June 2019

QIAsure Methylation Test Instructions for Use (Handbook)

Version 1

For use with Rotor-Gene® Q MDx 5plex HRM instrument

For in vitro diagnostic use

616014 Self-screen B.V., Biothof 15-1, 1098 RX Amsterdam, NETHERLANDS

QIAGEN

Sample to Insight

Contents

Intended Use
Summary and Explanation5
Principle of the Procedure
Materials Provided7
Kit Contents7
Materials Required but Not Provided7
Warnings and Precautions
Safety information
General precautions10
AssayManager profile precautions12
Reagent Storage and Handling13
Specimen Handling and Storage14
Sample Preparation15
General recommendations for bisulfite-conversion17
Protocol: QIAsure Methylation Test PCR in the Rotor-Gene Q MDx 5plex HRM instrument . 18
Interpretation of Results
Troubleshooting Guide
Limitations
Performance Characteristics
Limit of Detection (LOD)
Linearity
Precision

Interfering substances	
Clinical Performance	40
Robustness	42
References	45
Symbols	46
Contact Information	
Ordering Information	
Document Revision History	51

Intended Use

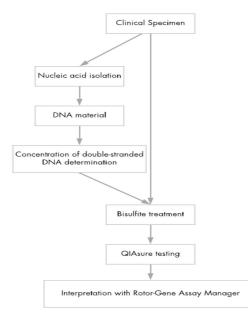
The QIAsure Methylation Test is a multiplex real-time methylation-specific PCR assay for the detection of promoter hypermethylation of the genes *FAM19A4* and *hsa-mir124-2*. Samples that may be tested with QIAsure Methylation Test include bisulfite-converted DNA isolated from specimens collected in the following ways:

- Cervical specimens collected with the *digene®* HC2 DNA Collection Device (physician collected)
- Cervical specimens collected using a brush/broom-type collection device and placed in PreservCyt[®] Solution (physician collected)
- Vaginal specimens collected using a brush/broom device (self-collected)

Indications for use:

- 1. As a follow-up test for women with a positive human papillomavirus (HPV) test, to determine the need for referral to colposcopy or other follow-up procedures.
- As a follow-up test for women with Pap test results with atypical squamous cells of undetermined significance (ASC-US), to determine the need for referral to colposcopy or other follow-up procedures.

This product is intended to be used by professional users, such as technicians and laboratorians who are trained in in vitro diagnostics procedures, molecular biological techniques, and the Rotor-Gene Q MDx 5plex HRM system.


Summary and Explanation

DNA methylation is a biochemical process that is important for normal development in higher organisms (1). It involves the addition of a methyl group to the 5th position of the pyrimidine ring of the cytosine nucleotide. Abnormal patterns of DNA methylation also play a major role in carcinogenesis. In several human cancers and cancer cell lines, including cervical cancer and endometrial cancer, promoter hypermethylation of the genes *FAM19A4* and/or hsa*mir124-2* has been detected (2–6). Host-cell promoter methylation analysis specifically detects cancers and so-called "advanced" cervical intraepithelial neoplasia (CIN) lesions, which harbor a cancer-like methylation profile and have a high short-term risk of progression to cancer (3, 7, 8, 10). The QIAsure assay allows the detection of promoter hypermethylation of the genes *FAM19A4* and *hsa-mir124-2* on bisulfite-converted DNA isolated from cervical or vaginal specimens using ACTB as an internal sample quality control.

Principle of the Procedure

The QIAsure Methylation Test is a multiplex real-time PCR test that amplifies the methylated promoter regions of the tumor suppressor genes *FAM19A4* and *hsa-mir124-2*, as well as a methylation-unspecific fragment of a reference gene. The kit contains 2 tubes of the QIAsure Master Mix and 2 tubes of the QIAsure Calibrator. The master mix is intended for amplification of bisulfite-converted DNA prepared from clinical specimens. The master mix contains the primers and probes for the target genes and the reference gene, which serves as the internal sample quality control. The calibrator is a linearized plasmid containing sequences of the *FAM19A4*, *hsa-mir124-2*, and ACTB amplicons.

Workflow procedure

The QIAsure assay runs on Rotor-Gene Q MDx instrument and the Rotor-Gene AssayManager[®] software automatically performs data analysis and interpretation. The C_T value (cycle threshold) represents the number of PCR cycles necessary for detection of a fluorescent signal above a background signal, which is correlated to the number of target molecules present in the sample. The QIAsure assay calculates the ΔC_T value as the difference between the C_T value of the FAM19A4 or hsa-mir124-2 targets and the C_T value of the reference (ACTB). This ΔC_T is a relative quantitative value for the promoter methylation level of the FAM19A4 or hsa-mir124-2 targets resulting in a $\Delta\Delta C_T$ value (9). The calibrator is a standardized low-copy plasmid DNA sample with known copy number of the three targets (i.e., FAM19A4, hsa-mir124-2, and ACTB).

Materials Provided

Kit Contents

QIAsure Methylation Test Catalog no.		72 616014
Number of reactions		72
QIAsure Master Mix (2 tubes)	Brown color	630 µl
QlAsure Calibrator (2 tubes)	Transparent color	25 µl
QIAsure Methylation Test Instructions for Use (Handbook)		1

Materials Required but Not Provided

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

Consumables and reagents for sample preparation for self-collected samples

• Hologic PreservCyt[®] Solution

Consumables and reagents for bisulfite-conversion

Verified bisulfite-conversion kits include:

- EZ DNA Methylation Kit (ZYMO Research, cat. no. D5001 or cat. no. D5002)
- EpiTect Fast 96 Bisulfite Kit (QIAGEN, cat. no. 59720)

Consumables for the Rotor-Gene Q MDx instrument

- Strip tubes and Caps, 0.1 ml (cat. no. 981103)
- Purified water (e.g., molecular biology grade, distilled or deionized)

Equipment

- Adjustable pipets* dedicated for PCR (1–10 μl; 10–100 μl)
- Disposable gloves
- Benchtop centrifuge* with a speed >10,000 rpm
- Vortex mixer*
- Qubit[®] (Thermo Fisher Scientific, cat. no. Q33216), NanoDrop[®] 3300
 Fluorospectrometer (Thermo Fisher Scientific, cat. no. ND-3300), or equivalent*

Equipment for real-time PCR

- Rotor-Gene Q MDx 5plex HRM System (cat. no. 9002033) or Rotor-Gene Q MDx 5plex HRM instrument (cat. no. 9002032)[†]
- Rotor-Gene AssayManager Core Application software version 1.0.x (where x is greater than or equal to 4)
- Rotor-Gene AssayManager Epsilon Plug-in installed, version 1.0.x (where x is greater than or equal to 1)
- QIAsure Assay Profile (from file AP_QIAsure_CervicalScrape_V1_0_Y.iap)(Where Y is
 equal to or bigger than 1) for application on bisulfite-converted DNA obtained from
 physician-collected cervical specimens
- QIAsure self-collected brush specimen Assay Profile (from file AP_QIAsure_SelfCollectedBrush_V1_0_Y.iap)(Where Y is equal to or bigger than 0) for

^{*} Ensure that instruments have been checked and calibrated according to the manufacturer's recommendations.

[†] Rotor-Gene Q 5plex HRM instrument with a production date of January 2010 or later. The production date can be obtained from the serial number on the back of the instrument. The serial number is in the format "mmyynnn" where "mm" indicates the production month in digits, "yy" indicates the last two digits of the production year, and "nnn" indicates the unique instrument identifier.

application on bisulfite-converted DNA obtained from self-collected vaginal brush specimens

Warnings and Precautions

For in vitro diagnostic use only.

