048 548		RNAp-M064 \$16	RNAp-M072 524	RNAp-M080 532		RNAp-M096 548
(b)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	SQDIB001	SQDIB009	SQDIB017 \$17	SQDIB025 \$25		SQDIB041 541		SQDIB057	SQDIB065 \$17			SQDIB089 \$41
В	UDNA Pr SQDIB002 S2	UDNA Pr SQDIB010 \$10	uDNA Pr SQDIB018 \$18	UDNA Pr SQDIB026 \$26	uDNA Pr SQDIB034 \$34	uDNA Pr SQDIB042 \$42	SQDIB050	uRNA Pr SQDIB058 \$10	uRNA Pr SQDIB066 \$18	uRNA Pr SQDIB074 526		uRNA Pr SQDIB090 \$42
с	uDNA Pr SQDIB003 53	uDNA Pr SQDIB011 \$11	uDNA Pr SQDIB019 \$19	uDNA Pr SQDIB027 527	uDNA Pr SQDIB035 535	uDNA Pr SQDIB043 543	SQDIB051	uRNA Pr SQDIB059	uRNA Pr SQDIB067	uRNA Pr SQDIB075	uRNA Pr SQDIB083	uRNA Pr SQDIB091
-	uDNA Pr	uDNA Pr						511	\$19	S27		S43
	SODIB004		UDNA Pr	UDNA Pr	uDNA Pr	uDNA Pr	uRNA Pr	SODIBO60	uRNA Pr	uRNA Pr	s35 uRNA Pr	SA3 uRNA Pr
D	SQDIB004 54 uDNA Pr	SQDIB012 \$12 uDNA Pr	UDNA Pr SQDIB020 S20 UDNA Pr	UDNA Pr SQDIB028 S28 UDNA Pr	uDNA Pr SQDIB036	uDNA Pr	uRNA Pr SQDIB052 54			uRNA Pr SQDIB076	S35 uRNA Pr SQDIB084	
D E	S4 uDNA Pr SQDIB005 S5	SQDIB012 uDNA Pr SQDIB013 \$13	SQDIB020 uDNA Pr SQDIB021 S21	SQDIB028 uDNA Pr SQDIB029 529	uDNA Pr SQDIB036 uDNA Pr SQDIB037 S37	UDNA Pr SQDIB044 uDNA Pr SQDIB045 S45	uRNA Pr SQDIB052 S4 uRNA Pr SQDIB053 S5	uRNA Pr SQDIB060 512 uRNA Pr SQDIB061 513	uRNA Pr SQDIB068 520 uRNA Pr SQDIB069 521	URNA Pr SQDIB076 URNA Pr SQDIB077 S29	535 uRNA Pr SQDIB084 uRNA Pr SQDIB085 537	uRNA Pr SQDIB092 S44 uRNA Pr SQDIB093 S45
_	54 UDNA Pr SQDIB005 55 UDNA Pr SQDIB006 56	SQDIB012 uDNA Pr SQDIB013 S13 uDNA Pr SQDIB014 S14	SQDIB020 uDNA Pr SQDIB021 uDNA Pr uDNA Pr SQDIB022 SQDIB022	528 UDNA Pr SQDIB029 529 UDNA Pr SQDIB030 530	uDNA Pr SQDIB036 uDNA Pr SQDIB037 S37 uDNA Pr SQDIB038 S38	UDNA Pr SQDIB044 UDNA Pr SQDIB045 S45 UDNA Pr SQDIB046 S46	URNA Pr SQDIB052 URNA Pr SQDIB053 S5 URNA Pr SQDIB054 S6	URNA Pr SQDIB060 512 URNA Pr SQDIB061 513 URNA Pr SQDIB062 514	URNA Pr SQDIB068 S20 URNA Pr SQDIB069 S21 URNA Pr SQDIB070 S22	URNA Pr SQDIB076 URNA Pr SQDIB077 SQDIB077 URNA Pr SQDIB078 S30	535 URNA Pr SQDIB084 URNA Pr SQDIB085 537 URNA Pr SQDIB086 538	URNA Pr SQDIB092 URNA Pr SQDIB093 S45 URNA Pr SQDIB094 S46
E	54 UDNA Pr SQDI8005 UDNA Pr SQDI8006 56 UDNA Pr SQDI8007 57	SQDIB012 S12 UDNA Pr SQDIB013 UDNA Pr SQDIB014 S14 UDNA Pr SQDIB015 S15	SQDIB020 uDNA Pr SQDIB021 uDNA Pr SQDIB022 SQDIB022 SQDIB023 SQDIB023 SQDIB023	SQDIB028 UDNA Pr SQDIB029 UDNA Pr SQDIB030 S30 UDNA Pr SQDIB030 S33 S31	UDNA Pr SQDIB036 336 UDNA Pr SQDIB037 337 UDNA Pr SQDIB038 338 UDNA Pr SQDIB039 339	UDNA Pr SQDIB044 4 UDNA Pr SQDIB045 545 UDNA Pr SQDIB046 546 UDNA Pr SQDIB047 547	URNA Pr SQDIB052 4 URNA Pr SQDIB053 55 URNA Pr SQDIB054 56 URNA Pr SQDIB055 57	URNA Pr SQDIB060 \$12 URNA Pr SQDIB061 \$13 URNA Pr SQDIB062 \$14 URNA Pr SQDIB063 \$15	URNA Pr SQDIB068 220 URNA Pr SQDIB069 521 URNA Pr SQDIB070 522 URNA Pr SQDIB071 523	URNA Pr SQDIB076 228 URNA Pr SQDIB077 529 URNA Pr SQDIB078 SQDIB078 SQDIB077 S31	535 URNA Pr SQDIB084 536 URNA Pr SQDIB085 537 URNA Pr SQDIB086 538 URNA Pr SQDIB086 538 SQDIB087 539	URNA Pr SQDIB092 S44 URNA Pr SQDIB093 S45 URNA Pr SQDIB094 S46 URNA Pr SQDIB095 S47
E	S4 UDNA Pr SQDIB005 S5 UDNA Pr SQDIB006 S6 UDNA Pr SQDIB007	SQDIB012 UDNA Pr SQDIB013 \$13 UDNA Pr SQDIB014 \$14 UDNA Pr SQDIB015 \$15 UDNA Pr SQDIB015	SQDIB020 UDNA Pr SQDIB021 UDNA Pr SQDIB022 S22 UDNA Pr SQDIB022	SQDIB028 uDNA Pr SQDIB029 uDNA Pr SQDIB030 S30 uDNA Pr SQDIB031	UDNA Pr SQDIB036 UDNA Pr SQDIB037 S37 UDNA Pr SQDIB038 S38 UDNA Pr SQDIB039 S39 UDNA Pr SQDIB039 S39 UDNA Pr	UDNA Pr SQDIB044 4 UDNA Pr SQDIB045 545 UDNA Pr SQDIB046 546 UDNA Pr SQDIB046	URNA Pr SQDIB052 URNA Pr SQDIB053 S5 URNA Pr SQDIB054 S6 URNA Pr SQDIB055 S7 URNA Pr SQDIB055	URNA Pr SQDIB060 S12 URNA Pr SQDIB061 S13 URNA Pr SQDIB062 S14 URNA Pr SQDIB063	uRNA Pr SQDIB068 220 uRNA Pr SQDIB069 521 uRNA Pr SQDIB070 522 uRNA Pr SQDIB071 523 uRNA Pr	URNA Pr SQDIB076 URNA Pr SQDIB077 S29 URNA Pr SQDIB078 S30 URNA Pr SQDIB078 SQDIB077 S31 URNA Pr	535 URNA Pr SQDIB084 536 URNA Pr SQDIB085 537 URNA Pr SQDIB086 538 URNA Pr SQDIB086 538 URNA Pr SQDIB087 SQDIB087 SQDIB087	URNA Pr SQDIB092 S44 URNA Pr SQDIB093 S45 URNA Pr SQDIB094 S46 URNA Pr SQDIB094

