ALK RGQ RT-PCR Kit Handbook

For Research Use Only. Not for use in diagnostic procedures. For use with the Rotor-Gene® Q 5plex HRM instrument

REF

870501 QIAGEN Manchester Ltd, Skelton House, Lloyd Street North, Manchester, M15 6SH, UK

Σ/ ₂₄

Sample to Insight

Contents

Intended Use	4
Principle of the procedure	4
Materials Provided	7
Kit contents	7
Materials Required but Not Provided	7
Warnings and Precautions	9
Safety information	9
General precautions	9
Reagent Storage and Handling	
Specimen Handling and Storage	11
Procedure	12
RNA isolation	12
Protocol: PCR and Data Analysis	12
Results	
Sample assessment data analysis	
Notes for data analysis	
Analytical performance	
Troubleshooting Guide	
Quality Control	45
Limitations	45
References	
Symbols	

Contact Information	49
Ordering Information	50

Intended Use

The ALK RGQ RT-PCR Kit is intended for research use only. No claim or representation is intended to provide information for the diagnosis, prevention, or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend all users of QIAGEN products to adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

Principle of the Procedure

Technology

The ALK RGQ RT-PCR Kit uses Scorpions[®] technology, which enables the detection of RNA transcripts encoding the anaplastic lymphoma kinase (ALK) tyrosine kinase domain and the control region of the ABL1 RNA transcript. The kit is designed to detect the aberrant expression of mRNA encoding the ALK tyrosine kinase domain.

Scorpions

Detection of amplification is performed using Scorpions. Scorpions are bi functional molecules containing a PCR primer covalently linked to a fluorescently labeled probe. The fluorophore in this probe is associated with a quencher also incorporated into the probe, which reduces fluorescence. During PCR, when the probe binds to the amplicon, the fluorophore and quencher become separated. This leads to a measureable increase in fluorescence from the reaction tube.

Kit format

The ALK RGQ RT-PCR Kit contains two assays in a single multiplex reaction. The kit is designed to detect the aberrant expression of mRNA encoding the ALK tyrosine kinase

domain. The reaction mix contains reagents to convert RNA to cDNA (reverse transcription) and reagents to detect targets (ALK) that are labeled with FAMTM (amplified cDNA) and an internal control (ABL1) that is labeled with HEXTM. The internal control ABL1 is an endogenous control that monitors the quantity of RNA and also the quality of RNA (to check for the presence of inhibitors that may lead to false negative results).

Each kit contains the following:

- One tube of reaction mix for the ABL1 and ALK multiplex assay
- One tube of OneStep Enzyme Mix
- One tube of positive control RNA
- One tube of RNase/DNase-free water for no template control (NTC)
- One tube of RNase/DNase-free water for dilution of sample

Assays

The ALK RGQ RT-PCR Kit comprises a one-step procedure during which RNA is reverse transcribed and tested using real-time PCR on the Rotor Gene Q 5plex HRM instrument. Expression assays are performed to monitor the presence of ALK and ABL1 RNA transcripts.

Control expression assay

The ABL1 internal control assay detection is via a HEX labeled Scorpion.

Target expression assay

The ALK assay detection is via a FAM labeled Scorpion.

Controls

All experimental runs must contain positive control, which controls for both ALK and ABL1 expression, and a negative control (NTC), which controls for contamination.

Positive control

The ALK RGQ RT-PCR Kit contains ALK and ABL1 Positive Control (PC) to be used as the template in the positive control reaction and each run must be performed with a positive control. The positive control contains in vitro transcripts that will be amplified by both the ALK and ABL1 assays in the reaction mixes. The positive control results will be assessed to ensure that the kit performs within the stated acceptance criteria.

Negative control

The ALK RGQ RT-PCR Kit contains water to be used as the template for the no template negative control. Each run must contain a no template control (NTC).

Materials Provided

Kit contents

ALK RGQ RT-PCR Kit	(24)		
Catalog number			870501
Number of reactions			24
ALK/ABL1 Reaction Mix	Red	ALK	اµ 006
ALK/ABL1 Positive Control	Beige	PC	100 µl
OneStep Enzyme Mix	Red	Enzyme Mix	45 µl
Water for NTC	White	NTC	1.9 ml
Water for Sample Dilution	White	Dil.	1.9 ml

Materials Required but Not Provided

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs), available from the product supplier.

Reagents

- RNeasy[®] FFPE Extraction Kit (cat. no. 73504)
- Deparaffinization solution (cat. no. 19093)
- Ethanol (96–100%)*

^{*} Do not use denatured alcohol, which contains other substances such as methanol or methylethylketone.

Consumables

- 0.1 ml PCR strip tubes and caps (RGQ tubes) for use with 72-well rotor (QIAGEN cat. nos. 981103 and 981106)
- Sterile microcentrifuge tubes for preparing master mixes. Recommendation is to use Lo-bind tubes.

Equipment

- Adjustable pipets, dedicated for sample preparation*
- Sterile pipet tips with aerosol barriers
- Thermomixer, heated orbital incubator, heating block, or water bath capable of incubation at 56°C and 80°C*
- Bench top centrifuge with rotor for 1.5 ml tubes*
- Bench top vortex*
- Adjustable pipets, dedicated for PCR master mix preparation*
- Adjustable pipets, dedicated for dispensing of positive control and template RNA*
- Rotor-Gene Q 5plex HRM System (cat. no. 9001650)
- Rotor-Gene Q Software, version 2.1.0.7 or higher.
- QIAGEN Loading Block 72 x 0.1 ml Tubes (cat. no. 9018901)

* Ensure that instruments have been checked and calibrated according to the manufacturer's recommendations.