Safety information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety** where you can find, view, and print the SDS for each QIAGEN[®] kit and kit component.

QIASURE MASTER MIX

Contains: 1,2,4-triazole: Warning! Suspected of damaging fertility or the unborn child. Wear protective gloves/protective clothing/eye protection/face protection.

General precautions

Use of PCR tests requires good laboratory practices, including maintenance of equipment, that are dedicated to molecular biology and is compliant with applicable regulations and relevant standards.

Always pay attention to the following:

• Wear protective disposable powder-free gloves, a laboratory coat, and eye protection when handling specimens.

- Prevent microbial and nuclease (DNase) contamination of the specimen and the kit.
 DNase may cause degradation of the DNA template.
- Avoid DNA or PCR product carryover contamination, which could result in a falsepositive signal.
- Always use DNase-free disposable pipet tips with aerosol barriers.
- Reagents of QIAsure assay are optimally diluted. Do not dilute reagents further as this may result in a loss of performance.
- All reagents supplied in the QIAsure kit are intended to be used solely with the other reagents supplied in the same kit. Do not substitute any reagent from one kit with the same reagent from another QIAsure kit, even from the same batch, as this may affect performance.
- Refer to the Rotor-Gene Q MDx instrument user manual for additional warnings, precautions, and procedures.
- Before the first run of the day, perform a warm-up run for the Rotor-Gene Q MDx 5-plex HRM at 95°C for 10 minutes.
- Alteration of incubation times and temperatures may result in erroneous or discordant data.
- Do not use components of the kit that have passed their expiration date, or that have been incorrectly stored.
- Minimize the exposure of components to light; reaction mixes may be altered due to exposure.
- Use extreme caution to prevent contamination of the mixes with the synthetic materials that are contained in the PCR reagents.
- Discard sample and assay waste according to your local safety procedures.

AssayManager profile precautions

Different AssayManager profiles for different sample types are required. Make sure the correct profile is used for the sample type to be tested, as indicated below:

- "QIAsure cervical scrapes Assay Profile (from file AP_ QIAsure_CervicalScrape_V1_0_Y.iap)" must be used for testing of bisulfite-converted DNA obtained from physician collected cervical specimens
- "QIAsure self-collected brush specimens Assay Profile (from file AP_ QIASure_SelfCollectedBrush_V1_0_Y.iap)" must be used for testing bisulfite-converted DNA obtained from self-collected vaginal brush specimens

Reagent Storage and Handling

Shipping conditions

The QIAsure Methylation Test is shipped on dry ice. If any component of the QIAsure Methylation Test is not frozen upon arrival, the outer packaging has been opened during transit, or the shipment does not contain a packing note, handbooks, or the reagents, please contact one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit **www.qiagen.com**).

Storage conditions

The QIAsure Methylation Test must be stored immediately at -30 to -15° C upon receipt in a constant-temperature freezer and protected from light.

Stability

When stored under the specified storage conditions, the QIAsure Methylation Test is stable until the stated expiration date on box label.

Once opened, reagents can be stored in their original packaging at -30 to -15° C. Repeated thawing and freezing should be avoided. Do not exceed a maximum of 3 freeze-thaw cycles.

- Gently mix by inverting the tube 10 times and centrifuge all tubes before opening.
- Expiration dates for each reagent are indicated on the individual component labels. Under correct storage conditions, the product will maintain performance for the stability time as long as the same batches of components are used.

Specimen Handling and Storage

All specimens must be treated as potentially infectious material.

Cervical specimens

The QIAsure kit is for use with bisulfite-converted genomic DNA samples obtained from cervical specimens. Validated collection media for cervical specimens (scrapes) are PreservCyt[®] collection medium and *Digene* Specimen Transport Medium (STM). Optimal storage temperature of the clinical samples is 2–8°C upon arrival at the lab. Under these storage conditions, samples in PreservCyt collection medium are stable for 3 months prior to DNA extraction.

Note: Cervical samples in STM may be shipped at 2–30°C for overnight delivery to the testing laboratory, and refrozen at –20°C upon receipt.

Self-collected vaginal brush specimens

The QIAsure Methylation Test is for use with bisulfite-converted genomic DNA samples extracted from self-collected vaginal brush specimens. Self-collected vaginal brush specimens can be collected and shipped dry or in saline (0.9% w/v NaCl) and upon arrival in the laboratory stored in PreservCyt collection medium. Samples in PreservCyt collection medium may be stored at $2-8^{\circ}$ C or room temperature for no more than 3 months.

Genomic DNA samples

Once genomic DNA is extracted, DNA samples can be stored and shipped at -30° C to -15° C for up to 12 months.

Sample Preparation

The QIAsure Methylation Test has been validated for use with bisulfite-converted genomic DNA derived from cervical specimens. Bisulfite-conversion of genomic DNA can be performed **i**) with prior sample DNA extraction and DNA quality control, or **ii**) directly on the cervical specimen. Our recommendations are outlined below.

Bisulfite-conversion with prior DNA extraction and DNA quality control

This protocol requires DNA Extraction, DNA concentration measurement, followed by aliquoting of optimal eluate volume before starting with the bisulfite-conversion protocol, and has been verified for the EZ DNA Methylation[™]Kit from ZYMO Research. We recommend the following methods:

DNA extraction

Standard DNA extraction kits (e.g., column-based and magnetic bead-based kits) are compatible with the QIAsure Methylation Test.

- DNA concentration measurement
 Prior to bisulfite-conversion of DNA, measure DNA concentration. Suitable systems for measuring the DNA concentrations are Qubit[®] Fluorometer, NanoDrop 3300
 Fluorospectrometer (both from Thermo Fisher Scientific) or equivalents.
- Aliquoting DNA eluate

Optimal DNA input for bisulfite-conversion ranges from 100 ng to 2 µg, with 200 ng recommended for the bisulfite-conversion. If DNA concentration is too low for bisulfite-conversion, repeat the DNA extraction with a higher input volume of the clinical sample or elute DNA in a smaller elution volume.

 Bisulfite-conversion with EZ DNA Methylation Kit is performed according to the manufacturer's recommendation.

Note: According to EZ DNA Methylation Kit, maximum amount of sample DNA should not exceed 2 µg to obtain a sufficiently high conversion-efficiency (>98%).

Bisulfite-conversion directly on cervical specimen

Bisulfite-conversion directly performed on the cervical specimen collected in PreservCyt[®] Solution has been verified for the EpiTect Fast 96 Bisulfite Kit from QIAGEN. We referred to *Epitect[®]* Fast 96 Bisulfite Conversion Handbook for high-concentration DNA samples (1 ng – 2 µg) according to the manufacturer's recommendation, except for the following items:

- Step 1 of the protocol. Take 2.5% of the cervical specimen in PreservCyt[®] collection medium (i.e. 500 µl from 20 ml) and pellet by centrifugation at minimal 3390 x g. Discard the supernatant leaving the cell pellet at a maximum 20 µl PreservCyt collection medium. For the bisulfite-conversion reaction, use this cell pellet sample and continue with step 2 of the manufacturer's protocol.
- Buffer BL: Do not add carrier RNA.
- \circ Elution volume of the bisulfite-conversion DNA is 50 µl of Buffer EB for each sample.