Table 38. Layout of	(a) MTIN-96BSWK and (b) MTIS-96BK
---------------------	-----------------------------------

(a)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M097 549	DNAp-M105 \$57	DNAp-M113 565	DNAp-M121 573	DNAp-M129 581	DNAp-M137 589	RNAp-M145 549	RNAp-M153 557	RNAp-M161 565	RNAp-M169 573	RNAp-M177 581	RNAp-M185 589
В	DNAp-M098 550	DNAp-M106 \$58	DNAp-M114 566	DNAp-M122 574	DNAp-M130 582	DNAp-M138 590	RNAp-M146 550	RNAp-M154 558	RNAp-M162 566	RNAp-M170 574	RNAp-M178 582	RNAp-M186 590
с	DNAp-M099 \$51	DNAp-M107 \$59	DNAp-M115 567	DNAp-M123 \$75	DNAp-M131 583	DNAp-M139 591	RNAp-M147 \$51	RNAp-M155 \$59	RNAp-M163 567	RNAp-M171 575	RNAp-M179 583	RNAp-M187 \$91
D	DNAp-M100 \$52	DNAp-M108 560	DNAp-M116 568	DNAp-M124 576	DNAp-M132 584	DNAp-M140 592	RNAp-M148 552	RNAp-M156 560	RNAp-M164 568	RNAp-M172 576	RNAp-M180 584	RNAp-M188 592
E	DNAp-M101 \$53	DNAp-M109 561	DNAp-M117 569	DNAp-M125 \$77	DNAp-M133 585	DNAp-M141 593	RNAp-M149 553	RNAp-M157 561	RNAp-M165 569	RNAp-M173 \$77	RNAp-M181 585	RNAp-M189 593
F	DNAp-M102 554	DNAp-M110 562	DNAp-M118 570	DNAp-M126 578	DNAp-M134 586	DNAp-M142 594	RNAp-M150 554	RNAp-M158 562	RNAp-M166 570	RNAp-M174 \$78	RNAp-M182 586	RNAp-M190 \$94
G	DNAp-M103 \$55	DNAp-M111 563	DNAp-M119 571	DNAp-M127 579	DNAp-M135 587	DNAp-M143 \$95	RNAp-M151 \$55	RNAp-M159 563	RNAp-M167 571	RNAp-M175 579	RNAp-M183 587	RNAp-M191 595
н	DNAp-M104 \$56	DNAp-M112 564	DNAp-M120 572	DNAp-M128 580	DNAp-M136 588	DNAp-M144 596	RNAp-M152 556	RNAp-M160 564	RNAp-M168 572		RNAp-M184 \$88	RNAp-M192 \$96
(b)												
	1	2	3	4	5	6	7	8	9	10	11	12
					-	•		•		10		12
Α	SQDIB097	SQDIB105			SQDIB129	SQDIB137	SQDIB145	SQDIB153	SQDIB161	SQDIB169	SQDIB177	SQDIB185
A	s49 uDNA Pr	s57 uDNA Pr	565 uDNA Pr	s73 uDNA Pr	SQDIB129 S81 uDNA Pr	SQDIB137 589 uDNA Pr	SQDIB145 549 uRNA Pr	SQDIB153 \$57 uRNA Pr	SQDIB161 565 uRNA Pr	SQDIB169 \$73 uRNA Pr	SQDIB177 581 uRNA Pr	SQDIB185 589 uRNA Pr
A B	549 UDNA Pr SQDIB098 550	\$57 uDNA Pr SQDIB106 \$58	S65 uDNA Pr SQDIB114 S66	\$73 uDNA Pr SQDIB122 \$74	SQDIB129 S81 UDNA Pr SQDIB130 S82	SQDIB137 589 uDNA Pr SQDIB138 590	SQDIB145 549 uRNA Pr SQDIB146 550	SQDIB153 S57 uRNA Pr SQDIB154 S58	SQDIB161 S65 uRNA Pr SQDIB162 S66	SQDIB169 573 uRNA Pr SQDIB170 574	SQDIB177 581 uRNA Pr SQDIB178 582	SQDIB185 S89 uRNA Pr SQDIB186 S90
В	549 UDNA Pr SQDIB098 550 UDNA Pr SQDIB099	557 UDNA Pr SQDIB106 558 UDNA Pr SQDIB107	565 UDNA Pr SQDIB114 566 UDNA Pr SQDIB115	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB123	SQDIB 129 S81 uDNA Pr SQDIB 130 S82 uDNA Pr SQDIB 131	SQDIB137 589 UDNA Pr SQDIB138 590 UDNA Pr SQDIB139	SQDIB145 S49 uRNA Pr SQDIB146 URNA Pr SQDIB147	SQDIB 153 URNA Pr SQDIB 154 S58 URNA Pr SQDIB 155	SQDIB 161 S65 URNA Pr SQDIB 162 S66 URNA Pr SQDIB 163	SQDIB169 S73 URNA Pr SQDIB170 S74 URNA Pr SQDIB171	SQDIB177 581 URNA Pr SQDIB178 582 URNA Pr SQDIB179	SQDIB185 S89 URNA Pr SQDIB186 S90 URNA Pr SQDIB187
	549 UDNA Pr SQDIB098 550 UDNA Pr SQDIB099 551 UDNA Pr	557 UDNA Pr SQDIB106 558 UDNA Pr SQDIB107 559 UDNA Pr	565 UDNA Pr SQDIB114 UDNA Pr SQDIB115 567 UDNA Pr	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB123 575 UDNA Pr	SQDIB 129 581 UDNA Pr SQDIB 130 582 UDNA Pr SQDIB 131 583 UDNA Pr	SQDIB137 589 uDNA Pr 590 uDNA Pr SQDIB139 591 uDNA Pr	SQDIB 1 45 uRNA Pr uRNA Pr SQDIB 1 46 uRNA Pr SQDIB 1 47 SQDIB 1 47 uRNA Pr SQDIB 1 47 SQDIB 1 47	SQDIB 153 URNA Pr URNA Pr SQDIB 154 URNA Pr SQDIB 155 S59 URNA Pr	SQDIB 161 S65 uRNA Pr SGDIB 162 URNA Pr SQDIB 163 S67 uRNA Pr	573 URNA Pr 574 URNA Pr SQDIB170 574 URNA Pr URNA Pr	SQDIB177 S81 uRNA Pr SQDIB178 S82 uRNA Pr SQDIB179 S83 uRNA Pr	SQDIB185 589 uRNA Pr 590 uRNA Pr SQDIB187 591 uRNA Pr
В	\$49 uDNA Pr \$QDIB098 uDNA Pr \$QDIB099 \$QDIB099 \$SQDIB099 \$UDNA Pr \$QDIB099 \$S1 uDNA Pr \$QDIB099 \$S1 uDNA Pr \$QDIB099 \$S2	557 UDNA Pr SQDIB106 UDNA Pr SQDIB107 559 UDNA Pr SQDIB107 559 UDNA Pr SQDIB108 560	565 UDNA Pr SQDIB114 UDNA Pr SQDIB115 567 UDNA Pr SQDIB116 568	573 UDNA Pr SQDIB122 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576	SQDIB129 S81 UDNA Pr SQDIB130 S82 UDNA Pr SQDIB131 S83 UDNA Pr SQDIB131 S83 S84	SQDIB137 S89 UDNA Pr SQDIB138 S90 UDNA Pr SQDIB139 S91 UDNA Pr SQDIB140 S92	SQDIB145 S49 URNA Pr SQDIB146 S50 URNA Pr SQDIB147 S1 URNA Pr SQDIB147 S51 URNA Pr SQDIB148 S52	SQDIB153 S57 URNA Pr SQDIB154 S58 URNA Pr SQDIB155 S59 URNA Pr SQDIB155 S60	SQDIB161 S65 uRNA Pr SQDIB162 S66 uRNA Pr SQDIB163 S67 uRNA Pr SQDIB164 S68	SQDIB169 573 URNA Pr SQDIB170 574 URNA Pr SQDIB171 575 URNA Pr SQDIB172 576	SQDIB177 S81 URNA Pr SQDIB178 SQDIB178 SQDIB179 S83 URNA Pr SQDIB180 S84	SQDIB185 S89 URNA Pr SQDIB186 S90 URNA Pr SQDIB187 S91 URNA Pr SQDIB188 S92