Warnings and Precautions

Safety information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety** where you can find, view, and print the SDS for each QIAGEN kit and kit component.

General precautions

The user should always pay attention to the following:

- Use sterile pipet tips with aerosol barriers and make sure that pipets have been calibrated according to the manufacturer's instructions.
- Store and extract template nucleic acid materials (specimens and positive controls) separately from all other reagents and add them to the reaction mix in a spatially separated facility.
- Use extreme caution to prevent contamination of PCR reactions with synthetic control
 material. We recommend using separate, dedicated pipets for setting up reaction mixes
 and adding RNA template. Preparation and dispensing of reaction mixes must be carried
 out in a separate area to the addition of template. Rotor-Gene Q tubes must not be
 opened after the PCR run has finished. This is to prevent laboratory contamination with
 post-PCR products.

Important notes

• All reagents in the ALK RGQ RT-PCR Kit are formulated specifically for use with the tests provided in the ALK RGQ RT-PCR Kit. All reagents supplied are intended to be used

solely with the other reagents in the same ALK RGQ RT-PCR Kit. Do not substitute the reagents in the ALK RGQ RT-PCR Kit, or between ALK RGQ RT-PCR Kits, as this may affect performance.

- Reagents for the ALK RGQ RT-PCR Kit have been optimally diluted. We do not recommend further dilution of reagents as this may result in a loss of performance. We do not recommend using reaction volumes of less than 25 µl as this will increase the risk of false negatives.
- The product is intended only for use on the Rotor-Gene Q 5plex HRM instrument.
- The product is to be used only by experienced laboratory personnel familiar with laboratory procedures and the Rotor-Gene Q 5plex HRM instrument.
- To ensure correct sample testing and analysis, the user must take particular care when pipetting, placing the PCR strip tubes into the appropriate positions of the 72-well rotor, and entering sample names.

The test is highly sensitive and specific, enabling detection of small proportions of mutant RNA against a background of wild-type RNA. The procedure should be repeated in the event that the control expression assay value indicates that the quantity of RNA is either insufficient or at a concentration too high for ALK and ABL1 expression analysis.

Reagent Storage and Handling

The ALK RGQ RT-PCR Kit is shipped on dry ice and must still be frozen on arrival. If the ALK RGQ RT-PCR Kit is not frozen on arrival, the outer packaging has been opened during transit, or the shipment does not contain a packing note or the reagents, please contact one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit **www.qiagen.com**).

The ALK RGQ RT-PCR Kit should be stored immediately upon receipt at -15 to -30° C in a constant-temperature freezer. Repeated thawing and freezing should be avoided.

Note: To ensure optimal activity and performance, Scorpions (as with all fluorescently labeled molecules) must be protected from light to avoid photo bleaching.

Specimen Handling and Storage

Note: All samples must be treated as potentially infectious material.

Sample material must be human lung tumor RNA from NSCLC, extracted from formalin-fixed paraffin-embedded (FFPE) tissue. Specimens must be transported according to standard pathology methodology to ensure specimen quality.

Procedure

RNA isolation

RNA isolation must be carried out with 3–5 μ m FFPE sections using the RNeasy FFPE Kit (cat. no. 73504). For optimal de-crosslinking, incubate for 15 minutes at 80°C. Elute RNA with 30 µl water. RNA should be stored at –80°C until use.

Protocol: PCR and Data Analysis

Important points before starting

• Before beginning the procedure read "Important notes", page 9.

Things to do before starting

Before each use, thaw all reagents for a minimum of 30 minutes (but less than 90 minutes) at room temperature (15–25°C), mix by inverting 10 times, and centrifuge briefly to collect the contents at the bottom of the tube.

Procedure

ALK RGQ RT-PCR assay plate set-up

Note: Each PCR reaction final volume must be 25 µl (20 µl Master Mix + 5 µl Sample).

1. To prepare the master mix, pipet out the reaction mix and then add the OneStep Enzyme mix according to Table 1.

Table 1. Preparation of master mix

	Master M	lix
Reaction Mix	Volume of Reaction Mix (Tube ALK)	Volume of OneStep Enzyme Mix (Tube Enzyme Mix)
ALK Kit	19.5 µl x (n+2)*	0.5 µl x (n+2)

*n = number of reactions (RNA samples plus 2 controls). Prepare enough for 2 extra samples (n + 2). n should not exceed 26 (24 samples plus 2 controls), as 24 is the maximum number of samples which can be tested using one ALK Kit.

- 2. Close micro centrifuge tube and mix by inverting 10 times. Where appropriate, collect master mix after mixing by centrifuging briefly (pulse) at max rpm.
- Place PCR tubes into a loading block according Rotor-Gene Q ALK RGQ RT-PCR Analysis Template layout (Figure 1). Do not cap the tubes.

Note: Leave the caps in the plastic container until required

 Dispense 20 µl of Master Mix to the relevant PCR strip tubes, using the run layout shown in Figure 1.

01. PC	09. sample	17. sample	25. sample	33.	41.	49.	57.	65.
02. NTC	10. sample	18. sample	26. sample	34.	42.	50.	58.	66.
03. sample	11. sample	19. sample	27.	35.	43.	51.	59.	67.
04. sample	12. sample	20. sample	28.	36.	44.	52.	60.	68.
05. sample	13. sample	21. sample	29.	37.	45.	53.	61.	69.
06. sample	14. sample	22. sample	30.	38.	46.	54.	62.	70.
07. sample	15. sample	23. sample	31.	39.	47.	55.	63.	71.
08. sample	16. sample	24. sample	32.	40.	48.	56.	64.	72.