General recommendations for bisulfite-conversion

The bisulfite-conversion reaction should be performed in a designated area separate from where the QIAsure Master Mix is stored and dispensed, to avoid contaminating the reagents.

The input in the QIAsure reaction is 2.5 µl of bisulfite-converted DNA.

If the internal sample quality control is negative (i.e., ACTB C_T values are >26.4), the specimen bisulfite-converted DNA preparation resulted in material of insufficient quantity and/or quality and is scored invalid. Perform the recommended steps to reach an ACTB C_T that is within the valid range for the following:

- Bisulfite-conversion with prior DNA extraction and DNA quantity control: Repeat bisulfiteconversion reaction with a higher input of sample DNA and/or repeat DNA isolation with a higher input of cervical specimen
- Bisulfite-conversion directly on cervical specimen: Repeat bisulfite-conversion reaction with 10%* of the cervical specimen in PreservCyt collection medium (i.e. 2 ml from 20 ml).

Bisulfite-converted DNA can be stored up to 24 hours at $2-8^{\circ}$ C, up to 5 days at -25 to -15° C, and up to 3 months below -70° C. Repeat freeze-thawing of the bisulfite-converted DNA should be avoided at all times. The number of freeze-thaw cycles should not exceed three, to maintain sufficient quality.

^{*} Sample volume for direct bisulfite-conversion can be increased when success rate is unsatisfactory due to sampling variability, for example as a result of inadequate sampling.

Protocol: QIAsure Methylation Test PCR in the Rotor-Gene Q MDx 5plex HRM instrument*

Important points before starting

- Take time to familiarize yourself with the Rotor-Gene Q MDx 5plex HRM instrument before starting the protocol. See the instrument (Cat. no. 9002033 or 9002032) user manual.
- Before the first run of the day, perform a warm-up run for Rotor-Gene Q MDx 5-plex HRM at 95°C for 10 minutes.
- Rotor-Gene AssayManager v1.0 enables automated interpretation of the PCR results. The QlAsure kit must be run on the Rotor-Gene Q MDx instrument using the Rotor-Gene AssayManager v1.0. Take time to familiarize yourself with the Rotor-Gene AssayManager v1.0 (Cat. no. 9022739), and Epsilon Plug-In, and refer to the user manuals for both.
- Different Rotor-Gene AssayManager v1.0 Assay Profiles for different sample types are required. Make sure the correct profile is used for the sample type to be tested, as indicated below:
 - "QIAsure cervical scrapes Assay Profile (from file AP_QIAsure_CervicalScrape_V1_0_Y.iap)" must be used for testing of bisulfiteconverted DNA obtained from physician-collected cervical specimens
 - "QIAsure self-collected brush specimens Assay Profile (from file AP_QIAsure_SelfCollectedBrush_V1_0_Y.iap)" must be used for testing bisulfiteconverted DNA obtained from self-collected vaginal brush specimens
- * Rotor-Gene Q 5plex HRM instrument with a production date of January 2010 or later. The production date can be obtained from the serial number on the back of the instrument. The serial number is in the format "mmyynnn" where "mm" indicates the production month in digits, "yy" indicates the last two digits of the production year, and "nnn" indicates the unique instrument identifier.

Note: Only one sample type per experiment can be tested. The individual assay profiles have been optimized for each sample type and it is essential for customers to choose the correct Assay Profile in order to obtain optimal results for each specific sample type.

Things to do before starting

- Rotor-Gene AssayManager software version v1.0.x (where x is greater than or equal to 4) must be installed on the computer connected to the Rotor-Gene Q MDx. For details about the installation of the Rotor-Gene AssayManager v1.0 Core Application software, refer to Rotor-Gene AssayManager v1.0 Core Application User Manual.
- The QIAsure Methylation Test requires a specific plug-in, named the "Epsilon Plug-in" (version 1.0.1 or higher). This plug-in can be downloaded from the QIAGEN web page: http://www.qiagen.com/shop/automated-solutions/detection-and-analysis/rotor-geneassaymanager#resources. This plug-in must be installed on a computer that already has Rotor-Gene AssayManager version 1.0.x (where x is greater than or equal to 4) installed.
- The QIAsure Methylation Test requires an assay specific profile to run with the Rotor-Gene AssayManager v1.0 software. This Assay Profile contains all parameters needed for cycling and analyzing the experiment. There are 2 QIAsure Assay Profiles:
 - The "QIAsure cervical scrapes" Assay Profile (from file AP_QIAsure_CervicalScrape_V1_0_Y.iap)" corresponds to physician-collected cervical specimens
 - The "QIAsure self-collected brush specimens" Assay Profile (from file AP_QIAsure_SelfCollectedBrush_V1_0_Y.iap)" corresponds to self-collected vaginal brush specimens. The profiles can be downloaded from the QIAsure Methylation Test web page: http://www.qiagen.com/Shop/Assay-Technologies/Complete-Assay-Kits/ hpv-testing/qiasure-methylation-test-kit-eu/. The Assay Profile needs to be imported in Rotor-Gene AssayManager software.

Note: The QIAsure kit can only run if certain configuration settings in the Rotor-Gene AssayManager v1.0 are programmed.

For system-wide process safety, the following required configuration settings must be set for the closed mode:

- "Material number required"
- "Valid expiry date required"
- "Lot number required"

Installation of Epsilon Plug-in and importing the assay profile

The installation and importing of the Epsilon Plug-in and the assay profile are detailed in the *Rotor-Gene AssayManager Core Application User Manual* and the *Epsilon Plug-In User Manual*.

- Download both the Epsilon Plug-in and the latest version of the QIAsure assay profile from the QIAGEN website.
- Start the installation process by double-clicking the **EpsilonPlugin.Installation.msi** file, and following the installation instructions. For a detailed description of this process, refer to the section on "Installing Plug-ins" in the *AssayManager Core Application User Manual*.

Note: For system-wide process safety, select the **Settings** tab and check the boxes for **Material number required**, **Valid expiry date required**, and **Lot number required** for the closed mode (section Work list). If these are not enabled (checked), click to enable.

- After successful installation of the plug-in, a person with administrator rights for the Rotor Gene AssayManager software will need to import the AP_QIAsure_V1_0_Y.iap assay profile as follows.
- 1. Open the Rotor-Gene AssayManager software by clicking the icon. The Rotor-Gene AssayManager window opens (see Figure 1).

QIAGEN	Rotor-Gene AssayManager
User ID	
Password	
Mode	

Figure 1. Rotor-Gene AssayManager login screen.

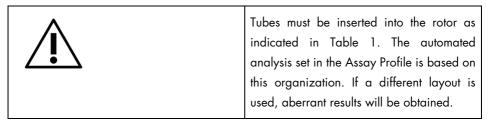
 Login to Rotor-Gene AssayManager with your user ID and password. Do not change the "Closed" mode. Click OK. The Rotor-Gene Assay Manager screen opens (See below).

File Help			\frown	
Configuration	to al 14 - 14 - Alice 4-14 Logo como concepto d		7	a e
Availat 1 Jists 3 of 4 of 5 6	Rotor type	Volume Author	Creation date	Last applied
2				
Show only work lists never applied before				

- Set-up tab. This tab allows managing or applying work lists.
- **2** Checking applied work lists shows new work lists only.
- **3 Approval** tab. This tab enables you to find previous experiments (runs).
- **5 Service** tab. Shows a report of an audit trail of each file generated by the software
- **6 Configuration** tab. Allows configuration of all software parameters
- 7 Rotor-Gene Q MDx icons.

