March 2016

Quick-Start Protocol Investigator[®] DIPplex Kit

All components of the Investigator DIPplex Kit should be stored at -30 to -15° C. Avoid repeated thawing and freezing. The Primer Mix, allelic ladder and DNA size standard must be stored protected from the light. DNA samples and post-PCR reagents (allelic ladder and DNA size standard) should be stored separately from the PCR reagents. Under these conditions, the components are stable until the expiration date indicated on the kit.

Further information

- Investigator DIPplex Handbook: www.qiagen.com/HB-0312
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.giagen.com

Notes before starting

- Set up all reaction mixtures in an area separate from that used for DNA isolation and PCR product analysis (post-PCR).
- Use disposable tips containing hydrophobic filters to minimize cross-contamination risks.
- Before opening the tubes with PCR components, vortex and then centrifuge briefly to collect contents at the bottom of the tubes.
- The optimal amount of DNA under standard conditions is 0.2–0.5 ng. Internal validations demonstrated reliable results with <0.1 ng DNA.

Protocol

- 1. Thaw PCR components and template nucleic acid.
- 2. Prepare a master mix according to Table 1.

Prepare a volume of master mix 10% greater than that required for the total number of PCR assays to be performed. This should include positive and negative control reactions.

- 3. Mix the master mix thoroughly and dispense the appropriate volumes into PCR tubes or the wells of a PCR plate.
- 4. Add template DNA and nuclease-free water to the master mix, to give a final sample volume of 25 µl.
- 5. Prepare positive and negative controls.

Positive control: Use 5 µl of Control DNA 9948.

Negative control: Use nuclease-free water instead of template DNA.

6. Program the thermal cycler according to the manufacturer's instructions, using the conditions outlined in Table 2.

Note: If using the GeneAmp[®] 9700 thermal cycler with an Aluminum block, use **Std** Mode. With a Silver block or Gold-plated Silver block, use Max Mode. Do not use 9600 Emulation Mode.

Table 1. Reaction setup

Component	Volume per reaction
Reaction Mix A	5 µl
Primer Mix DIPplex	5 µl
MultiTaq2 DNA Polymerase	0.6 µl
Nuclease-free water (added in step 4)	Variable
Template DNA (added in step 4)	Variable
Total volume	25 µl

Table 2. Standard cycling protocol

Temperature	Time	Number of cycles
94°C	4 min	-
94°C	30 s	
61°C	120 s	30 cycles
72°C	75 s	
68°C	60 min	-
10°C	œ	_

7. After the cycling protocol is completed, store samples at -20°C protected from the light, or proceed directly with running the electrophoresis.

Sample preparation for capillary electrophoresis

Before conducting DNA fragment size analysis, it is necessary to perform a spectral calibration with the five fluorescent labels: 6-FAMTM, BTG, BTY, BTR and BTO for each analyzer. The calibration procedure creates a matrix that is used to correct for the overlapping of the dye fluorescence-emission spectra. Detailed protocols for commonly used Applied Biosystems[®] Genetic Analyzers are available in the *Investigator DIPplex Kit* Handbook, which can be found at **www.qiagen.com/HB-0312**.

Protocol

1. Set up a mixture of formamide and DNA size standard according to Table 3.

Table 3. Setup of formamide and DNA size standard mixture

Volume per sample
12.0 µl
0.5 µl

- 2. Aliquot 12 µl of the mixture to a tube for each sample to be analyzed.
- 3. Add 1 µl PCR product or allelic ladder (diluted, if necessary).
- 4. Denature for 3 min at 95°C.
- 5. Snap freeze by placing the plate on ice for 3 min.

Alternatively, the thermal cycler set to 4°C may be used to cool the plate.

6. Load the samples on the Genetic Analyzer tray and start the run.

Please check the *Investigator DIPplex Kit Handbook* for detailed information on the run module settings (e.g., injection time, injection voltage and run time).

7. After the run is finished, data can be analyzed using suitable software, like ABI GeneMapper[®] ID or QIAGEN[®] IDproof and IDproof Mixture. For more information, refer to the *Investigator DIPplex Kit handbook* and corresponding software user guides.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, Sample to Insight®, Investigator® (QIAGEN Group); Applied Biosystems®, FAM™, GeneAmp®, GeneMapper®, Hi-Di™ (Life Technologies Corporation). 1101248 03/2016 HB-2113-001 © 2016 QIAGEN, all rights reserved.