Figure 1. Rotor-Gene Q ALK RGQ RT-PCR Analysis Template layout. Suggested run and loading block layout. Numbers denote position in the loading block and indicate final rotor position.

5. Add 5 µl Water for NTC to the NTC tube (tube 02) and cap the tube.

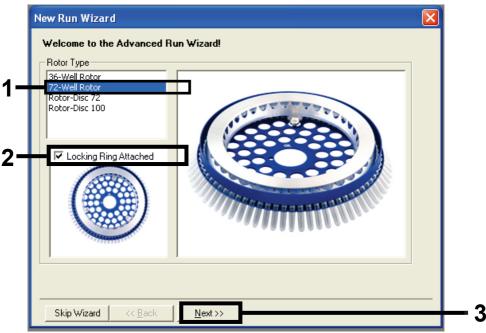
Note: Water for NTC must be added and tubes must be capped before adding samples or positive control to prevent cross-contamination.

- 6. Add 5 μI RNA template to the sample tubes (tube 3–26) and cap the tubes.
- 7. Add 5 µl Positive Control (PC) to the PC tube (tube 01) and cap the tube.
- 8. Flick the capped strip tubes 3 times to mix the contents.
- 9. Transfer the PCR strip tubes to the 72-well rotor in the RGQ instrument.

Note: Tube 01 must always contain Positive Control (PC) and tube 02 must always contain NTC.

Run the ALK RT-PCR assay using the PCR cycling conditions shown in the table below.

Overview of PCR cycling conditions


Cycle	Step	Temperature Setting	Duration	Acquisition Channels	Number of Cycles
Hold	Reverse transcription	50°C	30 min	N/A	1
Hold	Denaturation and <i>Taq</i> activation	95°C	15 min	N/A	1
	Denaturation	95°C	30 s	N/A	
Cycling	Annealing	60°C	1 min	Green and Yellow	40

N/A: Not applicable

Rotor-Gene Q run setup

1. Open the "New Run Wizard" dialog box and select "72-Well Rotor".

Click "Locking Ring Attached" and then click "Next".

The "New Run Wizard" dialog box.

2. Enter the name of the operator. Add any notes and check that the reaction volume is set to "25" and the "Sample Layout" box reads "1, 2, 3...". Click "Next".

New Run Wizard			
	ays miscellaneous options for the run. Complete the fields, 1 you are ready to move to the next page.	This box displays help on elements in the wizard. For help	L 1
Operator : Notes :	ABC DHF-001-DOU-008-01_A26_25NOV13_1211111_ABC	n an item, hover your mouse over the em for help. You an also click on a ombo box to isplay help about s available settings.	
Reaction Volume (µL): Sample Layout :	25 <u>•</u> •		2
Skip Wizard	<u>Mext</u>		

The "New Run Wizard" dialog box.

3. The next window enables editing of the temperature profile. Select "Edit Profile" to modify the temperatures.

Temperatur					This box displays help on elements in the wizard. For help on an item, hover your mouse over the item for help. You can also click on a combo box to display help about its available settings.
Channel Set Name Green Yellow Orange Red Crimson HRM Gain Optim	Source 470nm 530nm 585nm 625nm 680nm 460nm	Detector 510nm 555nm 610nm 660nm 710hp 510nm	Gain 5.33 5.33 10 10 10 -2.67	Create New Edit Edit Gain Remove Reset Defaults	

Editing the temperature profile.

4. Edit the "Hold" temperature to 50°C and 30 minutes.

Zedit Profile	
New Open Save As Help The run will take approximately 132 minute(s) to co	omplete. The graph below represents the run to be performed :
Cick on a cucle below to codify it : Hold Cycling	Insert after Insert before Remove
Hold Temperature : 50 °C Hold Time : 30 mins 0 secs	
	<u><u> </u></u>

Editing the "Hold" temperature.

5. Then, add a second hold step. Select "Hold", click "Insert after..." and select "New Hold at Temperature".

Cliek on a cuela balour lo codifir à : Hold Cycling Hold Temperature : 50 sc Hold Time : 30 mins 0 secs	Insert after New Cycling Insert before New Melt Remove New Hold at Temperature New HRM Step Copy of Current Step

Adding a second "Hold" step.

6. Edit the temperature profile for the second "Hold" step. Select "Hold 2" and set the values to 95°C and 15 minutes.

Edit Profile	• ו
New Open Save As Help	
The run will take approximately 147 minute(s)	to complete. The graph below represents the run to be performed :
Click on a cycle below to modify it :	
Hold 2	Insert offer
	Remove
Hold Temperature : 95 °C Hold Time : 15 mine 0 see	
Hold Time : 15 mins 0 set	28
	<u></u> K

Editing the "Hold 2" temperature.

7. Edit the "Cycling" step. Select "Cycling". Set the "This cycle repeats X times" box to 40. Ensure that the first part of the cycle is selected (shown in gray on the figure). Select "Timed Step" and set the values to 95°C, 30 seconds and Not Acquiring.

Edit Profile	
New Open Save As Hel	
The run will take approximately 147 minut	te(s) to complete. The graph below represents the run to be performed :
Click on a cycle below to modify it :	
Hold	Insert after
Cycling	Insert before
This cycle repeats <u>40</u> time(s).	/it or press + or - to add and remove steps for this cycle.
Timed Step	95%C for 30 secs
└ Long Range └ Touchdown	60ªC for 60 secs
	QK

Editing the "Cycling" step.