- 4 Archive tab. Allows you to find old experiments (runs) that were already approved.
- 3. Select the configuration environment.
- 4. Select the tab Assay Profiles.
- 5. Click Import.
- Select the Assay Profile AP_QIAsure_CervicalScrape_V1_0_Y.iap for cervical specimens and/or the Assay Profile AP_QIAsure_SelfCollectedBrush_V1_0_Y.iap to be imported in the dialog and click **Open**.

Not connected Connected


 Once the assay profile has been successfully imported, it can be used in the "Setup" environment.

Note: The same version of an assay profile cannot be imported twice.

Sample processing on Rotor-Gene Q MDx instruments with 72-rotor

Up to 70 bisulfite-converted DNA samples can be tested within the same run (experiment), besides a calibrator and no template control. The schematic in Table 1 provides an example of the loading block or rotor setup for a run with the QIAsure Methylation Test. Numbers denote positions in the loading block and indicate final rotor position.

Strip	Tube position	Sample name	Strip	Tube position	Sample name	Strip	Tube position	Sample name
1	1	Calibrator	7	25	Sample 23	13	49	Sample 47
	2	NTC		26	Sample 24		50	Sample 48
	3	Sample 1		27	Sample 25		51	Sample 49
	4	Sample 2		28	Sample 26		52	Sample 50
2	5	Sample 3	8	29	Sample 27	14	53	Sample 51
	6	Sample 4		30	Sample 28		54	Sample 52
	7	Sample 5		31	Sample 29		55	Sample 53
	8	Sample 6		32	Sample 30		56	Sample 54
3	9	Sample 7	9	33	Sample 31	15	57	Sample 55
	10	Sample 8		34	Sample 32		58	Sample 56
	11	Sample 9		35	Sample 33		59	Sample 57
	12	Sample 10		36	Sample 34		60	Sample 58
4	13	Sample 11	10	37	Sample 35	16	61	Sample 59
	14	Sample 12		38	Sample 36		62	Sample 60
	15	Sample 13		39	Sample 37		63	Sample 61
	16	Sample 14		40	Sample 38		64	Sample 62
5	17	Sample 15	11	41	Sample 39	17	65	Sample 63
	18	Sample 16		42	Sample 40		66	Sample 64
	19	Sample 17		43	Sample 41		67	Sample 65
	20	Sample 18		44	Sample 42		68	Sample 66
6	21	Sample 19	12	45	Sample 43	18	69	Sample 67
	22	Sample 20		46	Sample 44		70	Sample 68
	23	Sample 21		47	Sample 45		71	Sample 69
	24	Sample 22		48	Sample 46		72	Sample 70

Note: Fill all unused positions with empty tubes.

PCR on Rotor-Gene Q MDx instruments with 72-tube rotor

Before the first run of the day, perform a warm-up run for Rotor-Gene Q MDx 5-plex HRM at 95° C for 10 minutes.

- 1. Create a work list for the sample to be processed, as follows:
 - 1a. Power ON the Rotor-Gene Q MDx instrument.
 - 1b. Open the Rotor-Gene AssayManager software and login as a user with the operator role in the closed mode.
 - 1c. Click New work list in the work list manager ("Setup" environment).
 - 1d. Select the QIAsure assay profile from the list of available assay profiles.
 Note: AP_QIAsure_CervicalScrape_V1_0_Y.iap Assay Profile corresponds to cervical specimens; The AP_QIAsure_SelfCollectedBrush_V1_0_Y.iap Assay Profile corresponds to self-collected vaginal brush self-samples.
 Note: Only one sample type per experiment can be tested.
 - 1e. Click Move to transfer the selected assay profile to the Selected assay profiles list. The assay profile should now be displayed in the "Selected assay profiles" list.
 - 1f. Enter the number of samples in the corresponding field.
 - 1g. Enter the following QIAsure kit information, which is printed on the lid of the box.
 - Material number: 1102417
 - Valid expiry date using the format YYYY-MM-DD
 - Lot number

- 1h. Select the Samples step. A list with the sample details will be shown on the AssayManager screen. This list represents the expected layout of the rotor.
- 1i. Enter the sample identification number(s) into this list, as well as any optional sample information as a comment for each sample.
- 1j. Select the **Properties** step and enter a work list name (Figure 2).

ssays	Properties
amples	Work list name
roperties	> Default name
	Work list ⊘ is editable ☐ is applicable
	Created
	Last modified
	Last applied
	External order ID
	L

Figure 2. Properties.

- 1k. Confirm the check box is applicable and click Apply.
- 11. Save the work list.

The work list can be printed, which may help with the preparation and setup of the PCR. To print the work list, click **Print work list**. The sample details are included as part of this work list.

Note: The work list can be created once the run is set in the instrument, or the work list can be saved before adding the samples into the instrument.

2. Set up the QIAsure run.

To minimize the risk for PCR reaction contamination, it is strongly recommended that a PCR-cabinet with UV-irradiation capability is used.

Dispensing of the QIAsure Master Mix must be performed in an area separate from the area where the DNA bisulfite-conversion reaction is performed.

Clean the bench area, pipets, and tube rack prior to use with a DNA-degrading solution to prevent template or nuclease contamination.

Note: Change tips between each tube to avoid any nonspecific template or reaction mix contamination which may lead to false-positive results.

- 2a. Thaw the QIAsure Master Mix and QIAsure Calibrator completely, and protect the QIAsure Master Mix from light whenever possible.
 Note: Do not exceed 30 minutes for the thawing step, to avoid any material degradation.
- 2b. Mix gently by inverting 10 times, then briefly centrifuge before use.
- Dispense 17.5 µl of the ready-to-use QIAsure Master Mix into the appropriate strip tubes. Reaction setup may be done at room temperature.
- 2d. Return the QIAsure Master Mix to the freezer to avoid any material degradation.
- Transport tubes to separate area to dispense the assay controls and bisulfiteconverted samples.
- Add 2.5 µl of water to the no template control (NTC) to position 2 (see Table 1 above). Mix gently by pipetting up and down.
- 2g. Add 2.5 µl of QlAsure Calibrator to position 1 (see Table 1 above). Mix gently by pipetting up and down and close the tube with a cap.
- 2h. Add 2.5 µl of bisulfite-converted DNA to the corresponding tube. Mix gently by pipetting up and down.
- Once a set of 4 tubes have been filled, cap the tubes.
 Note: The PCR tubes can be stored for 30 minutes between pipetting samples into the PCR tubes and start of the experiment in the machine at 2–8°C in the dark.
- Return the QIAsure Calibrator to the freezer to avoid any material degradation.
 Note: Change tips between each tube to avoid any nonspecific template or reaction mix contamination, which may lead to false-positive results.
- 3. Prepare Rotor-Gene Q MDx and start run (experiment) as follows:
 - 3a. Place a 72-well rotor on the rotor holder.
 - 3b. Fill the rotor with strip tubes according to the assigned positions, starting at position 1, as shown in Table 1, with empty capped strip tubes placed into all unused positions.

Note: Make sure the first tube is inserted into position 1 and the strip tubes are placed in the correct orientation and positions as shown in Table 1.

- 3c. Attach the locking ring.
- 3d. Load the Rotor-Gene Q MDx instrument with the rotor and locking ring, and close the instrument lid.
- 3e. Within the Rotor-Gene AssayManager v1.0 software, either select the corresponding work list from the work list manager and click **Apply**, or if the work list is still open, click **Apply**.