B C D	549 UDNA Pr SQDIB098 550 UDNA Pr SQDIB099 551 UDNA Pr SQDIB100 552 UDNA Pr SQDIB100	557 UDNA Pr SQD/B106 558 UDNA Pr SQD/B107 559 UDNA Pr SQD/B108 560 UDNA Pr SQD/B108	565 UDNA Pr SQDIB114 566 UDNA Pr SQDIB115 567 UDNA Pr SQDIB116 568 UDNA Pr SQDIB116	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr SQDIB124 576	SQDIB129 S81 UDNA Pr SQDIB130 S82 UDNA Pr SQDIB131 S83 UDNA Pr SQDIB132 S84 UDNA Pr SQDIB132	SQDIB137 S89 UDNA Pr SQDIB138 S90 UDNA Pr SQDIB140 S92 UDNA Pr SQDIB140 S92 UDNA Pr SQDIB140	SQDIB145 S49 URNA Pr SQDIB146 SQDIB146 SQDIB147 S51 URNA Pr SQDIB148 S52 URNA Pr SQDIB148 S52 URNA Pr SQDIB149	SQDIB153 \$57 uRNA Pr \$QDIB154 \$QDIB154 URNA Pr \$QDIB155 \$59 uRNA Pr \$QDIB156 \$60 uRNA Pr \$QDIB156	SQDIB161 S65 uRNA Pr SQDIB162 S66 uRNA Pr SQDIB163 S67 uRNA Pr SQDIB164 S68 uRNA Pr SQDIB164	SQDIB169 573 uRNA Pr SQDIB170 574 uRNA Pr SQDIB171 575 uRNA Pr SQDIB172 576 uRNA Pr SQDIB172	SQDIB177 S81 URNA Pr SQDIB178 S82 URNA Pr SQDIB180 S84 URNA Pr SQDIB180 S84 URNA Pr SQDIB180	SQDIB 185 589 uRNA Pr SQDIB 186 590 uRNA Pr SQDIB 187 591 uRNA Pr SQDIB 187 591 uRNA Pr SQDIB 188 592 uRNA Pr
B C	549 UDNA Pr SQDIB098 550 UDNA Pr SQDIB099 551 UDNA Pr SQDIB100 552 UDNA Pr	557 UDNA Pr SQDIB106 UDNA Pr SQDIB107 S59 UDNA Pr SQDIB108 S60 UDNA Pr SQDIB109 S61	565 UDNA Pr SQDIB114 566 UDNA Pr SQDIB115 567 UDNA Pr SQDIB116 568 UDNA Pr	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr	SQDIB129 S81 UDNA Pr SQDIB130 S82 UDNA Pr SQDIB131 S83 UDNA Pr SQDIB132 S84 UDNA Pr SQDIB133 S85	SQDIB137 S89 UDNA Pr SQDIB138 S90 UDNA Pr SQDIB140 S92 UDNA Pr	SQDIB145 S49 URNA P; SQDIB146 S50 URNA P; SQDIB147 S1 URNA P; SQDIB148 S52 URNA P; SQDIB149 S53	SQDIB153 S57 URNA Pr SQDIB154 S58 URNA Pr SQDIB155 S59 URNA Pr SQDIB156 S60 URNA Pr	SQDIB161 S65 uRNA Pr SQDIB162 S66 uRNA Pr SQDIB163 S67 uRNA Pr SQDIB164 S68 uRNA Pr	SQDIB169 573 URNA Pr SQDIB170 574 URNA Pr SQDIB171 575 URNA Pr SQDIB172 576 URNA Pr	SQDIB177 S81 URNA Pr SQDIB178 S82 URNA Pr SQDIB180 S84 URNA Pr	SQDIB 185 S89 uRNA Pr SQDIB 186 S90 uRNA Pr SQDIB 187 S91 uRNA Pr SQDIB 188 S92 uRNA Pr
B C D	549 UDNA Pr SQDIB099 550 UDNA Pr SQDIB100 552 UDNA Pr SQDIB101 553 UDNA Pr SQDIB101 553 UDNA Pr SQDIB101 554	557 UDNA Pr SQDIB106 558 UDNA Pr SQDIB107 559 UDNA Pr SQDIB109 560 UDNA Pr SQDIB109 561 UDNA Pr SQDIB109 561	565 UDNA Pr SQDIB114 566 UDNA Pr SQDIB115 567 UDNA Pr SQDIB117 569 UDNA Pr SQDIB117 569 UDNA Pr SQDIB117 569 SQDIB117 569 SQDIB118 570	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr SQDIB125 577 UDNA Pr SQDIB126 577	SQDIB129 S81 uDNA Pr SQDIB130 S82 uDNA Pr SQDIB132 S84 uDNA Pr SQDIB133 S85 uDNA Pr SQDIB133 S85 uDNA Pr SQDIB134 S85	SQDIB137 S89 UDNA Pr SQDIB138 S90 UDNA Pr SQDIB140 S92 UDNA Pr SQDIB141 S93 UDNA Pr SQDIB141 S93 UDNA Pr SQDIB141 S93	SQDIB145 S49 uRNA Pr SQDIB146 S50 uRNA Pr SQDIB147 S51 uRNA Pr SQDIB147 S51 uRNA Pr SQDIB149 S52 uRNA Pr SQDIB1450 S54	SQDIB153 S57 URNA Pr SQDIB154 SQDIB155 S59 URNA Pr SQDIB155 S60 URNA Pr SQDIB157 S61 URNA Pr SQDIB157 S61 URNA Pr SQDIB158 S62	SQDIB161 S65 uRNA Pr SQDIB162 S66 uRNA Pr SQDIB164 S68 uRNA Pr SQDIB164 S68 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB166 S70	SQDIB169 SQDIB170 SQDIB170 SQDIB170 SQDIB171 S75 URNA Pr SQDIB172 SQDIB173 S77 URNA Pr SQDIB173 S77 URNA Pr SQDIB173 S77 SQDIB174 SQDIB173	SQDIB177 S81 URNA P; SQDIB179 S82 URNA P; SQDIB170 S83 URNA P; SQDIB180 S84 URNA P; SQDIB181 S85 URNA P; SQDIB181 S85 SQDIB182 S86	SQDIB185 S89 uRNA Pr uRNA Pr uRNA Pr SQDIB186 S90 uRNA Pr SQDIB189 S92 uRNA Pr SQDIB189 S93 uRNA Pr SQDIB189 S93 SQDIB189 S94
B C D E F	549 UDNA Pr SODIB098 550 UDNA Pr SODIB099 551 UDNA Pr SODIB100 552 UDNA Pr SODIB100 553 UDNA Pr SODIB100 554 UDNA Pr SODIB101	557 UDNA Pr SQDIB106 558 UDNA Pr SQDIB107 559 UDNA Pr SQDIB108 560 UDNA Pr SQDIB109 561 UDNA Pr SQDIB101 562 UDNA Pr	565 UDNA Pr SQDIB114 566 UDNA Pr SQDIB15 567 UDNA Pr SQDIB175 569 UDNA Pr SQDIB17 569 UDNA Pr SQDIB178 570 UDNA Pr SQDIB18	S73 JDNA Pr SQDIB122 SQDIB122 S74 JDNA Pr SQDIB123 SQDIB123 S75 JDNA Pr SQDIB124 SQDIB123 S76 JDNA Pr SQDIB124 SQDIB124 S77 JDNA Pr SQDIB125 S77 JDNA Pr SQDIB126 S78 JDNA Pr SQDIB126 S78	SODIB 129 S0DIB 120 S0DIB 130 S0DIB 130 S0DIB 131 S0DIB 131 S0DIB 132 S0DIB 132 S0DIB 133 S55 uDNA Pr S0DIB 133 S65 uDNA Pr S0DIB 132 S66 uDNA Pr	SODIB 137 589 UDNA Pr SODIB 138 590 UDNA Pr UDNA Pr SODIB 140 592 UDNA Pr SODIB 141 593 UDNA Pr SODIB 141 SODIB 141	SODIB 145 S49 URNA P. SODIB 145 SODIB 145 S50 URNA P. SODIB 147 S51 URNA P. SODIB 145 S52 URNA P. SODIB 15 S54 URNA P. SODIB 15 S54	SODIB 153 S57 uRNA Pr SODIB 154 S58 uRNA Pr SODIB 155 S59 uRNA Pr SODIB 155 S60 uRNA Pr SODIB 155 S60 uRNA Pr SODIB 153 S62 uRNA Pr SODIB 154 S62 uRNA Pr SODIB 155 S64 URNA Pr S62 URNA Pr S0DIB 154 S62 URNA Pr S62 URNA PR S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7	SODIB 161 565 GRNA Pr SODIB 162 566 GRNA Pr GRDB 163 567 GRNA Pr SODIB 165 569 uRNA Pr SODIB 165 570 uRNA Pr SODIB 167	SQDIB169 573 «RNA Pr SQDIB170 574 «RNA Pr SQDIB171 S75 «RNA Pr SQDIB175 S77 «RNA Pr SQDIB175 S77 «RNA Pr SQDIB175 S78 «RNA Pr SQDIB175	SODIB177 581 GODB178 50DB178 582 GODB187 50DB187 50DB187 50DB187 50DB187 583 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB178 585 GODB187 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 585 GODB187 GODB18	SQDIB185 589 uRNA P; SQDIB186 590 uRNA P; SQDIB187 591 uRNA P; SQDIB188 592 uRNA P; SQDIB180 593 uRNA P; SQDIB190 594 uRNA P; SQDIB190