 Select the second temperature in the cycle diagram (shown in gray on the figure). Select "Timed Step" and set the values to 60°C, 60 seconds, and Acquiring to cycling A on Green, Yellow. Click "OK".

The run will take approximately 147	minute(s) to complete. The graph below represents the run to be performed :	
Click on a cycle below to modify it : Hold Hold 2 Cycling	Insert after Insert before Remove	
This cycle repeats 40 time(s). Click on one of the steps below to re- Timed Step • • • • • • • • • • • • • • • • • • •	nodify it, or press + or - to add and remove steps for this cycle. 95°C for 30 secs 60°C for 60 secs] / /

Editing the "Cycling" step.

 Select "Gain Optimisation" from the "Temperature Profile" menu. Select "Optimise Acquiring" and when prompted by the text, "This will remove your existing settings for Auto-Gain. Continue?", select "Yes".

New Run Wi						x
Temperatu Edit Profi	le					This box displays help on elements in the wizard. For help on an item, hover your mouse over the item for help. You can also click on a combo box to display help about its available settings.
Name Green Yellow Orange Red Crimson HRM	Source 470nm 530nm 585nm 625nm 680nm 460nm	Detector 510nm 555nm 610nm 660nm 710hp 510nm	Gain 5.33 5.33 10 10 10 -2.67		Create New Edit Edit Gain Remove Reset Defaults	
Gain Optir Skip W	1	<< <u>B</u> ack		<u>N</u> ext >>		

Auto-Gain Optimisation Setup					x			
	Optimisatio	n :						
Auto-Gain Optimisation will read the fluorescence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing.								
		Set temperature	e to 60 🚽 d	egrees.				
	Optimi		mise Acquiring)	Ī				
								-
		Optimisation Be						
	Perform	n Optimisation At	60 Degrees At I	Beginning Of F	lun			
Г	Channel Se	ettings :						
						-	<u>A</u> dd	
	Name	Tube Position	Min Reading	Max Readin	g Min Gain	Max Gain	<u>E</u> dit	
	Green	69	5FI	10FI	-10	10	Remove	
	Yellow Orange	69 69	5FI 5FI	10FI 10FI	-10 -10	10 10	Remove All	
L		4						
	<u>S</u> tart	Manua	il Ci	ose	<u>H</u> elp			

"Gain Optimisation" setup.

10.Select tube position 1 (PC tubes) and ensure that the "Target Sample Range" is set to "5 to 10". Then, set the "Acceptable Gain Range" from –10 to 10 and click "OK".

Auto-Gain Optimisation Channel Settings				
Channel Settings :				
Channel: Green	Tube Position : 1			
Target Sample Range :	Б ÷ Fl up to 10 ÷ Fl.			
Acceptable Gain Range:	-10 • to 10 •			
	OK Cancel Help			

"Acceptable Gain Range".

11.Ensure this is completed for both the Green and Yellow channels.

Auto-Gain C	Dptimisation Setup
- Optimisatio	n : Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing. Set temperature to 60 depress.
Optin	Auto-Gain Optimisation Channel Settings Channel Settings : Channel : Green Tube Position : 1 + Target Sample Range : 5 + Fl up to 10 + Fl. Acceptable Gain Range: -10 + to 10 + OK Cancel Help yve All
. ✓	III ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►

"Gain Optimisation" setup.

12.Check the "Perform Optimisation before 1st Acquisition" box and click "Close". Select "Next" in the "New Run Wizard" to move to the "Summary" screen.

Optimisati Optim Optim	Auto-Gain Optin different gain le acceptable. Th chemistry you a Set temperatur nise All Opt m Optimisation B m Optimisation A	misation will rea evels until it finds are range of fluore are performing. e to 60 2 d dimise Acquiring efore 1st Acquis	ition	fluorescenc looking for c	e levels are		1	
Name Green Yellow	Tube Position 1 1	Min Reading 5FI 5FI al	Max Reading 10FI 10FI	Min Gain -10 -10	▼ Max Gain 10 10 ►	<u>A</u> dd <u>E</u> dit <u>B</u> emove Remove A <u>I</u>		2

"Gain Optimisation" setup.

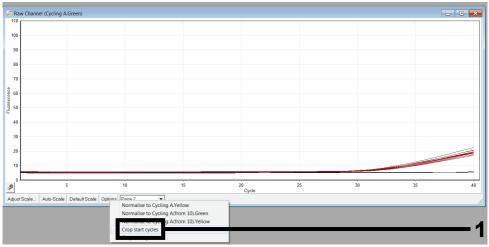
13.In the "New Run Wizard" dialog box, Click "Start run" to begin the Rotor-Gene Q run.

Summary :			
Setting	Value		
Green Gain	5.33		
Yellow Gain Auto-Gain Optimisation	5.33 Before First Acquisition		
Rotor	72-Well Rotor		
	1, 2, 3,		
Reaction Volume (in microliters)	25		
			Start Run
Once you've confirmed that your run	settings are correct click	Start Bun to	
begin the run. Click Save Template			Save Template
Skip Wizard			

The "New Run Wizard" dialog box.

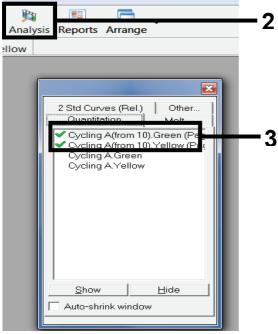
Results

Sample assessment data analysis

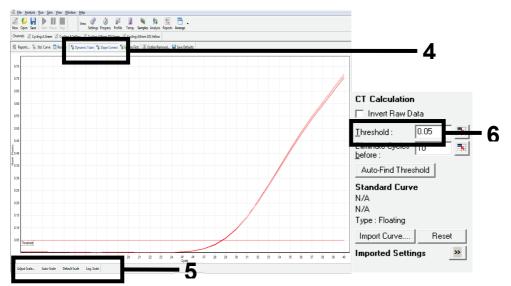

After the run is complete, analyze the data according to the following procedure.

