February 2018

Rotor-Gene AssayManager v1.0 UDT Basic Plug-in User Manual

R3

^

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, Germany

Sample to Insight

Contents

1 UDT Basic Plug-in User Manual
1.1 Safety Information1-2
1.2 Introduction1-2
1.2.1 Provided User Manuals1-2
1.2.2 About this User Manual1-3
1.2.3 General Information1-3
1.2.4 Getting Help1-3
1.3 UDT Basic Plug-in Specific Tasks and Procedures1-6
1.3.1 Approving Samples1-6
Reviewing Assay Data1-6
Calculating Sample Concentration1-8
General Information about Approving Samples1-11
Concept of Approval Buttons in UDT Plug-in1-15
Target Results1-23
Target Results
Target Results 1-23 Sample Flags 1-24 1.3.2 Development Environment 1-28
Target Results 1-23 Sample Flags 1-24 1.3.2 Development Environment 1-28 General Work Flow Assay Profile Development 1-28
Target Results 1-23 Sample Flags 1-24 1.3.2 Development Environment 1-28 General Work Flow Assay Profile Development 1-28 General GUI Description 1-30
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-92
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-921.4 Hint for Online Documentation1-95
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-921.4 Hint for Online Documentation1-951.4.1 Help for Plots and Information Table1-95
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-921.4 Hint for Online Documentation1-951.4.1 Help for Plots and Information Table1-96
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-921.4 Hint for Online Documentation1-951.4.1 Help for Plots and Information Table1-951.4.2 Help for Result Table1-961.4.3 Core Analysis1-96
Target Results1-23Sample Flags1-241.3.2 Development Environment1-28General Work Flow Assay Profile Development1-28General GUI Description1-30Using the Development Environment1-34Report Profiles for UDT Assays1-921.4 Hint for Online Documentation1-951.4.1 Help for Plots and Information Table1-961.4.2 Help for Result Table1-961.4.3 Core Analysis1-97

Rotor-Gene AssayManager v1.0 UDT Basic Plug-in User Manual

1 UDT Basic Plug-in User Manual

Welcome to the Rotor-Gene AssayManager v1.0 UDT Basic Plug-in User Manual.

1.1 Safety Information

User-friendly Rotor-Gene AssayManager[™] v1.0 has been specifically developed for use with up to four different Rotor-Gene[®] Q instruments. Before using Rotor-Gene AssayManager v1.0, it is essential that you read this user manual carefully and pay particular attention to the safety information. The instructions and safety information in the user manual must be followed to ensure safe operation of the cycler and to maintain the instrument in a safe condition.

The Rotor-Gene AssayManager v1.0 user manual does not provide detailed information about the Rotor-Gene Q instrument and hardware maintenance. The Rotor-Gene AssayManager v1.0 user manual only describes the functionality of the Rotor-Gene AssayManager v1.0 software in combination with Rotor-Gene instruments.

Note: The terms "Rotor-Gene Q" and "Rotor-Gene Q instrument", used in this manual, apply to all Rotor-Gene Q and Rotor-Gene Q MDx instruments (not available in all countries) unless otherwise specified.

1.2 Introduction

Thank you for choosing Rotor-Gene AssayManager v1.0. We are confident it will become an integral part of your laboratory.

Rotor-Gene AssayManager v1.0 is a software for routine testing in combination with Rotor-Gene Q instruments. Rotor-Gene AssayManager v1.0 is able to read in sample information, set up experiments, control up to four different Rotor-Gene Q cyclers, acquire data from these instruments, automatically analyze results, and create reports.

Rotor-Gene AssayManager v1.0 consists of different components working together. The core application is complemented by different plug-ins that contain assay type specific analysis and visualization of the results. The core application is mandatory for working with Rotor-Gene AssayManager v1.0. Optionally additional plug-ins can be installed. At least one plug-in must be installed. Not all plug-ins may be available in all countries. Refer to www.qiagen.com/Products/Rotor-GeneAssayManager.aspx to discover our continuously expanding range of plug-ins.

1.2.1 Provided User Manuals

The core application and every available plug-in have their own user manuals with specific information about the functionality of the different Rotor-Gene AssayManager v1.0 components. The user manuals provide a context-sensitive help that can be started by simply pressing the "F1" key.

When installing additional plug-ins, the corresponding user manuals are automatically added to the existing help system. Alternatively the different user manuals can be accessed, read, and printed as *.pdf files.

Rotor-Gene AssayManager v1.0
Core Application user manual

- Provides a description of the software.
- Describes functions that are the same for the core application and all different plug-ins.
- Provides information about troubleshooting.

Rotor-Gene AssayManager v1.0 plug-in user manuals

- Provide details on
- how to use the assay type specific plug-ins
- their functionalities.

1.2.2 About this User Manual

This user manual provides information about Rotor-Gene AssayManager v1.0 UDT Basic Plug-in, version 1.0.x (where $x \ge 6$) in the following sections:

- 1. Introduction
- 2. UDT specific tasks and procedures

1.2.3 General Information

Policy Statement

It is the policy of QIAGEN to improve products as new techniques and components become available. QIAGEN reserves the right to change specifications at any time. In an effort to produce useful and appropriate documentation, we appreciate your comments on this user manual. Please contact QIAGEN Technical Services.