Note: If the work list for the run has not been created, login to Rotor-Gene AssayManager v1.0 and follow step 1 before proceeding.

- 3f. Enter the run (experiment) name.
- 3g. Select the cycle to be used in the Cycler selection list .
- 3h. Check correct attachment of locking ring and confirm on the screen that the locking ring is attached.
- 3i. Click Start experiment.

The QIAsure Methylation Test run should start.

- 4. When the run has finished, click **Finish run**.
- 5. Release and approve the run.
 - For users logged in with the Approver role, click **Release and go to approval**.
 - For users logged in with the Operator role, click **Release**.
- 6. Release results.
 - If Release and go to approval was clicked, the results for the experiment are displayed.
 - If Release was clicked by a user with user role, someone with an "Approver" role will need to login and select the "Approval" environment.
 - Filter the assay to be approved by selecting the filter options and clicking **Apply**.
 - Review results and approve the results of each test sample.

In the "Results" table, scroll to the sample to be approved. Every sample result to be approved has three radio buttons at the dedicated row end.

Either **accept** or **reject** the result of a sample.

Note: A result automatically set to **INVALID** by Rotor-Gene AssayManager cannot be converted to a valid result anymore, even if the result is rejected.

Optional: Enter a comment in the Sample comment column.

- Click Release/Report data.
- Click OK. The report will be generated in Adobe Portable Document format (.pdf) and automatically stored in the predefined folder. By default, this folder path is: QIAGEN > Rotor-Gene AssayManager > Export > Reports

Note: This path and folder can be changed in the "Configuration" environment.

Go to the Archive tab to export the .rex file, corresponding to the raw data. Find your experiment using the filter options and click show assays. Then, click on Export .rex file and save it by clicking OK. The software automatically saves the .rex file in the following predefined folder: QIAGEN > Rotor-Gene AssayManager > Export > Experiments

Note: This path and folder can be changed in the tab **Specify the .rex file export** destination.

Note: For troubleshooting, a support package from the run is required. Support packages can be generated from the approval or archive environment. See the *Rotor-Gene AssayManager Core Application User Manual*, Troubleshooting, "Creating a support package" at https://www.qiagen.com/shop/automated-solutions/detection-and-analysis/rotor-gene-assaymanager#resources. In addition, the audit trail from the time of incident ±1 day may be helpful. The audit trail can be retrieved in the Service environment (*Rotor-Gene AssayManager Core Application User Manual*).

7. Unload the Rotor-Gene Q MDx instrument, and discard the strip tubes according to your local safety regulations.

Interpretation of Results

The analysis is entirely automated.

Rotor-Gene AssayManager v1.0 first analyzes amplification curves, and may invalidate nonconforming curves, depending on their shape and noise amplitude. If this is the case, a flag will be associated with the invalidated curve (see Table 2).

Rotor-Gene AssayManager v1.0 will then analyze the run controls.

- Calibrator
- NTC

Note: The report generated at the end of the run shows the results obtained on run controls with invalidating flags in front of invalid data.

If all of the controls in the run conform, then Rotor-Gene AssayManager will analyze the unknown samples.

Table 2 shows the invalidating sample flags that may be assigned to an individual tube during the analysis by Rotor-Gene AssayManager v1.0, along with an explanation of what this flag means.

Table 2. Invalidating sample flags and description of terms

Flag	Behavior	Description
ABOVE_ACCEPTED_RANGE	Invalid	The target value is higher than the defined range. This can be a Cī, endpoint- fluorescence, concentration, or calculated value, e.g., mean Cī or ΔCī.
ASSAY_INVALID	Invalid	The assay is invalid because at least one external control is invalid.

BELOW_ACCEPTED_RANGE	Invalid	The target value is lower than the defined range. This can be a C _T , endpoint- fluorescence, concentration, or calculated value, e.g., mean C _T or ΔC _T .
CONSECUTIVE_FAULT	Invalid	Target that was used for calculation of this target is invalid.
CURVE_SHAPE_ANOMALY	Invalid	The raw data amplification curve shows a shape that deviates from the established behavior for this assay. There is a high likelihood of incorrect results or a result misinterpretation.
FLAT_BUMP	Invalid	The raw data amplification curve shows a shape like a flat bump deviating from the established behavior for this assay. There is a high likelihood of incorrect results or result misinterpretation (e.g., wrong C _T value determination).
IN_ACCEPTED_RANGE	Valid	NTC shows signal C⊺ values above 36 for target ACTB.
INVALID_CALCULATION	Invalid	Calculation for this target failed.
MULTIPLE_THRESHOLD_CROSSING	Invalid	The amplification curve crosses the threshold more than once. An unambiguous C _T cannot be determined.
NO_BASELINE	Invalid	No start value for the initial baseline has been found.
NO_CT_DETECTED	Variable	No $C_{\ensuremath{T}}$ is detected for this target.
NO_VALUE	Invalid	The target has no value but it is expected to have one. This value does not have to be in certain range. This can be a C _T endpoint- fluorescence, concentration, or calculated value (e.g., mean C _T or ΔC _T).
NORM_FACTOR_ALTERATION	Warning	Deviation during the normalization procedure. The amplification curve is displayed with a default normalization; results should be manually checked for correctness.
OTHER_TARGET_INVALID	Invalid	Another target for the same sample is invalid.
SATURATION	Invalid	The raw data fluorescence is saturating strongly before the inflection point of the amplification curve.
SATURATION_IN_PLATEAU	Warning	The raw data fluorescence is saturating in the plateau phase of the amplification curve.

SPIKE	Warning	A spike in the raw data fluorescence is detected in the amplification curve but outside the region where the C_T is determined.
SPIKE_CLOSE_TO_CT	Invalid	A spike is detected in the amplification curve close to the $C_{\text{T}}.$
STEEP_BASELINE	Invalid	A steeply rising baseline for the raw data fluorescence is detected in the amplification curve.
STRONG_BASELINE_DIP	Invalid	A strong drop in the baseline for the raw data fluorescence is detected in the amplification curve.
strong_noise	Invalid	Strong noise outside the growth phase of the amplification curve detected.
STRONG_NOISE_IN_GROWTH_PHASE	Invalid	Strong noise is detected in the growth (exponential) phase of the amplification curve.
UNCERTAIN	Variable	Results from the AUDAS are conflicting with results from the core analysis. An unambiguous automatic assessment of data validity is not possible.
UNEXPECTED_CT_DETECTED	Variable	A $C_{\ensuremath{\tau}}$ value is detected for a target that should not amplify.
UNEXPECTED_VALUE	Invalid	The target has a value, but it is not an expected value. This can be a Cī, endpoint-fluorescence, concentration, or calculated value, e.g., mean Cī or ∆Cī.
UPSTREAM	Variable	Sample status was set to Invalid or Unclear by an upstream process (e.g., QIAsymphony). Note: For samples that are flagged as unclear, the behavior of Rotor-Gene AssayManager is defined in the "Configuration" environment of the AssayManager software. "Invalid" flags from upstream processes always result in an invalid corresponding sample in Rotor-Gene AssayManager.
WAVY_BASE_FLUORESCENCE	Invalid	Wavy baseline for the raw data fluorescence detected in the amplification curve.

 If all of the controls in the run are valid, then the Rotor-Gene AssayManager v1.0 will analyze the unknown samples. In the sample, a minimal amount of bisulfite-converted DNA must be present for the results to be interpreted. This is indicated by the C_T value of the housekeeping gene ACTB, which must be ≤26.4 for a sample to be validated by the Rotor-Gene AssayManager.