Software analysis settings

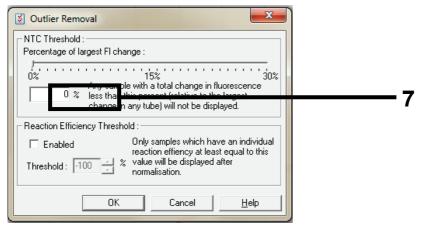
- 1. Open the appropriate run file using the Rotor-Gene Q series software (2.1.0.7 or higher).
- 2. If the samples were not named before starting the run, click "Edit Samples".
- 3. Insert the sample names in the "Name" column.


Note: Leave the names of any empty wells blank.

4. Go to the "Channels" tab and select "Raw Channel" (Cycling A Green or Cycling A Yellow). Click "Options", followed by "Crop start cycles" and enter a value of 10. Repeat for each channel.


The Raw Channel "Crop start cycles".

5. Go to the "Analysis" tab. Click "Cycling A. Yellow (from 10)" to view the Yellow channel.


The "Analysis" tab for Cycling A.

- 6. Check that "Dynamic Tube" and "Slope Correct" are selected.
- 7. Click "Linear scale" and set the threshold to 0.05.

Setting the linear scale.

8. Click "Outlier Removal" and set "NTC Threshold" to 0% and select "OK".

Setting Outlier Removal

9. Check that there are no curves crossing the threshold as a result of linear amplification.

Note: See "Linear amplification", page 36 for identification of linear amplification and to differentiate linear and true amplification.

- 10.Check the Yellow channel C_T values.
- 11.Go to the "Analysis" tab. Click "Cycling A. Green (from 10)" to view the Green channel.

12.Check that "Dynamic Tube" and "Slope Correct" are selected.

13.Click "Linear scale" and set the threshold to 0.05.

14.Click "Outlier Removal" and set to 8% and select "OK".

🛿 Outlier Removal	
NTC Threshold : Percentage of largest FI change :	
0% 15% 30 0% 15% 30 ny sample with a total change in fluorescence 8 % that this percent includy: to the langest	»
hange in any tube) will not be displayed.	8
Reaction Efficiency Threshold :	
Enabled Only samples which have an individual reaction efficiency at least equal to this	al
Threshold : 100 🔆 % value will be displayed after normalisation.	
OK Cancel <u>H</u> elp	

Setting Outlier Removal

15.Check that there are no curves crossing the threshold as a result of linear amplification.

Note: See "Linear amplification", page 36 for identification of linear amplification and to differentiate linear and true amplification.

16.Check the Green channel $C_{\ensuremath{\mathsf{T}}}$ values.

The analysis and expression calls are performed manually after analysis by the Rotor-Gene Q software when a run is completed. The following information explains how to analyze the data obtained.

The PCR cycle at which the fluorescence from a particular reaction crosses a threshold, is defined as the C_T value. C_T values in the Yellow (HEX) channel correlate with the quantity of specific input RNA. Low C_T values indicate higher input RNA levels and high C_T values indicate lower input RNA levels.

Samples with a $C_{\rm T}$ value in the Green (FAM) channel equal to or less than the cutoff are classified as positive expression.

The Rotor-Gene Q software interpolates fluorescence signals between any two recorded values. C_T values can therefore be any real number (not limited to integers) within the range 0 to 40.

For the ALK RGQ RT-PCR Kit, the threshold value is set at 0.05 relative fluorescence units for the Green (FAM) and Yellow (HEX) channels. The threshold value was defined during development of the ALK RGQ RT-PCR Kit.

Analysis of run controls

The run controls (positive control and NTC) are assessed to ensure that acceptable C_T values are achieved and that the reactions are performing correctly. Only if the run controls meet the acceptance criteria, will the sample wells be analyzed (Table 2).

Run control	Channel	Lower limit ≥	Upper limit ≤	Range
Positive Control ALK FAM	Green	25.44	32.16	6.72
Positive Control ABL1 HEX	Yellow	24.55	33.79	9.24
NTC ALK FAM	Green	No	C⊺ value below 40)
NTC ABL1 HEX	Yellow	No C_T value below 40		

Table 2. Acceptance criteria for controls

After the RGQ run is completed, Sample C_T values are determined for the Green (ALK; target expression assay) and the Yellow (ABL1; control expression assay) channels.

Note: The target expression assay C_T and control expression assay C_T values come from the same sample well.

Sample analysis: sample expression control assay (Yellow channel)

Table 3. Established value for ABL1 expression control assay

	ABL1 expression control assay (C _T) (HEX; Yellow channel)
Working range	24.23-31.09

There are 2 possible outcomes for each sample:

- If the sample control HEX CT falls within the specified range (24.23–31.09, Table 3), it is amplification positive and valid.
- If the sample control HEX CT is above the specified range (>31.09, Table 3), the tube is amplification negative and invalid.

 The sample can be re-tested one more time and the sample validity determined. If the sample control HEX C_T is above the specified range after the re-test, a second extraction will be performed the sample validity re-assessed like the first time. If the sample still fails the acceptance criteria for Control HEX, the sample is invalid.