B C D E	549 UDNA Pr S50 SQDIB098 550 UDNA Pr SQDIB100 S52 UDNA Pr SQDIB101 S53 UDNA Pr SQDIB102 S54 UDNA Pr	S57 uDNA Pr SQD/B106 S58 UDNA Pr SQD/B107 SS9 uDNA Pr SQD/B108 S60 SQD/B107 SQD/B108 SQD/B107 SQD/B108 SQD/B107 SQD/B109 SQD/B108 SQD/B109 SQD/B109 SQD/B109 SQD/B109 SQD/B109 SQD/B109 SQD/B110 SQD/B110 SQD/B111 SG3 SQD/B111	565 UDNA Pr 566 UDNA Pr UDNA Pr UDNA Pr UDNA Pr UDNA Pr UDNA Pr SQDIB115 568 UDNA Pr SQDIB117 569 UDNA Pr UDNA PR	573 UDNA Pr SQDIB122 574 UDNA Pr SQDIB122 575 UDNA Pr SQDIB123 575 UDNA Pr SQDIB125 577 UDNA Pr SQDIB125 577 UDNA Pr SQDIB125 578 UDNA Pr SQDIB127 579	SODIB 129 S81 JDNA Pr SODIB 130 S82 JDNA Pr SODIB 131 S83 JDNA Pr SODIB 132 S84 JDNA Pr SODIB 132 S85 JDNA Pr SODIB 133 S85 JDNA Pr SODIB 135 S86 JDNA Pr SODIB 130 S87	SODIB137 S89 UDNA Pr SODIB138 S90 UDNA Pr SODIB140 S92 UDNA Pr SODIB140 S93 UDNA Pr SODIB142 S94 UDNA Pr S001B143 S95	SODIB 145 549 uRNA Pr SODIB 145 550 uRNA Pr SODIB 145 551 uRNA Pr SODIB 148 552 uRNA Pr SODIB 148 553 uRNA Pr SODIB 151 554	SODIB 153 SS7 uRNA Pr SODIB 154 SS8 uRNA Pr SODIB 155 S50 uRNA Pr SODIB 155 S61 uRNA Pr SODIB 155 S62 uRNA Pr SODIB 155 S62 uRNA Pr SODIB 155 S63	SQDIB161 565 uRNA Pr SQDIB162 566 uRNA Pr SQDIB163 567 uRNA Pr SQDIB165 570 uRNA Pr	SQDIB169 SQDIB170 SQDIB170 SQDIB170 SQDIB171 S75 uRNA Pr SQDIB172 S77 uRNA Pr SQDIB174	SQDIB 177 S81 wRNA P; SQDIB 178 SQDIB 178 SQDIB 178 SQDIB 179 SQDIB 179 SQDIB 179 SQDIB 179 SQDIB 180 SQDIB 180 S85 wRNA P; SQDIB 182 S85 wRNA P; SQDIB 182 S86 wRNA P;	SQDIB185 589 uRNA Pr SQDIB186 590 uRNA Pr SQDIB187 591 uRNA Pr SQDIB189 593 uRNA Pr SQDIB190 594 uRNA Pr
B C D E F	S49 uDNA.P. SQDIB078 SQDIB078 SSD uDNA.P. SQDIB079 SSDI SQDIB079 SSDI SQDIB100 SSDIB100 SSD SQDIB100 SSD SQDIB101 SSDIB101 SSGDIB102 SSGD18102 SSGD18103 SSS54 SOD18103 SSS55 SSS54	557 UDNA Pr SODB106 558 UDNA Pr SODB107 559 UDNA Pr SODB107 560 UDNA Pr SODB107 561 UDNA Pr SODB108 560 UDNA Pr SODB108 560 UDNA Pr SODB106 560 UDNA Pr SODB107 559 UDNA Pr SODB106 558 UDNA Pr SODB106 558 UDNA Pr SODB106 558 UDNA Pr SODB106 558 UDNA Pr SODB106 559 UDNA Pr SODB106 559 UDNA Pr SODB106 550 UDNA Pr SODB100 550 UDNA Pr SODB100 550 UDNA Pr SODB100 550 UDNA Pr SODB100 550 UDNA Pr SODB100 550 UDNA Pr SODB100 SODA Pr SODB100 SODA Pr SODB100	\$65 uDNA.P: SQDIB114 \$GDIB114 \$66 uDNA.P: SQDIB10 \$GDIB115 \$67 uDNA.P: SQDIB10 \$GDIB116 \$SQDIB10 \$GDIB116 \$SQDIB10 \$GDIB116 \$SQDIB175 \$GDIB117 \$SQDIB175 \$GDIB117 \$SQDIB175 \$GDIB117 \$SQDIB175 \$GDIB175 \$SQDIB175 \$SQDIB175	573 UDNA Pr SODB122 574 UDNA Pr SODB122 575 UDNA Pr SODB122 575 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 577 UDNA Pr SODB125 576 UDNA Pr SODB125 576 UDNA Pr SODB125 575 UDNA Pr SODB125 575 UDNA Pr SODB125 576 UDNA Pr SODB125 576 UDNA Pr SODB125 577 UDNA Pr SODB126 578 UDNA Pr SODB126 578 UDNA Pr SODB126 579 UDNA Pr SODB127 579 UDNA Pr SODB127 579 SODB127 570 570 570 570 570 570 570 57	SODIB 129 S81 UDNA Pr SODIB 130 S82 UDNA Pr SODIB 13 S83 UDNA Pr SODIB 13 S85 UDNA Pr SODIB 13 S85 SODIB 13 S85 UDNA Pr SODIB 13 S85 UDNA Pr SODIB 13 S85 UDNA Pr SODIB 13 S85 UDNA Pr SODIB 13 S85 UDNA Pr SODIB 13 S85 S0DIB 13 S85 S87 UDNA Pr S0DIB 13 S87 UDNA Pr S0DIB 13 S0DIB 13 S0D	SODIB137 S89 UDNA P; SODIB138 S90 UDNA P; SODIB140 S91 UDNA P; SODIB140 S93 UDNA P; SODIB143 S93 UDNA P; SODIB143 S93 UDNA P; SODIB143 S94 UDNA P; SODIB145 S95 UDNA P; SODIB145 S95 UDNA P; SODIB145 S95 UDNA P; SODIB145 S95 UDNA P; SODIB145 S95 UDNA P; S05 S05 S05 S05 S05 S05 S05 S05	SODIB 145 S49 URNA P. SODIB 146 S50 URNA P. SODIB 145 S51 URNA P. SODIB 149 S53 URNA P. SODIB 149 S53 URNA P. SODIB 155 S54 URNA P. SODIB 155 S55 URNA P.	SODIB153 SS7 uRNA P; SODIB154 URNA P; SODIB155 SS9 uRNA P; SODIB155 S61 uRNA P; SODIB155 S62 uRNA P; SODIB155 S62 uRNA P; SODIB159 S63 uRNA P; SODIB159 S63 uRNA P; SODIB159 S63 uRNA P; SODIB159 S63 uRNA P; S63 URNA P; S63 URNA P; S64 S05 S64 URNA P; S65 S67 S67 S67 S67 S67 S67 S67 S67	SODIB 161 \$65 uRNA Pr SODIB 162 \$66 uRNA Pr SODIB 163 \$67 uRNA Pr SODIB 165 \$69 uRNA Pr SODIB 165 \$59 uRNA Pr SODIB 165 \$70 uRNA PR \$70 uRNA PR \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$70	SQDIB169 \$73 uRNA Pr \$QDIB170 \$74 uRNA Pr \$QDIB171 \$75 uRNA Pr \$QDIB172 \$77 uRNA Pr \$QDIB173 \$78 uRNA Pr \$QDIB173 \$78 uRNA Pr \$QDIB175 \$79	SQD18177 S81 uRNA Pi SQD18178 SQD18178 SQD18179 SQD18180 S84 uRNA Pi SQD18180 S85 uRNA Pi SQD18182 S86 uRNA Pi SQD18182 S86 S87	SQDIB185 S89 uRNA P; SQDIB186 S90 uRNA P; SQDIB187 SQDIB180 SQDIB180 SQDIB180 SQDIB190