 The ΔΔC_T values for FAM19A4 and hsa-mir124-2 will then be calculated and the result will be given. If a ΔΔC_T value is below the cutoff, the target is scored "Hypermethylation positive".

Note: Partial or low levels of methylation are a natural occurring phenomenon that are, unlike hypermethylation levels, not directly related to the development of cancer.

• A sample is considered "Hypermethylation positive" when at least one of the targets is scored "Hypermethylation positive".

Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: **www.qiagen.com/FAQ/FAQList.aspx**. The scientists at QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocols in this handbook or sample and assay technologies (for contact information, see back cover or visit **www.qiagen.com**).

For troubleshooting information relating to Rotor-Gene AssayManager, refer to the *Rotor-Gene* AssayManager Core Application User Manual.

	Comments and suggestions			
General h	andling			
Sample D	NA concentration too low for bisulfite conversion	n		
	Check DNA extract	Repeat DNA extraction with more concentrated clinical sample		
Sample is	scored invalid: the amplification of ACTB is too	low or absent		
a)	Pipetting error or omitted reagents	Check pipetting scheme and the reaction setup. Repeat the PCR run.		
b)	Check the DNA concentrate	Increase DNA input for bisulfite-conversion to a maximum. Bisulfite-conversion reaction has optimal performance for DNA input ranging from 100 ng–2 ¥9		
c)	For the protocol "Bisulfite-conversion directly on cervical specimen", check the clinical specimen for cellularity	Repeat the bisulfite-conversion reaction with 10% of the cervical specimen in PreservCyt collection medium (i.e. 2 ml from 20 ml).		
d)	Check the bisulfite-converted eluate	Repeat bisulfite conversion, when necessary a higher DNA input can be used.		
iample is	scored invalid: the targets FAM19A4 and/or h	sa-mir124-2 are invalid		
	Insufficient mixing	Mix sample and reaction mix by pipetting (approximately 10 times per tube). Repeat sample.		
Positive co	ontrol is scored invalid: the amplification is too l	ow or absent for one or more of the targets		
a)	Pipetting error or omitted reagents	Check pipetting scheme and the reaction setup. Repeat the PCR run.		
b)	Partial degradation	Store kit contents at –30 to –15°C.		
		Avoid repeated freezing and thawing to a maximum of three cycles.		
c)	PCR reagents partially degraded	Store kit contents at –30 to –15°C and keep the reaction mixes protected from light.		
		Avoid repeated freezing and thawing.		
d)	Strip tube inversion	Check the pipetting scheme and the reaction setup.		
e)	Expiry date	Check the expiry date of the used kit.		
f)	Time-delay between pipetting samples and start of the run	PCR reactions mixes can be stored at 2–8°C for 30 minutes in the dark between dispensing samples into the PCR reactions and starting the run in the machine.		

QIAsure Methylation Test Instructions for Use (Handbook) 06/2019

Comments and suggestions

No template control (NTC) is invalid

	a)	Pipetting error	Check pipetting scheme and the reaction setup. Repeat the PCR run.
	b)	Cross-contamination	Replace all critical reagents.
			Always handle samples, kit components, and consumables in accordance with commonly accepted practices to prevent carryover contamination.
	c)	Reagent contamination	Replace all critical reagents.
			Always handle samples, kit components, and consumables in accordance with commonly accepted practices to prevent carryover contamination.
	d)	Strip tube inversion	Check the pipetting scheme and the reaction setup.
	e)	Time-delay between pipetting samples and start of the run	PCR reactions mixes can be stored at 2–8°C for 30 minutes in the dark between dispensing samples into the PCR reactions and starting the run in the machine.
	f)	Probe degradation	Keep reaction mixes protected from light.
			Check for false positive on the fluorescence curve.
Absent or low signals in sample, but the control run ok			
	a)	Inhibitory effects	Always check there are no remains of buffer on the filter after centrifugation during bisulfite-conversion.
			Repeat bisulfite-conversion.
	b)	Pipetting error	Check pipetting scheme and the reaction setup. Repeat the PCR run.

If the problem persists, contact QIAGEN Technical Service.

Limitations

QIAsure Methylation Test reagents may exclusively be used for in vitro diagnostics.

Use of PCR tests requires good laboratory practices, including maintenance of equipment, that are dedicated to molecular biology and is compliant with applicable regulations and relevant standards.

Reagents and instructions supplied in this kit have been validated for optimal performance.

The QIAsure Methylation Test is to be used by laboratory professionals trained in the use of the Rotor-Gene Q MDx instruments and Rotor-Gene AssayManager v1.0.

The product is to be used by personnel specially instructed and trained in the techniques of real-time PCR and in the in vitro diagnostic procedures only. Any diagnostic results that are generated must be interpreted in conjunction with other clinical or laboratory findings.

Strict compliance with the user manual (handbook) is required for optimal PCR results.

Attention should be paid to expiration dates printed on the box and labels of all components. Do not use expired components.

Samples with low DNA quality/quantity (i.e., ACTB C_T values just within acceptance criterion; C_T values from 25 to 26.4) could be scored false-negative. Repeat testing in single is advised. A negative result for the repeat test means that the sample is hypermethylation negative, a positive result means that the sample is hypermethylation positive.

All reagents supplied in the QIAsure Methylation Test are intended to be used solely with the other reagents supplied in the same kit. This may otherwise affect performance.

The QIAsure Methylation Test is validated for HPV-positive women.

The QIAsure Methylation Test is validated for cervical specimens collected and stored in PreservCyt or STM collection medium and for self-collected vaginal brush specimens collected in saline (0.9% w/v NaCl). The QIAsure Methylation Test is not validated for use with cervical specimens collected and stored in sample collection media that contain formaldehyde, e.g., BD[®] Surepath[®] or equivalent. Formaldehyde causes cross-linking of the DNA, which may interfere with the performance of the QIAsure Methylation Test.

Only the Rotor-Gene Q MDx has been validated for use with the QIAsure Methylation Test PCR assay.

Any off-label use of this product and/or modification of the components will void Self-screen B.V.'s liability.

It is the user's responsibility to validate system performance for any procedures used in their laboratory that are not covered by the Self-screen performance studies.

Performance Characteristics

Limit of Detection (LOD)

The analytical sensitivity of the QIAsure Methylation Test was determined as the 95% limit of detection (95% LOD) by using a serial dilution series of plasmid containing all three amplicon sequences (i.e., ACTB, FAM19A4, and hsa-mir124-2; range 750,000 to 0.25 copies per PCR). The 95% LOD for the targets was assessed as the lowest plasmid dilution giving at least 35 out of 36 positive results (C_T <40). In total, 12 experiments were performed by four different operators (1 run per operator per day) using three different Lots and three different RGQ systems. Each experiment included triplicate testing of 11 plasmid dilutions. The 95% LOD was for all the three different targets 7.5 copies per PCR.

Linearity

Linearity of the QIAsure assay was determined with the data from the 12 experiments that were performed to assess the 95% LOD. The two targets, *FAM19A4* and *hsa-mir124-2*, and the reference ACTB have linear amplification from 750,000 up to 7.5 copies per PCR.