Sample analysis: sample target expression assay (Green channel)

If a sample is determined valid, sample ΔC_T values are calculated using the equation:

 $\Delta C_T = [Target Expression Assay Ct value (FAM C_T)] - [Expression Control Assay C_T value (HEX C_T)]$

Note: The Target Expression Assay C_T and Expression Control Assay C_T values are from the same sample well.

- ΔC_T value should be checked against the ΔC_T values indicated in Table 4. If the sample control HEX C_T falls within the specified range (24.23–31.09) and the ΔC_T value is equal to or below 8.0; the sample is called as "Expression Detected".
- If the sample control HEX C_T falls within the specified range (24.23–31.09) and the ΔC_T value is above 8.0; the sample is called as "No Expression Detected".
- If the sample control HEX CT is above the specified range (>31.09), and, if there is amplification in the FAM (Green) channel for that sample, the sample is called as "Invalid".

Table 4. Established value for ALK target expression assay

	ALK target expression assay (∆C₁) (FAM; Green channel)
Cutoff (C⊺)	≤8.0

The cutoff is a point above which the positive signal may be due to background signal of the "Scorpion" primer or background RNA. If a sample has a ΔC_T value higher than the cutoff, it is classified as negative and beyond the limit of detection of the assay.

For every sample, the ALK RT-PCR assay will be assigned a status of "Expression Detected", "No Expression Detected", "Sample Invalid", or in the case where a run control fails, "Run Control Fail".

- Expression Detected: if the C_T value in the Yellow channel is valid and the ΔC_T value is less than or equal to the cutoff C_T value (Table 4).
- No Expression Detected: if the C_T value in the Yellow channel is valid (Table 3), and the ΔC_T value is greater than the cutoff C_T value (Table 4) or there is no C_T observed in the Green Channel.
- Sample Invalid: When the C_T value in the Yellow channel is invalid (Table 3).
- Run control Fail: When the C_T values in the Green and the Yellow channel are not with in specifications in the Positive control well (Table 2) and there is C_T value <40 in the NTC well.

Notes for data analysis

Linear amplification

Rotor-Gene Q plots from all reactions should be checked. Occasionally, an increase in fluorescence signal is seen in the NTC (negative samples and empty tubes). If this occurs and a C_T value is obtained in the NTC well, the user must distinguish between a true amplification event (which would indicate contamination in the NTC; see Figure 2) and a linear increase in fluorescence, which may have arisen due to a fluorescent artifact. Linear amplification in empty tubes is due to a fluorescence artifact. C_T data for the empty tubes should therefore be discarded. An increase in the fluorescence signal in an empty tube can be disregarded.

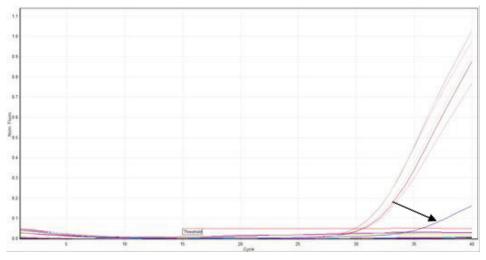


Figure 2. Contamination in a NTC of an assay in an analyzed run. The arrow indicates amplification showing contamination in an NTC tube.

Analysis of the NTC

Figure 2 and Figure 3 show two examples of abnormal behavior of NTC samples. In Figure 2, nonlinear (true) amplification due to sample contamination is seen. This run should be discarded and samples retested. In Figure 3, linear amplification in an NTC is seen. In this case, the raw fluorescence should be examined. The corresponding raw fluorescence plot is presented in Figure 4, showing a linear increase in fluorescence rather than a true amplification event. The data from this run can be used, but only if the positive control has passed. For comparison with Figure 4, Figure 5 shows raw fluorescence data where true amplification has taken place. In this case, the data should be discarded and the samples retested as this indicates that contamination is present.

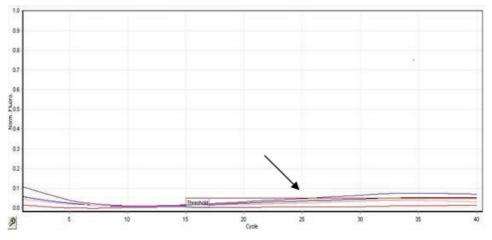


Figure 3. Example of a linear increase in fluorescence in an NTC tube. The arrow indicates linear increase in fluorescence in a NTC tube.

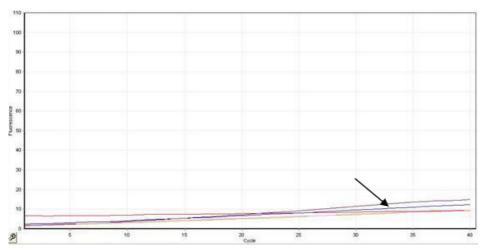


Figure 4. Raw fluorescence data in NTC well. The arrow indicates linear amplification in an NTC well.

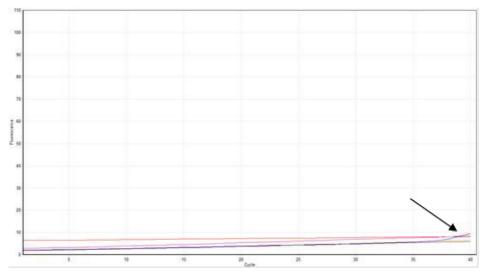


Figure 5. Raw fluorescence data showing an NTC tube with a true amplification event. The arrow indicates contamination in an NTC well. All other wells show no contaminant present.

Analysis of samples

Figure 6 and Figure 7 are two examples of amplification in sample reactions. Figure 6 is an example of true amplification in a sample tube. If a run shows this type of sigmoidal amplification curve, this is true amplification and the data from this run can be used, but only if the positive control and the internal control have passed.