Legacy QIAseq Multimodal Index kits for the Combined Workflow (CW) for Target enrichment are listed below (Set A, Table 39 and Set B, Table 40). The layouts for these plates are listed in Table 41 and Table 42). These index kits can still be used for the Combined Workflow, but will be discontinued.

QIAseq Multimodal Index I Set A (Two identical sets of 48 DNA + 48 RNA sample indexes for Illumina platforms) Catalog no. Number of samples	(96) 333965 96
Multimodal N7 Plate Set A (48): MTIN-96AK Each plate allows N7 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried N7 index primers specific for DNA	2
libraries mixed with N7 index primers specific for RNA libraries. The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate Set A (48): MTIS-96AK	2
Each plate allows S5 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre- mixed with universal DNA primer (columns 1–6) and dried S5 indexes for RNA libraries pre-mixed with universal RNA primer (columns 7–12).	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

Table 39. Legacy QIAseg Multimodal Index Set A for the Combined Workflow

QlAseq Multimodal Index I Set B (Two identical sets of 48 DNA + 48 RNA sample indexes for Illumina platforms) Catalog no. Number of samples	(96) 333975 96
Multimodal N7 Plate Set B (48): MTIN-96BK	2
Each plate allows N7 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried N7 index primers specific for DNA libraries mixed with N7 index primers specific for RNA libraries. The plates can be cut in columns to enable indexing of the desired number of samples.	
Multimodal S5 Plate Set B (48): MTIS-96BK	2
Each plate allows S5 indexing of 48 samples: 48 for DNA and 48 for RNA. Each well in the plate is single use and contains dried S5 indexes for DNA libraries pre- mixed with universal DNA primer (columns 1–6) and dried S5 indexes for RNA libraries pre-mixed with universal RNA primer (columns 7–12).	
UPCR Buffer, 5x	500 µl x 3
DNA qPCR AMP Set	96 µl
RNA qPCR AMP Set	96 µl
QIAseq A Read 1 Primer I (100 µM)	4 x 24 µl
Multimodal Read 2 Primer (100 µM)	4 x 24 µl
Optical Thin-wall 8-cap Strips	48 strips

