QuantiNova® LNA® PCR Panels

The QuantiNova LNA PCR Panels (cat. nos. 249950, 249951, 249960, and 249970) are shipped at room temperature. Immediately upon receipt, they should be stored at 2 to 8° C for short-term storage or at -30 to -15° C in constant-temperature freezer for long-term storage. Under these conditions, all components are stable for at least 12 months if not otherwise indicated on the label.

Further information

- QuantiNova LNA PCR Handbook: www.qiagen.com/HB-2698
- Product Data Sheets, including plate assay layout for QuantiNova LNA PCR Focus Panels and QuantiNova LNA PCR IncRNA Focus Panels: www.qiagen.com
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.qiagen.com

Notes before starting

- This protocol is optimized for the detection of mRNA/IncRNA targets with any real-time cycler and conditions for fluorescence normalization. ROX™ dye is required at the following concentrations:
 - No requirement for ROX dye: Rotor-Gene®, Bio-Rad® CFX, Roche® LightCycler® 480, and Agilent® Technologies Mx instruments.
 - Low concentration of ROX dye: Applied Biosystems® 7500, ViiA® 7, and QuantStudio® Real-Time PCR Systems.
 - High concentration of ROX dye: ABI PRISM® 7000, Applied Biosystems 7300, 7900, and StepOne™ Real-Time PCR Systems.
- The ROX Reference Dye should be used as a 20x concentrated solution for a 1x reaction when using an instrument requiring a high ROX dye concentration. For instruments requiring a low ROX dye concentration, use the dye as a 200x concentrate.

- The 2x QuantiNova SYBR® Green PCR Master Mix contains the QuantiNova DNA
 Polymerase, which is inactive at room temperature. The PCR protocol must start with an
 initial incubation step of 2 min at 95°C to activate the QuantiNova DNA Polymerase.
- Always start with the cycling conditions and primer concentrations specified in this protocol.

Procedure:

The QuantiNova LNA PCR Panels can used in two different protocols: the 2-Step RT-PCR Protocol, which will be described below, and the 1-Step RT-PCR Protocol with one combined cDNA RT and the PCR reaction. For the 1-step RT-PCR Protocols, please refer to the *QuantiNova LNA PCR Handbook*.

2-Step RT-PCR procedure:

- 1. Thaw 2x QuantiNova SYBR® Green PCR Master Mix, template cDNA, QN ROX Reference Dye (if required), and RNase-free water. Mix the individual solutions.
- When using the QuantiNova Reverse Transcription Kit, add 90 μl RNase-free water to each 20 μl reverse transcription reaction to dilute the cDNA. Mix by pipetting up and down several times.
- 3. Prepare a Master Mix for 1 sample according to Table 1 or for more than 1 sample according to Table 2 or Table 3. Due to the hot-start, it is not necessary to keep samples on ice during reaction setup or while programming the real-time cycler.

Note: Save the remaining volume of the cDNA synthesis reaction at -15 to -30°C for potential quality control analysis.

Table 1. Master Mix setup for QuantiNova LNA PCR Panels for 1 sample

Component	96-well panels	384-well panels	Final concentration
2x QuantiNova SYBR® Green PCR Master Mix	اµ 1000	2000 µl	1x
ROX Reference Dye (ABI instruments only)	*اب 10/اب 100	200 µl/20 µl*	1x
Diluted cDNA template	اµ 100	100 µl	-
RNase-free water	Variable	Variable	-
Total Master Mix volume	2000 μl [†]	4000 µl†	_

^{*} Use ROX Reference Dye as a 20x concentrate for cyclers requiring a high ROX dye concentration (i.e., ABI PRISM 7000, Applied Biosystems 7300, 7900, and StepOne Real-Time PCR Systems) and as a 200x concentrate for cyclers requiring a low ROX dye concentration (i.e., Applied Biosystems 7500, ViiA 7, and QuantStudio Real-Time PCR Systems). Adjust the amount of RNase-free water accordingly.

[†] Total Master Mix volume includes a reserve to compensate for pipetting variations.