Precision

Precision of the QIAsure Methylation Test was determined as the intra-assay variability (variability of multiple results of samples with the same concentration within one experiment) and total variance of the assay (variability of multiple results of the assay generated by different operators, on different instruments, with different batches, in different laboratories). Testing was performed on bisulfite-converted DNA obtained from a high-risk HPV-positive cervical specimen that tested hypermethylation positive with signals for both *FAM19A4* and *hsamir124-2* corresponding to approximately 3 times the LOD concentration. Testing was performed in duplicate in 8 runs by four different operators (one run per operator per day) using two different Lots and three different RGQ machines in two different laboratories, giving rise to 16 data points per sample. Coefficient of variation (CV) was determined for the C_T and $\Delta\Delta C_T$ values (Table 3).

_	Sample type	Inter-assay variability	Total variance of the assay
C₁ value	Internal sample quality control (i.e., ACTB)	0.3%	1.32%
	FAM19A4	1.02%	1.52%
	hsa-mir124-2	1.16%	1.64%
ΔΔC _T value	FAM19A4	3.70%	5.97%
	hsa-mir 124-2	4.21%	5.75%

Table 3. CV% of C_T and $\Delta\Delta C_T$ values in a methylation-positive cervical sample

The overall statistical spread in C_T values of a sample with the mentioned concentration is 1.32% for the internal sample quality control (ACTB), 1.52% for FAM19A4, and 1.64% for *hsa-mir124-2*. The overall statistical spread in $\Delta\Delta C_T$ values of a sample with the mentioned concentration is 5.97% for FAM19A4 and 5.75% for *hsa-mir124-2*.

Interfering substances

Inhibitory substances selected for their potential effect on PCR were the desulfonation and wash buffer of the bisulfite-conversion kit. Substances potentially present in the original sample were not tested given the fact that sample DNA is purified twice with silica beads, i.e., DNA extraction from original sample and DNA clean-up after bisulfite-conversion. Traces of the desulfonation and wash buffer showed interference in the PCR, which was detected by an invalid test result for the internal sample quality control.

Clinical Performance

HPV-positive cervical specimens*

The clinical performance of the QIAsure Methylation Test for cervical intraepithelial neoplasia grade 3 (CIN 3) and cervical cancer (i.e., CIN 3+), was assessed by testing 267 high-risk HPV-positive cervical specimens⁺ of women (age 18–85 years). Nine samples (3.4%) displayed ACTB C_T values above 26.4 and were scored invalid. The 258 samples with valid test results comprised 117 cervical samples of women without evidence of CIN 2 or worse after 18 months of follow-up (abbreviated as \leq CIN 1), 42 with CIN 2, 30 with CIN 3, 59 with squamous cell carcinoma, and 10 with adenocarcinoma. Cervical samples were collected in PreservCyt collection medium (Hologic). DNA was extracted from the cervical samples, and 250 ng DNA was used for input in the bisulfite-conversion reaction (EZ DNA Methylation Kit, ZYMO Research). Of the 250 ng modified DNA, 20% was used in the PCR (corresponding to 50 ng original target DNA/PCR). The QIAsure Methylation Test positivity rates stratified by clinical endpoint are given below (Table 4).

Clinical endpoint	Fraction	Positivity rate (95% CI)
≤CIN 1	24/117	20.5% (14.1–28.8)
CIN 2	16/42	38.1% (24.8– 53.4)
CIN 3	20/30	66.7% (48.4– 84.0)
Squamous cell carcinoma	59/59	100.0% (94.0–100.0)
Adenocarcinoma	10/10	100.0% (69.0–100.0)

Table 4. QIAsure Methylation Test positivity rates

Among high-risk HPV-positive cervical samples, the sensitivity for CIN 3+ is 89.9% (89/99; 95%CI: 82.2–94.5) and for carcinoma, the sensitivity is 100% (69/69, 95%CI: 94–100).†

- * Physician-collected cervical specimens.
- † Remark: Hypermethylation of the targets in samples of women harboring advanced CIN lesion and/or cervical cancer might remain undetected due to sampling variability, for example as a result of inadequate sampling.

HPV-positive self-collected vaginal brush specimens

The clinical performance of the QIAsure Methylation Test for self-collected vaginal brush specimens to detect cervical intraepithelial neoplasia grade 3 and cervical cancer (i.e., CIN 3+), was assessed by testing 247 high-risk HPV-positive vaginal specimens. For 14 samples (5.7%), the ACTB C_T values were >26.4 and subsequently scored invalid. The samples with valid test results comprised 148 self-collected brush samples of women with \leq CIN 1 after 18 months of follow-up, 24 with CIN 2, 50 with CIN 3, 8 with squamous cell carcinoma, and 3 with adenocarcinoma. DNA was extracted from the vaginal specimens, and 250 ng DNA was used for input in the bisulfite-conversion reaction (EZ DNA methylation kit, ZYMO Research). Of the 250 ng bisulfite-converted DNA, 20% was used in the PCR (corresponding to 50 ng original target DNA/PCR). The QIAsure Methylation Test positivity rates stratified by clinical endpoint are given below (Table 5).

Clinical endpoint	Fraction	Positivity rate (95% Cl)
≤CIN 1	34/148	23.0% (16.9–30.4)
CIN 2	7/24	29.2% (14.6–49.8)
CIN 3	33/50	66.0% (52.0–77.7)
Squamous cell carcinoma	8/8	100.0% (63.1–100.0)
Adenocarcinoma	3/3	100.0% (29.2–100.0)

Table 5. QIAsure Methylation Test positivity rates

Among high-risk HPV-positive self-collected vaginal brush specimens, the sensitivity for CIN 3+ is 72.1% (44/61; 95%CI: 59.7–81.9) and for carcinoma 100% (11/11; 95%CI: 72–100).*

Performance of FAM19A4 and hsa-mir124-2 to detect advanced transforming CIN lesions

Host cell promoter methylation analysis specifically detects so-called "advanced" CIN lesions, which harbor a cancer-like methylation profile and have an expected high short-term risk of

^{*} Remark: Hypermethylation of the targets in samples of women harboring advanced CIN lesion and/or cervical cancer might remain undetected due to sampling variability, for example as a result of inadequate sampling.

progression to cancer (7, 8). The performance of promoter hypermethylation analysis of *FAM19A4* and *hsa-mir124-2* was assessed by testing 29 high-risk HPV-positive specimens of women with advanced transforming CIN 2/3 and 19 high-risk HPV-positive specimens of women with early transforming CIN 2/3. Methylation was particularly associated with advanced disease, scoring all advanced CIN2/3 lesions (100%; 29/29; 95%CI: 88–100) hypermethylation-positive, compared with 47% (9/19; 95%CI: 27–69) of early CIN 2/3 lesions.

Robustness

Robustness of the QIAsure Methylation Test was determined as the agreement between the output of the QIAsure Methylation Test and that of a Research Use Only (RUO) version of the assay. Testing was performed on bisulfite-converted genomic DNA obtained from 10 high-risk HPV-positive cervical samples, 5 of which were previously identified as hypermethylation-negative for both markers and 5 as methylation-positive (e.g., for at least one of the 2 markers). Testing was performed in duplicate in 8 runs by four different operators (one run per operator per day) using two different Lots and three different Rotor-Gene Q MDx instruments, performed in two different laboratories. In total, 16 data points were obtained for each sample (Table 6).