Table 40. Legacy QIAseq Multimodal Index Set B for the Combined Workflow

Table 41. Layout of (a) MTIN-96AK and (b) MTIS-96AK

(a)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M001 51 RNAp-M049	DNAp-M009 59 RNAp-M057	DNAp-M017 \$17 RNAp-M065	DNAp-M025 525 RNAp-M073	DNAp-M033 533 RNAp-M081	DNAp-M041 541 RNAp-M089	Emply	Empty	Empty	Empty	Empty	Empty
В	DNAp-M002 52 RNAp-M050	DNAp-M010 \$10 RNAp-M058	DNAp-M018 518 RNAp-M066	S26	DNAp-M034 534 RNAp-M082	DNAp-M042 542 RNAp-M090	Empty	Empty	Empty	Empty	Empty	Empty
с	DNAp-M003 53 RNAp-M051	DNAp-M011 \$11 RNAp-M059	DNAp-M019 \$19 RNAp-M067	DNAp-M027 \$27 RNAp-M075	DNAp-M035 \$35 RNAp-M083	DNAp-M043 543 RNAp-M091	Empty	Empty	Empty	Empty	Empty	Empty
D	DNAp-M004 54 RNAp-M052	DNAp-M012 \$12 RNAp-M060	DNAp-M020 520 RNAp-M068	528 RNAp-M076	536 RNAp-M084	DNAp-M044 \$44 RNAp-M092	Empty	Empty	Empty	Empty	Empty	Empty
E	DNAp-M005 55 RNAp-M053	DNAp-M013 \$13 RNAp-M061	DNAp-M021 521 RNAp-M069	DNAp-M029 529 RNAp-M077	\$37 RNAp-M085	DNAp-M045 545 RNAp-M093	Empty	Empty	Empty	Empty	Empty	Empty
F	DNAp-M006 56 RNAp-M054	\$14 RNAp-M062	DNAp-M022 522 RNAp-M070	530 RNAp-M078	538 RNAp-M086	DNAp-M046 \$46 RNAp-M094	Empty	Empty	Empty	Empty	Empty	Empty
G	DNAp-M007 S7 RNAp-M055	DNAp-M015 \$15 RNAp-M063	DNAp-M023 523 RNAp-M071	DNAp-M031 531 RNAp-M079	DNAp-M039 \$39 RNAp-M087	DNAp-M047 \$47 RNAp-M095	Empty	Empty	Empty	Empty	Empty	Empty
н	DNAp-M008 58 RNAp-M056	DNAp-M016 \$16 RNAp-M064	DNAp-M024 524 RNAp-M072	DNAp-M032 532 RNAp-M080	DNAp-M040 540 RNAp-M088	DNAp-M048 548 RNAp-M096	Empty	Empty	Empty	Empty	Empty	Empty
(b)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	SQDIB001											
	si uDNA Pr	SQDIB009 59 uDNA Pr	SQDIB017 S17 uDNA Pi	SQDIB025 S25 uDNA Pr	SQDIB033 533 uDNA Pr	SQDIB041 541 uDNA Pr	SQDIB049 \$1 uRNA Pr	SQDIB057 59 uRNA Pr	SQDIB065 \$17 uRNA Pr	SQDIB073 525 uRNA Pr	SQDIB081 \$33 uRNA Pr	SQDIB089 541 uRNA Pr
В	\$1	s9 uDNA Pr SQDIB010	\$17	S25 uDNA Pr SQDIB026 S26	s33 uDNA Pr	S41 uDNA Pr SQDIB042	\$1	59	SUT uRNA Pr SQDIB066	\$25	\$33	S41 uRNA Pr
B C	S1 uDNA Pr SQDIB002 S2	S9 UDNA Pr SQDIB010 S10 UDNA Pr SQDIB011	SQDIB018	\$25 UDNA Pr SQDIB026 \$26 UDNA Pr	533 uDNA Pr SQDIB034 534	S41 uDNA Pr SQDIB042 S42 uDNA Pr SQDIB043	\$1 uRNA Pr SQDIB050 \$2	59 uRNA Pr SQDIB058 510	SI7 uRNA Pr SQDIB066 S18 uRNA Pr SQDIB067	525 uRNA Pr SQDIB074 526	\$33 uRNA Pr SQDIB082 \$34	541 uRNA Pr SQDIB090 542 uRNA Pr SQDIB091 543
	51 UDNA Pr SQDIB002 52 UDNA Pr SQDIB003 53	59 UDNA Pr SQDIB010 510 UDNA Pr SQDIB011 511 UDNA Pr SQDIB012	S17 UDNA Pr SQDIB018 S18 UDNA Pr SQDIB019 SQDIB019 S19	S25 UDNA Pr SQDIB026 S26 UDNA Pr SQDIB027 S27 UDNA Pr	533 UDNA Pr SQDIB034 534 UDNA Pr SQDIB035 535 UDNA Pr	S41 UDNA Pr SQDIB042 S42 UDNA Pr SQDIB043 S43 UDNA Pr SQDIB044	S1 URNA Pr SQDIB050 S2 URNA Pr SQDIB051 S3	59 URNA Pr SQDIB058 510 URNA Pr SQDIB059 511	\$17 URNA Pr SQDIB066 \$18 URNA Pr SQDIB067 \$19 URNA Pr SQDIB068	525 uRNA Pr SQDIB074 526 uRNA Pr SQDIB075 527	533 uRNA Pr SQDIB082 534 uRNA Pr SQDIB083 535	541 URNA Pr SQDIB090 542 URNA Pr SQDIB091 543 URNA Pr
с	51 UDNA Pr 52 UDNA Pr 53 UDNA Pr 53 UDNA Pr 53 UDNA Pr 53	59 UDNA Pr SQDIB010 UDNA Pr SQDIB011 511 UDNA Pr SQDIB012 512	517 UDNA Pi SQDIB018 518 UDNA Pi SQDIB019 519 UDNA Pi SQDIB020 520	525 UDNA Pr SQDI8026 UDNA Pr SQDI8027 527 UDNA Pr SQDI8027 528	533 UDNA Pr SQDIB034 UDNA Pr SQDIB035 S35 UDNA Pr SQDIB036 S36	541 UDNA Pr SQDIB042 542 UDNA Pr SQDIB043 543 UDNA Pr SQDIB044 544 UDNA Pr SQDIB044	51 URNA Pr SQDIB050 52 URNA Pr SQDIB051 53 URNA Pr SQDIB052 54	59 URNA Pr SQDI8058 URNA Pr SQDI8059 511 URNA Pr SQDI8059 512	517 URNA Pr SQDIB066 518 URNA Pr SQDIB067 519 URNA Pr SQDIB068 520 URNA Pr SQDIB068	525 URNA Pr SQDIB074 URNA Pr SQDIB075 527 URNA Pr SQDIB076 528	533 uRNA Pr SQDIB082 uRNA Pr SQDIB083 535 uRNA Pr SQDIB083 535 URNA Pr	541 URNA Pr SQDIB090 542 URNA Pr SQDIB091 543 URNA Pr SQDIB092 544
C D	51 UDNA Pr 52 UDNA Pr 53 UDNA Pr 54 SQDIB003 53 UDNA Pr 54 SQDIB004 54 UDNA Pr 55	59 UDNA Pr SQDI8010 UDNA Pr SQDI8011 511 UDNA Pr SQDI8012 512 UDNA Pr SQDI8012 512 UDNA Pr SQDI8013 513 UDNA Pr	517 UDNA P SQDIB018 UDNA P SQDIB019 SQDIB019 UDNA P SQDIB020 UDNA P SQDIB020 SQDIB021 SQDIB021 SQDIB021	525 UDNA Pr SQDIB026 UDNA Pr SQDIB027 527 UDNA Pr SQDIB028 528 UDNA Pr SQDIB029 529	s33 uDNA Pr sQDIB034 s34 uDNA Pr sQDIB035 s35 uDNA Pr sQDIB036 s36 uDNA Pr sQDIB037 s37	541 UDNA Pr SQDIB042 542 UDNA Pr SQDIB043 543 UDNA Pr SQDIB044 544 UDNA Pr SQDIB044 545 UDNA Pr SQDIB045 545 UDNA Pr	51 URNA Pr SQDIB050 52 URNA Pr SQDIB051 53 URNA Pr SQDIB052 URNA Pr SQDIB053 55	S9 URNA Pr SQDIB058 URNA Pr SQDIB059 URNA Pr SQDIB060 S12 URNA Pr SQDIB061 S13	517 URNA Pr SQDI8065 518 URNA Pr SQDI8067 519 URNA Pr SQDI8068 520 URNA Pr SQDI8069 521 URNA Pr SQDI8069 521 URNA Pr	525 URNA Pr SQDIB074 SQDIB075 SQDIB075 S27 URNA Pr SQDIB076 SQBID76 SQDIB076 SQDIB077 S28	533 URNA Pr SQDIB082 534 URNA Pr SQDIB083 535 URNA Pr SQDIB084 S36 URNA Pr SQDIB085 537	541 URNA Pr SQDIB090 542 URNA Pr SQDIB091 543 URNA Pr SQDIB092 544 URNA Pr SQDIB093 545 URNA Pr
C D E F	51 UDNA Pr 52 UDNA Pr 53 SQDIB002 53 UDNA Pr 53 SQDIB003 54 UDNA Pr 53 SQDIB004 55 UDNA Pr 55 UDNA Pr 56	59 UDNA Pr SQDB010 510 UDNA Pr SQDB011 511 UDNA Pr SQDB014 513 UDNA Pr SQDB015	517 UDNA P SQDIB01E 518 UDNA P SQDIB015 519 UDNA P SQDIB020 SQDIB021 521 UDNA P SQDIB021 521 UDNA P SQDIB021 521 SQDIB022 522	S25 UDNA Pr SQDIB026 S26 UDNA Pr SQDIB027 S27 UDNA Pr SQDIB028 S28 UDNA Pr SQDIB029 UDNA Pr SQDIB029 S29 UDNA Pr SQDIB030 S30	S33 UDNA Pr SQDIB034 S34 UDNA Pr SQDIB035 S35 UDNA Pr SQDIB036 S36 UDNA Pr SQDIB037 S37 UDNA Pr SQDIB038 S38	S41 UDNA Pr SQDIB042 SQDIB043 SQDIB043 SQDIB043 SQDIB043 UDNA Pr SQDIB044 SQDIB044 SQDIB045 SQDIB045 SQDIB045 SQDIB045 SQDIB045 SQDIB046 SQDIB045 SQDIB045 SQDIB045 SQDIB046 SQDIB046 SQDIB046 SQDIB046 SQDIB046	51 URNA Pr 52 URNA Pr SQDIB050 53 URNA Pr SQDIB052 55 URNA Pr SQDIB055 55 URNA Pr SQDIB055 55 URNA Pr	59 URNA Pr SQDIB058 510 URNA Pr SQDIB059 511 URNA Pr SQDIB061 513 URNA Pr SQDIB061 513 URNA Pr	517 GRNA Pr SQDIB066 518 URNA Pr SQDIB067 519 URNA Pr SQDIB069 521 URNA Pr SQDIB070 522 URNA Pr SQDIB071	525 URNA Pr 526 SQDIB074 SQDIB074 SQDIB075 527 URNA Pr SQDIB077 528 URNA Pr SQDIB077 529 URNA Pr SQDIB077 529 URNA Pr	533 URNA Pr SQDIB082 534 URNA Pr SQDIB083 535 URNA Pr SQDIB085 537 URNA Pr SQDIB085 537 URNA Pr SQDIB085 537	S41 URNA Pr SQDIB090 SQDIB090 SQDIB091 SQDIB091 SQDIB091 URNA Pr SQDIB092 URNA Pr SQDIB093 SQDIB093 S45 URNA Pr SQDIB093 SQDIB093 S45 URNA Pr SQDIB093 SQDIB094