Table 2. Master Mix setup for QuantiNova LNA PCR Flexible Panels and Custom Panels for more than 1 sample per 96-well plate/Rotor-Disc® 100

Component	2 samples (48 wells per sample)	4 samples (24 wells per sample)	8 samples (12 wells per sample)	Final concentration
2x QuantiNova SYBR® Green PCR Master Mix	520 µl	الم 280	الر 160	1x
ROX Reference Dye (ABI instruments only)	52 μl/ 5.2 μl*	28 بال 2.8 با*	16 µl/ 1.6 µl*	1x
Diluted cDNA template	100 µl	100 μΙ	100 μΙ	_
RNase-free water	Variable	Variable	Variable	-
Total Master Mix volume	2 x 1040 µl†	4 x 560 μl [†]	8 x 320 μl [†]	-

^{*} Use ROX Reference Dye as a 20x concentrate for cyclers requiring a high ROX dye concentration (i.e., ABI PRISM 7000, Applied Biosystems 7300, 7900, and StepOne Real-Time PCR Systems) and as a 200x concentrate for cyclers requiring a low ROX dye concentration (i.e., Applied Biosystems 7500, ViiA 7 and QuantStudio Real-Time PCR Systems). Adjust the amount of RNase-free water accordingly.

Table 3. Master Mix setup for QuantiNova LNA PCR Flexible Panels and Custom Panels for more than 1 sample per 384-well plate

Component	2 samples (192 wells per sample)	4 samples (96 wells per sample)	8 samples (48 wells per sample)	16 samples (24 wells per sample)	Final concentration
2x QuantiNova SYBR® Green PCR Master Mix	1000 µl	500 µl	260 μΙ	140 μΙ	1x
ROX Reference Dye (ABI instruments only)	100 μl/ 10 μl*	50 µl/5 µl*	26 µl/2.6 µl*	14 µl/1.4 µl*	1x
Diluted cDNA template	100 µl	100 µl	ابر 100	100 µl	-
RNase-free water	Variable	Variable	Variable	Variable	-
Total Master Mix volume	$2 \times 2000 \ \mu l^{\dagger}$	4 x 1000 μl†	8 x 520 µl†	16 x 280 µl†	-

^{*} Use ROX Reference Dye as a 20x concentrate for cyclers requiring a high ROX dye concentration (i.e., ABI PRISM 7000, Applied Biosystems 7300, 7900, and StepOne Real-Time PCR Systems) and as a 200x concentrate for cyclers requiring a low ROX dye concentration (i.e., Applied Biosystems 7500, ViiA 7 and QuantStudio Real-Time PCR Systems). Adjust the amount of RNase-free water accordingly.

4. Mix the reaction mix thoroughly and dispense 20 μl per well (for 96-well formats) or 10 μl per well (for 384-well formats) into the PCR plates.

Note: The experiment can be paused at this point. Store the reactions protected from light at 2–8°C for up to 24 h.

[†] Each Master Mix includes a reserve of at least 4 single reaction volumes (80 µl for 96-well plates and 40 µl for 384-well plates) to compensate for pipetting variations.

[†] Each Master Mix includes a reserve of at least 4 single reaction volumes (80 µl for 96-well plates and 40 µl for 384-well plates) to compensate for pipetting variations.

- 5. Seal the plates. Carefully vortex it to dissolve the primers (optional). Briefly centrifuge the plates at room temperature. Wait 5 min while the primers dissolve in the reaction mix.
- 6. Program the real-time cycler according to Table 4.

Note: Data acquisition should be performed during the annealing/extension step.

7. Place the plates into the real-time cycler and start the cycling program.

Table 4. PCR cycling conditions for QuantiNova LNA PCR Panels

Step	Time	Temperature	Ramp rate	Additional comments
PCR initial heat activation	2 min	95°C	Maximal/fast mode	QuantiNova DNA Polymerase is activated by this heating step
2-step cycling				
Denaturation	5 s	95°C	Maximal/fast mode	
Combined annealing/extension	10 s*	60°C	Maximal/fast mode	Perform fluorescence data collection
Number of cycles	45			
Melting curve analysis†				

^{*} If your cycler does not accept this short time for data acquisition, choose the shortest acceptable time (e.g., 31 s annealing/extension for the ABI PRISM 7000 or Applied Biosystems 7300).

8. For interpreting the results, please refer to the QuantiNova LNA PCR Handbook.

Document Revision History

Date	Changes
03/2020	Initial release

Scan QR code for QuantiNova LNA PCR Handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, Sample to Insight®, LNA®, QuantiNova®, Rotor-Disc®, Rotor-Gene® (QIAGEN Group); Agilent® (Agilent Technologies, Inc.); ABI PRISM®, Applied Biosystems®, QuantStudio®, ROX™, StepOne™, SYBR®, ViiA® (Life Technologies Corporation); Bio-Rad® (Bio-Rad Laboratories, Inc.); LightCycler®, Roche® (Roche Group).

1121029 03/2020 HB-2763-001 © 2020 QIAGEN, all rights reserved

[†] Melting curve analysis is an analysis step built into the software of real-time cyclers. To perform the analysis, follow instructions provided by the supplier