

QIAcard[®] FTA[®] Elute Buffer

Simplified elution in less than 40 minutes from proven nucleic acid storage

Improve recovery of nucleic acids from QIAcard FTA Elute formats with QIAcard FTA Elute Buffer

QIAcard FTA Elute formats allow for compact sample preservation and transport at room temperature

Indicating FTA card format includes a purple dye that turns white when a colorless sample, e.g., buccal cells or saliva, is applied

Low PCR inhibitor concentration enables the detection of pathogens or GMPs

Achieve rapid elution of nucleic acids from purified DNA in 30 minutes and from blood or saliva in less than 40 minutes

FTA (Flinders Technology Associates) is a chemically coated cellulose matrix, capable of lysing cells upon contact and denaturing proteins. Elute card formats are designed for room temperature shipment, preservation and subsequent elution of released nucleic acids from biological samples. Sample material such as cells, bacteria and blood are lysed upon contact with the cards.

۶۶ ____ "Full STR profiles were obtained with no signs of degradation or inhibition from DNA stored on QIAcard FTA Elute formats."*

Dr. Rachel Houston, Department of Forensic Science, Sam Houston State University

Recommended elution volume for different numbers of 3 mm card punches

QIAcard FTA Elute Buffer	Proteinase K	Minimum no. of punches
≥50 µl	4 µl	1
≥75 µl	5 µl	2
≥100 µl	6 µl	3
≥125 µl	7 µl	4

*Applied DNA was previously extracted from buccal cells using the EZ1® DNA Investigator Kit with the Extraction Trace Protocol. DNA concentration was 0.87-2.16 ng/ul and elution was performed using the QIAcard FTA Elute Buffer.

Card Specifications

	QIAcard FTA Elute Indicating Micro	13	QIAcard FTA Elute Micro
Cat. no. (Pack size)	WB120412 (25 Cards) WB120411 (100 Cards)	Cat. no. (Pack size)	WB120401 (25 Cards) WB120410 (100 Cards)
Sample material	Tissue/cells Clear biological fluids DNA/RNA	Sample material	Tissue/cells Colored biological fluids DNA/RNA
Spots / Max. Sample volume	1 Spot / 125 µl	Spots / Max. Sample volume	4 Spot / 12-40 µl

Improved DNA recovery and reduction of degradation

Recovery of sample material compared with competitor product Different sample material such as blood, saliva and purified human gDNA were applied to QIAcard FTA Elute formats and accelerated aging studies showed significant differences in comparison to the competitor product. Full STR profiles were obtained from DNA stored on QIAcard FTA Elute formats for all sample materials (data not shown).

QIAcard FTA Elute Buffer improves performance and reduces degradation

Intact human gDNA was applied to QIAcard FTA Indicating Micro formats and stored for a specific duration of either 2 weeks or 1 year. Punches (6 mm) were processed according to the elution protocol using TE⁻⁴ Buffer, or were processed using QIAcard FTA Elute Buffer.

Subsequent qPCR analysis (with the Investigator[®] Quantiplex[®] Pro Kit) showed significant higher DNA yield (blue bars) using the new buffer protocol. Moreover, the new buffer improved the degradation ratio (red squares) of eluted DNA in comparison to the method using TE⁻⁴ Buffer. The degradation ratio gives information about the integrity of DNA, using a short autosomal product that is robust against DNA degradation and a longer autosomal amplification product that is more susceptible to DNA degradation. The ratio of both shows the degradation status of the DNA (1 = 100% intact).

Ordering Information

Product	Pack size	Cat. no.
QIAcard FTA Elute Buffer	40ml bottle	WB120100
QIAcard FTA Elute Micro	25 Cards	WB120401
QIAcard FTA Elute Micro	100 Cards	WB120410
QIAcard FTA Elute Indicating Micro	25 Cards	WB120412
QIAcard FTA Elute Indicating Micro	100 Cards	WB120411
QIAshredder	250	79656
QIAGEN Proteinase K	2 ml	19131
Indicating Desiccant Pack	1000 x 1g	WB100003
Multi Barrier Pouches 3.75" x 3"	100 pouches	WB100036
Cutting Mat (2.5" x 3.0")	1	WB100088
Cutting Mat (6" x 8")	1	WB100020
UniCore Punches 1.00/1.20/2.00 mm	25 pieces	WB100073/WB100074/WB100076
UniCore Punch Kit 3.00/6.00 mm	4 (incl. 2 cutting mats)	WB100039/WB100040