Figure 6. True amplification in a sample tube in an analyzed run. The arrow indicates the plots showing true amplification.

Figure 7 shows an example of linear amplification in a sample reaction. Here, the raw fluorescence data should be examined. The corresponding raw fluorescence plot (Figure 8) indicates that the linear increase observed corresponds to a linear increase in the raw fluorescence and is not a true amplification. If the positive and internal control checks have passed, sample results can be used from these runs with caution, such that linear amplification is called as "no C_T ".

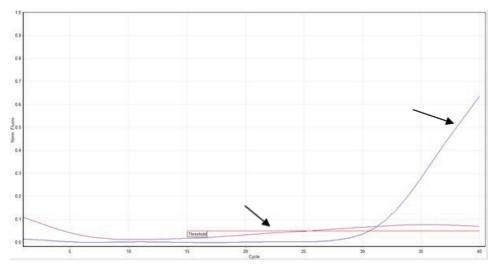


Figure 7. Example of a linear increase in fluorescence in a sample tube. The upper arrow indicates a plot showing true amplification. The lower arrow indicates linear increase in fluorescence in a sample well.

Figure 8. Raw fluorescence of Figure 7.

Analytical performance

The ALK RGQ RT-PCR Kit is for research use only and not for use in diagnostic procedures.

The analytical performance specifications are given as indicative data and should be reevaluated by the user.

Limit of blank and initial cutoff

FFPE samples were tested using a method adhering to the guidance of the Clinical and Laboratory Standards Institute (CLSI). Data from 16 negative samples tested in a total of 128 replicates (16 samples, 8 replicates) were used to assess the limit of blank. Cut-off was determined using an eight point serial dilution of in vitro transcribed RNA and tested in eight replicates per run over three RGQ runs (24 reps per dilution).

The ABL1 control expression assay C_T range was established as 24.23–31.09 C_T .

The cutoff for the ALK target expression assay was established at a ΔC_T value of ≤ 8.0 .

Troubleshooting Guide

Refer to this section for error handling and troubleshooting. If the recommended steps do not resolve the problem, contact QIAGEN Technical Services for assistance.

Poss	ible problem or cause	Corrective action		
Invalid results				
a)	The storage conditions for one or more components did not comply with the instructions given in "Reagent Storage and Handling"	Check the storage conditions (see the label) of the reagents and use a new kit, if necessary.		
b)	FAM C _T out of range for positive control for the ALK reaction	Repeat the entire PCR run.		
c)	HEX CT out of range for the ABL1 control reaction	Repeat the entire PCR run.		
d)	Fluorescence data in positive control (Green channel) cannot be interpreted	Repeat the entire PCR run.		

Possible problem or cause

Corrective action

NTC samples show positive results in the FAM and/or HEX channel

 a) Contamination occurred during preparation of the PCR Repeat the PCR with new reagents in replicates.

If possible, close the PCR tubes directly after addition of the sample to be tested. Make sure that work space and platforms

are decontaminated at regular intervals.

Be sure to use sterile pipet tips with aerosol barriers.

Invalid sample

- a) Fluorescence data in sample control (Yellow channel) cannot be interpreted
- ABL1 HEX C_T too low in sample control (Yellow channel) reaction
- c) ABL1 HEX C_T too high in sample control (Yellow channel) reaction

Set up a new PCR run to repeat the relevant sample(s).

Dilute sample to increase control C_T value. The dilution should be calculated on the assumption that diluting 1:1 with the water supplied in the kit will increase the C_T by 1.0. Once the sample is diluted, set up a new PCR run to repeat the sample.

Set up a new PCR run to repeat the sample. If the sample is invalid again, repeat the PCR run, extracting the sample from a fresh FFPE section(s). If still invalid, repeat this second extraction. If the sample does not give a valid result after this run, the sample is given a quantity not sufficient status and no further testing should be carried out.

Quality Control

In accordance with QIAGEN's ISO-certified Quality Management System, each lot of ALK RGQ RT-PCR Kit is tested against predetermined specifications to ensure consistent product quality.

Limitations

Development studies were performed using human RNA extracted from FFPE sample as appropriate for the individual studies.

The product has been developed using the RNeasy FFPE Kit from QIAGEN.

References

Camidge, D.R. et al. (2013) Native and rearranged ALK copy number and rearranged cell count in non-small cell lung cancer: Implications for ALK inhibitor therapy. Cancer. **119**, 3968.

Camidge, D.R., and Doebele R.C. (2012) Treating ALK-positive lung cancer-early successes and future challenges. Nat Rev Clin Oncol. **9**, 268.

Camidge, D.R. et al. (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. **13**, 1011.

Camidge, D.R. et al. (2012) Correlations between the percentage of tumor cells showing an anaplastic lymphoma kinase (ALK) gene rearrangement, ALK signal copy number, and response to crizotinib therapy in ALK fluorescence in situ hybridization-positive nonsmall cell lung cancer. Cancer **118**, 4486.

Camidge, D.R. et al. (2010) Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. **16**, 5581.

Choi, Y.L. et al. (2008) Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. **68**, 4971.

Gainor, J.F., et al. (2013) ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. **19**, 4273.

Kwak, E.L. et al. (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. **363**, 1693.

Lazzari, C. et al. (2014) Targeting ALK in patients with advanced non small cell lung cancer: Biology, diagnostic and therapeutic options. Crit Rev in Oncol Hematol. **89**, 358.

Li, C. et al. (2011) Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One. **6**, e28204.

