QlAseq[™] Immune Repertoire RNA Library Kit

Part 1: RT primer hybridization, reverse transcription, second strand synthesis, end-repair, A-addition

Further information

- QlAseq Immune Repertoire RNA Library Kit Handbook: www.qiagen.com/HB-2479
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.giagen.com

Notes before starting

- Prepare the reagents as described in the handbook.
- Important: Ensure reactions are thoroughly mixed (7 to 8 times unless otherwise stated), prepared and incubated at recommended temperatures.

RT primer hybridization

- 1. Pre-heat a thermal cycler to 65°C with a heated lid (set at 103°C).
- 2. On ice, prepare the RT primer hybridization reactions as described in Table 1.

Table 1. Preparation of RT primer hybridization reactions

	1 reaction (µl)
RNA sample (10–1000 ng)	Variable
TCR RT Primer	1
Nuclease-free water	Variable
Total	6

- 3. Transfer the tube from ice to the pre-heated thermal cycler, and incubate for 5 min at 65°C followed by ice for at least 2 min.
- 4. Upon completion, proceed with "Reverse transcription".

Reverse transcription

5. On ice, prepare the reverse transcription reactions as described in Table 2.

Table 2. Preparation of reverse transcription reactions

	1 reaction (µl)
RT primer hybridization reaction (already in tube)	6
BC3 buffer, 5x	2
RNase Inhibitor	1
EZ Reverse Transcriptase*	1
Total	10

^{*} When working with RNA amounts ≤20 ng, dilute 1 µl of the EZ Reverse Transcriptase to 5 µl using 4 µl of nuclease-free water. Pipet up and down 7 to 8 times to mix. Then add 1 µl to the reaction.

6. Incubate the tube in a thermal cycler with a heated lid (103°C) according to Table 3.

Table 3. Thermal cycler settings for reverse transcription reactions

Step	Temperature	Time
1	42°C	30 min
2	70°C	15 min
3	4°C	Hold

7. Upon completion, proceed with "Second strand synthesis". Alternatively, the samples can be stored at -30 to -15°C in a constant-temperature freezer.

Second strand synthesis

8. On ice, prepare the second strand reactions as described in Table 4.

Table 4. Preparation of second strand synthesis reactions

	1 reaction (µl)	
Reverse-transcription reaction (already in tube)	10	
XC buffer	2	
RH RNase	1	
dNTP	Ī	
BX enzyme	1	
Nuclease-free water	5	
Total	20	

9. Incubate the tube in a thermal cycler with a heated lid (103°C) as described in Table 5.

Table 5. Thermal cycler settings for second strand synthesis

Step	Temperature	Time
1	37°C	7 min
2	65°C	10 min
3	80°C	10 min
4	4°C	Hold

10. Upon completion, proceed with "End-repair and A-addition".

End-repair and A-addition

11.On ice, prepare the end-repair and A-addition reactions as described in Table 6.

Table 6. Preparation of end-repair and A-addition reactions

	1 reaction (µl)	
Second strand product from previous section	20	
ERA Buffer, 10x	5	
Nuclease-free water	15	
Total	40	

- 12.On ice, add 10 µl ERA Enzyme to each reaction. Keep the reactions on ice until Step 15.
- 13. Program a thermal cycler as described in Table 7. Set the heated lid to 70°C.

Note: If using a non-temperature-controlled lid, run with cycler lid open for step 2 and seal the strip or plate well. When the cycler reaches step 3, close the lid to avoid evaporation. Centrifuge after the run to remove any condensation.

- 14. Prior to adding the tubes/plate to the thermal cycler, start the program. When the thermal cycler reaches 4°C, pause the program.
- 15. Transfer the tubes/plate from step 12 to the pre-chilled cycler and resume the program.

Table 7. Thermal cycler settings for End-Repair and A-Addition

Step	Incubation temperature	Incubation time
1	4°C	1 min
2	20°C	30 min
3	65°C	30 min
4	4°C	Hold

16. Upon completion, immediately proceed with "Adapter ligation" in Quick-Start Protocol Part 2.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. Trademarks: QIAGEN®, QIAseq™, Sample to Insight® (QIAGEN Group). 1108393 10/2017 HB-2470-001 © 2017 QIAGEN, all rights reserved.