References for QIAcard FTA Elute formats

- 1. Grecca Pedrão et al. (2021) DNA recovery using ethanol-based liquid medium from FTA card-stored samples for HPV detection. Acta Cytol. DOI: 10.1159/000515913
- Riina Aarnio et al. (2021) Comparison of vaginal self-sampling and cervical sampling by medical professionals for the detection of HPV and CIN2+: A randomized study. Int. J. Cancer DOI: 10.1002/ijc.33482
- 3. Elodie Pepey et al. (2021) Application of FTA elute card coupled with visual colorimetric loop-mediated isothermal amplification for the rapid diagnosis of Streptococcus agalactiae in farmed tilapia (Oreochromis niloticus)" J. Fish Dis. DOI: 10.1111/jfd.13337
- Camille Williams et al. (2020) Prevalence and diversity of enteric pathogens among cholera treatment centre patients with acute diarrhea in Uvira, Democratic Republic of Congo. BMC Infect. Dis. DOI: 10.1186/s12879-020-05454-0
- 5. Malin Berggrund et al. (2020) Temporal changes in the vaginal microbiota in self-samples and its association with persistent HPV16 infection and CIN2+. Virol. J. DOI: 10.1186/s12985-020-01420-z
- 6. Fernanda Mogollón Olivares et al. (2020) Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. Am. J. Phys. Anthropol. DOI: 10.1002/ajpa.24130
- 7. Yingmin Zeng et al. (2020) Uracil-DNA-glycosylase-assisted loop-mediated isothermal amplification for detection of bacteria from urine samples with reduced contamination. Analyst DOI: 10.1039/d0an01001d
- 8. Mona S. Mahmoud et al. (2020) Identification and antigenicity of the Babesia caballi spherical body protein 4 (SBP4). Parasit. Vectors DOI: 10.1186/s13071-020-04241-9
- 9. A.Kaiglova et al. (2020) Urinary schistosomosis in patients of rural medical health centers in Kwale county, Kenya. Helminthologia DOI: 10.2478/helm-2020-0001
- 10. UM Raja et al. (2020) Identification of a rare tri-allelic inheritance at the D8S1179 locus in a case of paternity testing. Meta Gene DOI: 10.1016/j.mgene.2020.100658
- 11. BR Santos et al. (2019) Prevalence of vitamin D deficiency in women from southern Brazil and association with vitamin D-binding protein levels and GC-DBP gene polymorphisms. PloS One DOI: 10.1371/journal.pone.0226215
- 12. M Hashimoto et al. (2019) Nucleic acid purification from dried blood spot on FTA Elute Card provides template for polymerase chain reaction for highly sensitive Plasmodium detection. Parasitol. Int. DOI: 10.1016/j.parint.2019.101941
- 13. Cassandra Miller-Butterworth et al. (2019) Detailed characterization of repeat motifs of nine canid microsatellite loci in African painted dogs (Lycaon pictus). Mammal Research DOI: 10.1007/s13364-019-00442-5
- 14. Bryan Grabias et al. (2019) Sensitive real-time PCR detection of Plasmodium falciparum parasites in whole blood by erythrocyte membrane protein 1 gene amplification. Malaria J. DOI: 10.1186/s12936-019-2743-9
- 15. Stephen G. Lipic et al. (2018) A novel FTA elute card collection method that improves direct DNA amplification from bloodstained concrete. Sci. Justice DOI: 10.1016/j.scijus.2018.03.008

Trademarks: QIAGEN[®], Sample to Insight[®], QIAcard[®], Quantiplex[®], EZ1[®], FTA[®], Investigator[®] (QIAGEN Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-20791-001 1127829 © 2022 QIAGEN, all rights reserved.

Ordering www.qiagen.com/shop | Technical Support www.support.qiagen.com | Website www.qiagen.com