Li, R., and Morris, S.W. (2008) Development of anaplastic lymphoma kinase (ALK) smallmolecule inhibitors for cancer therapy. Med Res Rev. **28**, 372.

Mano, H. (2008) Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. **99**, 2349.

Morris, S.W. et al. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science **263**, 1281.

Shaw, A.T. et al. (2009) Clinical Features and Outcome of Patients with Non-small-cell Lung Cancer Who Harbor EML4-ALK. J Clin Oncol. **27**, 4247.

Pao, W., and Girard, N. (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol. **12**, 175.

Peters, S., Taron, M., Bubendorf, L., Blackhall, F., and Stahel, R. (2013) Treatment and detection of ALK-rearranged NSCLC. Lung Cancer **81**, 145. Paik, J.H. et al. (2011)

Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in nonsmall cell lung cancer: correlation with fluorescence in situ hybridization. J Thorac Oncol. **6**, 466.

Shaw, A.T., and Engelman, J.A. (2013) ALK in lung cancer: past, present, and future. J Clin Oncol. **31**, 1105.

Solomon, B., Wilner, K.D., and Shaw, A.T. (2014) Current status of targeted therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Clin Pharmacol Ther. **95**, 15.

Soda, M. et al. (2007) Identification of the transforming EML4-ALK fusion gene in non-smallcell lung cancer. Nature **448**, 561.

Rikova, K. et al. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell **131**, 1190.

Webb, T.R. et al. (2009) Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. **9**, 331.

Wang, R. et al. (2012) The use of quantitative real-time reverse transcriptase PCR for 5' and 3' portions of ALK transcripts to detect ALK rearrangements in lung cancers. Clin Cancer Res. **18**, 4725.

Weickhardt, A.J. et al. (2013) Diagnostic assays for identification of anaplastic lymphoma kinase-positive non-small cell lung cancer. Cancer **119**, 1467.

Wong, D.W. et al. (2011) A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer **117**, 2709.

Symbols

The symbols in the following table are used in these instructions for use.

Symbol	Symbol definition
<u> </u>	Contains reagents sufficient for <24> reactions
CONTROL +	Positive Control
_	
\geq	Use by
REF	Catalog number
LOT	Lot number
CONT	Contains
NUM	Number

Symbol Symbol definition

Global Trade Item Number

Manufacturer

Temperature limitation

i

Consult instructions for use

Keep away from sunlight

Contact Information

For technical assistance and more information, please see our Technical Support Center at **www.qiagen.com/Support**, call 00800-22-44-6000, or contact one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit **www.qiagen.com**).

Ordering Information

Product	Contents	Cat. no.
ALK RGQ RT-PCR Kit (24)	For 24 reactions: one tube of OneStep Enzyme Mix, one tube of ALK/ABL1 Reaction Mix, Positive Control, RNase/DNase-free Water for NTC and RNase/DNase-free Water for Sample Dilution	870501
Rotor-Gene Q and other accessories		
Rotor-Gene Q 5plex HRM System	Real-time PCR cycler and High Resolution Melt analyzer with 5 channels (Green, Yellow, Orange, Red, Crimson) plus HRM channel, laptop computer, software, accessories, 1-year warranty on parts and labor, installation and training included	9001650
Rotor-Gene Q 5plex HRM Platform	Real-time PCR cycler and High Resolution Melt analyzer with 5 channels (Green, Yellow, Orange, Red, Crimson) plus HRM channel, laptop computer, software, accessories, 1-year warranty on parts and labor, installation and training not included	9001580
Loading Block 72 x 0.1ml Tubes	Aluminum block for manual reaction setup with a single-channel pipet in 72 x 0.1 ml tubes	9018901

Product	Contents	Cat. no.
Strip Tubes and Caps, 0.1ml (250)	250 strips of 4 tubes and caps for 1000 reactions	981103
Strip Tubes and Caps, 0.1ml (2500)	10 x 250 strips of 4 tubes and caps for 10,000 reactions	981106
RNeasy FFPE Kit	50 RNeasy MinElute® Spin Columns, Collection Tubes, Proteinase K, RNase- Free DNase I, DNase Booster Buffer, RNase-Free Buffers, RNase-Free Water	73504

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This product is intended to be used for life science research only. It is not intended for diagnostic use. QIAGEN products may not be resold, modified for resale or used to manufacture commercial products without written approval of QIAGEN.

Information in this document is subject to change without notice. QIAGEN assumes no responsibility for any errors that may appear in this document. This document is believed to be complete and accurate at the time of publication. In no event shall QIAGEN be liable for incidental, special, multiple, or consequential damages in connection with, or arising from the use of this document.

QIAGEN products are warranted to meet their stated specifications. QIAGEN's sole obligation and the customer's sole remedy are limited to replacement of products free of charge in the event products fail to perform as warranted.

Trademarks: QIAGEN®, MinElute®, RNeasy®, Rotor-Gene®, Scorpions®, (QIAGEN Group); FAM™, HEX™ (Life Technologies, Inc.).

Limited License Agreement for ALK RGQ RT-PCR Kit

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

The product may be used solely in accordance with the protocols provided with the product and this handbook and for use with components contained in the kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this handbook, and additional protocols available at <u>www.giagen.com</u>. Some of these additional protocols have been provided by QIAGEN users for QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.

Other than expressly stated licenses, QIAGEN makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.

This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.

QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.

The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

For updated license terms, see www.qiagen.com.

HB-1768-004 1100297 01/2016

© 2014-2016 QIAGEN, all rights reserved.

Ordering www.qiagen.com/contact | Technical Support support.qiagen.com | Website www.qiagen.com