Table 42. Layout of (a) MTIN-96BK and (b) MTIS-96BK

(a)												
<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNAp-M097 549 RNAp-M145	DNAp-M105 \$57 RNAp-M153	DNAp-M113 565 RNAp-M161	DNAp-M121 573 RNAp-M169	DNAp-M129 581 RNAp-M177	DNAp-M137 589 RNAp-M185	Empty	Empty	Empty	Empty	Empty	Empty
В	DNAp-M098 550 RNAp-M146	DNAp-M106 \$58 RNAp-M154	DNAp-M114 566 RNAp-M162	574 RNAp-M170	DNAp-M130 582 RNAp-M178	DNAp-M138 590 RNAp-M186	Empty	Empty	Empty	Empty	Empty	Empty
с	DNAp-M099 \$51 RNAp-M147	DNAp-M107 \$59 RNAp-M155	DNAp-M115 S67 RNAp-M163	875 RNAp-M171	DNAp-M131 583 RNAp-M179	DNAp-M139 \$91 RNAp-M187	Empty	Empty	Empty	Empty	Empty	Empty
D	DNAp-M100 \$52 RNAp-M1148	DNAp-M108 \$60 RNAp-M156	DNAp-M116 S68 RNAp-M164	S76	DNAp-M132 584 RNAp-M180	DNAp-M140 \$92 RNAp-M188	Empty	Empty	Empty	Empty	Empty	Empty
E	DNAp-M101 553 RNAp-M149	DNAp-M109 561 RNAp-M157	DNAp-M117 569 RNAp-M165	577 RNAp-M173	585 RNAp-M181	DNAp-M141 593 RNAp-M189	Empty	Empty	Empty	Empty	Empty	Empty
F	DNAp-M102 \$54 RNAp-M150	562 RNAp-M158	570 RNAp-M166	578 RNAp-M174	586 RNAp-M182	594 RNAp-M190	Empty	Empty	Empty	Empty	Empty	Empty
G	DNAp-M103 \$55 RNAp-M151	DNAp-M111 563 RNAp-M159	DNAp-M119 \$71 RNAp-M167	DNAp-M127 \$79 RNAp-M175	DNAp-M135 587 RNAp-M183	DNAp-M143 \$95 RNAp-M191	Empty	Empty	Empty	Empty	Empty	Empty
н	DNAp-M104 556 RNAp-M152	DNAp-M112 564 RNAp-M160	DNAp-M120 \$72 RNAp-M168	S80 .	DNAp-M136 588 RNAp-M184	DNAp-M144 \$96 RNAp-M192	Empty	Empty	Empty	Empty	Empty	Empty
(b)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	SQDIB097 549 uDNA Pr	SQDIB105 557 uDNA Pr	SQDIB113 565 uDNA Pi	SQDIB121 573 uDNA Pr	SQDIB129 581 uDNA Pr	SQDIB137 589 uDNA Pr	SQDIB145 549 uRNA Pr	SQDIB153 \$57 uRNA Pr	SQDIB161 565 uRNA Pr	SQDIB169 573 uRNA Pr	SQDIB177 581	SQDIB185 589
В	SQDIB098						UKINATI	UKINATI	UKINA FI		uRNA Pr	uRNA Pr
	uDNA Pr	SQDIB106 558 uDNA Pr	SQDIB114 566 uDNA Pr	S74	SQDIB130 582 uDNA Pr	SQDIB138 590 uDNA Pr	SQDIB146 S50 uRNA Pr	SQDIB154 SS8 uRNA Pr	SQDIB162	SQDIB170 574 uRNA Pr	uRNA Pr SQDIB178 S82 uRNA Pr	
с		S58	S66	s74 uDNA Pr	582 uDNA Pr SQDIB131 583	uDNA Pr SQDIB139	SQDIB146 \$50 uRNA Pr	SQDIB154 \$58	SQDIB162 S66 uRNA Pr SQDIB163	SQDIB170 \$74	SQDIB178 582	SQDIB186 590 uRNA Pr SQDIB187 591
_	uDNA Pr SQDIB099 \$51	\$58 uDNA Pr SQDIB107 \$59	SG6 UDNA Pi SQDIB115 S67	574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576	582 uDNA Pr SQDIB131 583 uDNA Pr	590 UDNA Pr SQDIB139 591 UDNA Pr SQDIB140	SQDIB146 550 uRNA Pr SQDIB147 551 uRNA Pr	SQDIB154 558 uRNA Pr SQDIB155 559	SQDIB 162 uRNA Pr SQDIB 163 S67 uRNA Pr SQDIB 164	SQDIB170 574 uRNA Pr SQDIB171 575	SQDIB178 582 uRNA Pr SQDIB179 583	SQDIB186 590 uRNA Pr SQDIB187 591 uRNA Pr
D	uDNA Pr SQDIB099 551 uDNA Pr SQDIB100 552	558 UDNA Pr SQDIB107 559 UDNA Pr SQDIB108 560	566 UDNA Pr SQDIB115 567 UDNA Pr SQDIB116 568	574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr SQDIB125 577	582 UDNA Pr SQDIB131 583 UDNA Pr SQDIB132 584	S90 UDNA Pr SQDIB139 S91 UDNA Pr SQDIB140 S92 UDNA Pr SQDIB141	SQDIB146 S50 URNA Pr SQDIB147 S51 URNA Pr SQDIB148 S52 URNA Pr SQDIB148 S52 URNA Pr SQDIB149 S53	SQDIB154 URNA Pr SQDIB155 SS9 URNA Pr SQDIB156 S60	SQDIB 162 S66 uRNA Pr SQDIB 163 S67 uRNA Pr SQDIB 164 uRNA Pr SQDIB 165	SQDIB 170 uRNA Pr SQDIB 171 s75 uRNA Pr SQDIB 172 SQDIB 172	SQDIB178 uRNA Pr SQDIB179 S83 uRNA Pr SQDIB180 S84	SQDIB186 S90 URNA Pr SQDIB187 S91 URNA Pr SQDIB188 S92 URNA Pr SQDIB189 S93
D	UDNA Pr SQDIB099 551 UDNA Pr SQDIB100 552 UDNA Pr SQDIB101 553	558 UDNA Pr SQDIB107 559 UDNA Pr SQDIB108 560 UDNA Pr SQDIB109 SGDIB109	566 UDNA Pr SQDIB115 SG7 UDNA Pr SQDIB116 S68 UDNA Pr SQDIB117 S69	574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr SQDIB125 577 UDNA Pr SQDIB125 577 SQDIB126 578	\$82 UDNA Pr \$QDIB131 \$83 UDNA Pr \$QDIB132 \$84 UDNA Pr \$QDIB133 \$85 UDNA Pr	S90 UDNA Pr SQDIB139 S91 UDNA Pr SQDIB140 S92 UDNA Pr SQDIB141 S93 UDNA Pr SQDIB141	SQDIB146 550 URNA Pr SQDIB147 551 URNA Pr SQDIB148 552 URNA Pr SQDIB149 553 URNA Pr SQDIB149 553 URNA Pr	SQDIB154 SS8 URNA Pr SQDIB155 SS9 URNA Pr SQDIB156 S60 URNA Pr SQDIB157 S61	SQDIB 162 SG6 URNA Pr SQDIB 163 S67 URNA Pr SQDIB 164 S68 URNA Pr SQDIB 165 S69 URNA Pr SQDIB 165	SQDIB 170 S74 URNA Pr SQDIB 171 S75 URNA Pr SQDIB 172 S76 URNA Pr SQDIB 173 S77	SQDIB178 S82 uRNA Pr SQDIB179 S83 uRNA Pr SQDIB180 S84 uRNA Pr SQDIB180 S84 S85	SQDIB186 S90 URNA Pr SQDIB187 S91 URNA Pr SQDIB188 S92 URNA Pr SQDIB189 S93 URNA Pr SQDIB190 S94
D E F	UDNA Pr SQDIB099 S51 UDNA Pr SQDIB100 S52 UDNA Pr SQDIB101 S53 UDNA Pr SQDIB101 S53	558 UDNA Pr SQDIB107 559 UDNA Pr SQDIB108 560 UDNA Pr SQDIB109 561 UDNA Pr SQDIB109 561 SQDIB109 562	566 UDNA P SQDIB115 S67 UDNA P SQDIB116 S68 UDNA P SQDIB117 SQDIB117 SQDIB117 SQDIB117 SQDIB118 S70	574 UDNA Pr SQDIB123 575 UDNA Pr SQDIB124 576 UDNA Pr SQDIB126 577 UDNA Pr SQDIB126 578 UDNA Pr	582 UDNA Pr SQDIB131 583 UDNA Pr SQDIB132 584 UDNA Pr SQDIB133 585 UDNA Pr SQDIB134 586	Syon UDNA Pr SQD/B139 Syon UDNA Pr SQD/B140 Syon UDNA Pr SQD/B141 Syon UDNA Pr SQD/B142 Syon UDNA Pr SQD/B142 Syon UDNA Pr SQD/B142 Syon UDNA Pr SQD/B143 SQD/B14 SQD/B143 SQD/B143 SQD/B14 SQD/B143 SQD/B14 SQD/B14	SQDIB146 550 URNA Pr SQDIB147 551 URNA Pr SQDIB148 552 URNA Pr SQDIB149 553 URNA Pr SQDIB149 553 URNA Pr SQDIB150 554 URNA Pr	SQDIB154 URNA Pr SQDIB155 559 URNA Pr SQDIB156 560 URNA Pr SQDIB157 561 URNA Pr SQDIB157 561 URNA Pr SQDIB159 562 URNA Pr	SQDIB162 S66 uRNA Pr SQDIB163 S67 uRNA Pr SQDIB164 S68 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB166 S70 uRNA Pr SQDIB166 S70 uRNA Pr SQDIB166 S70 uRNA Pr SQDIB166 S66 uRNA Pr SQDIB166 S66 uRNA Pr SQDIB164 S67 uRNA Pr SQDIB164 S68 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB165 S69 uRNA Pr SQDIB166 S70 uRNA Pr SQDIB167 SQ	SQDIB170 S74 URNA Pr SQDIB171 S75 URNA Pr SQDIB172 URNA Pr SQDIB173 S77 URNA Pr SQDIB173 S77 SQDIB174	SQDIB178 582 uRNA Pr SQDIB179 583 uRNA Pr SQDIB180 584 uRNA Pr SQDIB181 585 uRNA Pr SQDIB181 585 uRNA Pr SQDIB182 586 uRNA Pr	SQDIB186 S90 URNA Pr SQDIB187 S91 URNA Pr SQDIB189 S92 URNA Pr SQDIB189 S94 URNA Pr SQDIB190 S94 URNA Pr SQDIB191 S95