Sample number	RUO result	Agreement Lab 1 compared to RUO	Agreement Lab 2 compared to RUO
1	Neg	100% (8/8)	100% (8/8)
2	Neg	100% (8/8)	100% (8/8)
3	Neg	62.5% (5/8)	62.5% (5/8)
4	Neg	100% (8/8)	100% (8/8)
5	Neg	100% (8/8)	100% (8/8)
Subtotal		92.5% (37/40)	92.5% (37/40)
6	Pos	100% (8/8)	100% (8/8)
7	Pos	100% (8/8)	100% (8/8)
8	Pos	100% (8/8)	100% (8/8)
9	Pos	100% (8/8)	100% (8/8)
10	Pos	100% (8/8)	100% (8/8)
Subtotal		100% (40/40)	100% (40/40)
Total (positive and negative)		96.25% (77/80)	96.25% (77/80)

Four of the five samples previously identified as methylation-negative demonstrated 100% agreement when using the QIAsure Methylation Test in both laboratories. Sample 3 displayed an agreement of 62.5% (5/8) in both laboratories. Observed variation related to *FAM19A4* with levels around the assay cutoff. Overall agreement among the methylation-negative samples was 92.5% (37/40).

All 5 samples previously identified as methylation-positive demonstrated 100% agreement with the reference assay, thus overall agreement was 100% (40/40).

Bisulfite-conversion directly on cervical specimens

The protocol "Bisulfite-conversion directly on cervical specimens" was verified against the reference protocol (i.e. bisulfite-conversion with prior sample DNA quantity control) on 119 cervical scrapes followed by the QIAsure Methylation Test. The success rate for bisulfite-conversion directly on cervical samples using 2.5% cervical specimen input was 95.8% (114/119) and increased to 100% after retesting the invalids with 10% cervical specimen input. The agreement in QIAsure Methylation Test result between the bisulfite-conversion protocols was 90.8% (108/119; kappa value 0.75).

References

- Costello, J.F., and Plass, C. (2001) Methylation matters. J. Med. Genet. 38, 285– 303.
- 2. Wilting, S.M., et al. (2010) Methylation-mediated silencing and tumour suppressive function of *hsa-mir124* in cervical cancer. Mol. Cancer **9**, 167.
- De Strooper, L.M., et al., (2014) Methylation analysis of the FAM19A4 gene in cervical scrapes is highly efficient in detecting cervical carcinomas and advanced CIN2/3 lesions. Cancer Prev. Res. 7, 1251–7.
- 4. De Strooper, L.M., et al. (2014) CADM1, MAL and *mir124-2* methylation analysis in cervical scrapes to detect cervical and endometrial cancer. J. Clin. Pathol. **67**, 1067–71.
- 5. De Strooper, L.M., et al. (2016) Comparing the performance of *FAM19A4* methylation analysis, cytology and HPV 16/18 genotyping for the detection of cervical (pre)cancer in high-risk HPV-positive women of a gynecologic outpatient population (COMETH study). Int. J. Cancer **138**, 992–1002.
- De Strooper, L.M., et al. (2016) Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women. Gynecol. Oncol. 141, 341–7.
- Bierkens, M. et al. (2013) CADM1 and MAL promoter methylation levels in hrHPVpositive cervical scrapes increase proportional to degree and duration of underlying cervical disease. Int. J. Cancer 133, 1293–9.
- Steenbergen, R.D.M. et al. (2014) Clinical implications of (epi)genetic changes in HPV-induced precancerous lesions. Nat. Rev. Cancer 14, 395–405.
- Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–8.
- 10. De Strooper, L.M., et al. (2018) Cervical cancer risk in HPV-positive women after a negative FAM19A4/miR124-2 methylation test: A post hoc analysis in the POBASCAM trial with 14 year follow-up. Int. J. Cancer 143, 1541-1548.

Symbols

The following symbols may appear on the packaging and labeling:

Symbol	Symbol definition
\Box	Use by
IVD	In vitro diagnostic medical device
CE	CE-IVD marked symbol
∑ _ <n></n>	Contains reagents sufficient for <n> reactions</n>
REF	Catalog number
LOT	Lot number
MAT	Material number
COMP	Components
CONT	Contains
NUM	Number
Rn	${\tt R}$ is for revision of the Instructions for Use (Handbook) and ${\tt n}$ is the revision number
GΠN	Global Trade Item Number
×_	Temperature limitation
	Manufacturer
迷	Protect from light
	Consult instructions for use
Â	Caution

Contact Information

For technical assistance and more information, please see our Technical Support Center at **www.qiagen.com/Support**, call 00800-22-44-6000, or contact one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit **www.qiagen.com**).

Ordering Information

Product	Contents	Cat. no.
QIAsure Methylation Test Kit	For 72 reactions: 2 Master Mixes, 2 Calibrators.	616014
Rotor-Gene Q MDx		
Rotor-Gene Q MDx 5plex HRM System	Real-time PCR cycler and High Resolution Melt analyzer with 5 channels (green, yellow, orange, red, crimson) plus HRM channel, laptop computer, software, accessories: includes 1-year warranty on parts and labor, installation and training	9002033
Rotor-Gene Q MDx 5plex HRM Platform	Real-time PCR cycler and High Resolution Melt analyzer with 5 channels (green, yellow, orange, red, crimson) plus HRM channel, laptop computer, software, accessories: includes 1-year warranty on parts and labor, installation and training not included	9002032
Rotor-Gene Q MDx Accessories		
Loading Block 72 x 0.1ml Tubes	Aluminum block for manual reaction setup with a single-channel pipet in 72 x 0.1 ml tubes	9018901
Strip Tubes and Caps, 0.1ml (250)	250 strips of 4 tubes and caps for 1000 reactions	981103
Strip Tubes and Caps, 0.1ml (2500)	10 x 250 strips of 4 tubes and caps for 10,000 reactions	981106

Ordering Information

Product	Contents	Cat. no.
Rotor-Gene AssayManager – for instruments Rotor-Gene AssayManager	routine testing with Rotor-Gene Q MDx Software for routine testing in combination with the Rotor-Gene Q and QIAsymphony RGQ instruments; single license software for installation on one computer	9022739

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

This page is intentionally blank.

Document Revision History

Date	Changes
R4, June 2019	Revised the workflow procedure flowchart in Principle and Procedure; Added EpiTect Fast 96 Bisulfite Kit in Materials Required but Not Provided; Revised Safety Information box content; Added information about warm-up run for RGQ MDx 5- plex HRM; Revised Sample Preparation section; Added additional troubleshooting item; Added the Bisulfite-conversion directly on cervical specimens topic in Performance Characteristics; Updated References section; Layout updates

Limited License Agreement for QIAsure Methylation Test

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- The product may be used solely in accordance with the protocols provided with the product and this handbook and for use with components contained in the kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this handbook, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.
- 3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including altorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

For updated license terms, see www.qiagen.com

Self-screen B.V. is the legal manufacturer of the QIAsure Methylation Test.

The QIAsure Methylation Test is manufactured by Self-screen B.V. and distributed by QIAGEN in Europe.

Trademarks: QIAGEN®, Sample to Insigh®, QIAsymphony®, digene®, Rotor-Gene®, Rotor-Gene AssayManoge® (QIAGEN Group); BD®, SurePath® (Becton Dickinson); EZ DNA Methylation™ (Zyma Research Corp.); NanoDrop® (NanoDrop Technologies LIC); Preser-Cyf® (Hologic, Inc.); Qubit® (Molecular Probes, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by Jaw.

06-2019 HB-2304-004 1117742 © 2019 QIAGEN, all rights reserved.

 $Ordering \ www.qiagen.com/shop \ | \ Technical \ Support \ support.qiagen.com \ | \ Website \ www.qiagen.com$