Ordering Information

Product	Contents	Cat. no.
QIAseq Multimodal Panel HT (12).*	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) sequencing; fixed small panel for a total of 12 samples: 12 DNA and 12 RNA libraries	334932
QIAseq Multimodal Panel HT (96)*	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) sequencing; fixed small panel for a total of 96 samples: 96 DNA and 96 RNA libraries	334935
QIAseq Multimodal HC Panel HT (12)*	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) sequencing; fixed high content (HC) panel for a total of 12 samples: 12 DNA and 12 RNA libraries	334942
QIAseq Multimodal HC Panel HT (96)*	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) sequencing; fixed high content (HC) panel for a total of 96 samples: 96 DNA and 96 RNA libraries	334945
QIAseq Multimodal Custom Panel HT (96)*	Kit containing all reagents (except indexes) for multimodal (DNA and RNA) sequencing; custom panel for a total of 96 samples: 96 DNA and 96 RNA libraries	334955
QIAseq Multimodal Index I SW (12)* Note : For Separated Workflow (SW) for Targeted Enrichment	Box containing oligos, enough to process a total of 12 samples, for indexing up to a total of 12 samples (12 for DNA and 12 for RNA libraries) for multimodal panel sequencing on Illumina platforms	333982

* Visit www.qiagen.com/GeneGlobe to search for and order these products.

Product	Contents	Cat. no.
QIAseq Multimodal HT SW 96 UDI* Note : For Separated Workflow (SW) for Targeted Enrichment	Box containing oligos, enough to process a total of 96 samples, for indexing up to a total of 96 libraries (96 for DNA and 96 for RNA) for multimodal panel sequencing on Illumina platforms	333986
QIAseq Multimodal Index I (12)* Note: For Combined Workflow (CW) for Targeted Enrichment	Box containing oligos, enough to process a total of 12 samples, for indexing up to a total of 12 samples (12 for DNA and 12 for RNA libraries) for multimodal panel sequencing on Illumina platforms	333962
QIAseq Multimodal HT CW 96 UDI Note : For Combined Workflow (CW) for Targeted Enrichment	Box containing oligos, enough to process a total of 96 samples, for indexing up to a total of 96 libraries (96 for DNA and 96 for RNA) for multimodal panel sequencing on Illumina platforms	333979
Related products		
QIAseq DNA QuantiMIZE Array Kit	qPCR arrays for optimizing amount of input DNA and PCR cycling conditions for targeted enrichment of FFPE DNA	333404
QlAseq DNA QuantiMIZE Assay Kit	qPCR assays for optimizing amount of input DNA and PCR cycling conditions for targeted enrichment of FFPE DNA	333414
QlAamp [®] DNA Mini Kit (50)	For 50 DNA preps: 50 QlAamp Mini Spin Columns, QlAGEN Proteinase K, collection tubes (2 ml), reagents and buffers	51304
QIAamp Circulating Nucleic Acid Kit (50)	For 50 DNA preps: QIAamp Mini Columns, Tube Extenders (20 ml), QIAGEN Proteinase K, carrier RNA, buffers, VacConnectors, and collection tubes (1.5 ml and 2 ml)	55114

Product	Contents	Cat. no.
AllPrep DNA/RNA Mini Kit (50)	For 50 minipreps: AllPrep DNA Spin Columns, RNeasy Mini Spin Columns, collection tubes, RNase-free water, and buffers	80204
AllPrep DNA/RNA FFPE Kit (50)	50 RNeasy MinElute Spin Columns, 50 QIAamp MinElute Spin Columns, collection tubes, RNase- free reagents, and buffers	80234
PAXgene Blood DNA Kit (25)	Processing tubes and buffers for 25 preparations	761133
PAXgene Blood RNA Kit (50)	50 PAXgene Spin Columns, 50 PAXgene Shredder Spin Columns, processing tubes, RNase-Free DNase I, RNase-free reagents and buffers	Inquire
GeneRead® DNA FFPE Kit (50)	QIAamp MinElute [®] columns, proteinase K, UNG, collection tubes (2 ml), buffers, deparaffinization solution, RNase A	180134

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Document Revision History

Date	Changes
04/2022	Initial release

Notes

Limited License Agreement for QIAseq Multimodal HT Panels

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- The product may be used solely in accordance with the protocols provided with the product and this handbook and for use with components contained in the kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this handbook, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.
- 3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

For updated license terms, see www.qiagen.com.

Trademarks: QIAGEN[®], Sample to Insigh[®], QIAamp[®], QIAseq[®], QIAxpert[®], AllPrep[®], GeneRead[®], MinElute[®], OCI[®] (QIAGEN Group); Agilent[®], Bioanalyzer[®], TapeStation[®] (Agilent Technologies); EvaGreen[®] (Biotium, Inc.); LoBind[®] (Eppendorf AG); Illumina[®], HiSeq[®], MiiSeq[®], MiSeq[®], NextSeq[®], NovaSeq[™] (Illumina, Inc.); MagneSphere[®] (Promega Corporation); DynaMag[™], Ion Torrent[®], NanoDrop[®], QuantiT[™] (Thermo Fisher Scientific Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by Iaw.

04/2022 HB-3037-001 © 2022 QIAGEN, all rights reserved.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com