Version Management

This document is the Rotor-Gene AssayManager v 1.0 UDT Basic Plug-in User Manual, which provides information about the UDT Basic Plug-in, version 1.0.x (where $x \ge 6$).

1.2.4 Getting Help

Rotor-Gene AssayManager v1.0 comes with a detailed help system. The help is provided as *.pdf file and as *.chm file (compiled help file). The following image shows the help page corresponding to the login screen as an example:

Rotor-Gene AssayManager v1.0 has a context-sensitive help system. After pressing the "F1" key in dialog boxes, a context-sensitive help page is shown. Using Rotor-Gene AssayManager v1.0 Help

The help file contains two functional areas:

- Tool bar
- Tabs

The tool bar contains the following buttons:

Name	lcon	Description	
"Hide" or "Show"	원들 Hide	Hides the left-hand sid the navigation tab aga appears instead of "H	de navigation tab. To display ain, click "Show". This button ide".
"Back"	↓ Back	Returns to the previou	us screen.
"Forward"	⇒ Forward	Returns to the screer "Back" button.	a displayed before using the
"Print"	Print	The user has the cho 1) Print the selected t 2) Print the selected t Select one option and "Cancel" to go back.	ice: opic. neading and all subtopics. l confirm with "OK" or select
"Options"	Options	Opens the options me	enu with the following entries:
		Hide Tabs Back Forward Home Stop Refresh Internet Options Print Search Highlight Off	

The navigation tab contains the following tabs:

Name	Description
"Contents"	In the "Contents" tab the help content can be browsed by topics.
"Search"	Specific help topics can be found by entering search terms.
"Favorites"	Shortcuts to individual help topics can be added and managed.

1.3 UDT Basic Plug-in Specific Tasks and Procedures

Tasks and procedures specific for the UDT Basic Plug-in are described in this chapter. For a general description refer to the Rotor-Gene AssayManager v1.0 Core Application User Manual.

1.3.1 Approving Samples

The general functionality of the "Approval" environment is described in the core application user manual. Here only the functionality dedicated to the UDT Basic Plug-in is described.

1.3.1.1 Reviewing Assay Data

Step-by-step procedure to review data of a specific assay After starting the approval process, a screen is opened, split in two main areas: "Plots and information" and "Results". If multiple assays were selected, all the selected assays will be listed in the tab list.

Depending on the assay type, experiment information can be reviewed in six different sub tabs:

- "Raw data"
- "Processed data"
- "Standard curve"
- "Experiment"
- "Assay"
- "Audit trail"

By default the "Experiment" sub tab is opened upon starting the approval process.

Step-by-step procedure to review the amplification plots using the "Raw data" and the "Processed data" sub tab

- 1. To display only the amplification curves of specific samples:
 - a) By default all samples of an assay are selected. Click the "Column select" icon in the header of the results table to deselect all samples.

	(💎 Re	esult	ts							
		Pos.	~		Style	Sample ID	Status	Туре	Targets	Ct	Result
Column		7	~		—	Sample 1		Test	Target1	26,67	Signal detected
select icon	Þ	2	✓		—	Sample 2		Test	Target1	26,64	Signal detected
	Þ		~		—	Sample 3		Test	Target1	26,68	Signal detected
	Þ	4	✓		—	Sample 4		Test	Target1	26,77	Signal detected
	Þ	5	~		—	Sample 5		Test	Target1	27,50	Signal detected
	Þ	6				Sample 6		Test	Target1	26,77	Signal detected
		Sam	ple	sel	ector						- -

- b) Click the "Sample selector" check box of the samples whose amplification curve should be displayed.
- 2. Select the target from the "Target" drop-down menu.

3. Review the individual amplification curves.

Scientific Format View

Options to display results in scientific format (A) and to choose the concentration unit in the report overview table (B) are available. If the check box is activated (A), all concentrations in the report are displayed in scientific format.

Con man	firm that all curves have been checked mully for anomalies
Crea	ate report
🖌 Use	scientific format
Report p	profile
Comp	blete Report Content
Defaul Defaul IU/µl copies copies mg/ml	eported with unit It unit ▼ t unit /reaction /µI
⚠	checked for anomalies. (570190)
(i)	After release, the approval state of data

1.3.1.2 Calculating Sample Concentration

Preconditions

For quantitative assays, Rotor-Gene AssayManager v1.0 displays the concentration in the eluate and in the original sample, based on information given in the assay profile. If the following apply, it is possible to define sample input volume and elution volume in the "Approval" environment:

- The assay is quantitative
- In the assay profile, an Assay Parameter Set is defined, but the sample transfer and initial elution volume are not defined > Creating an Assay Profile
- The work list for the run was generated by importing a QIAsymphony AS result file from an independant QIAsymphony AS run.

Only if these preconditions apply is it possible to provide the information about sample input and initial elution volume in the "Approval" environment. Using this information, Rotor-Gene Assay manager can convert the concentration from the eluate to the concentration in the sample.

Step-by-step procedure to define the sample input and initial elution volume

1. If available for the experiment, a field "Conc. factor" (A) and a button "Define.." (B) are shown below the results table.

Note

No concentration at the sample level is displayed until the concentration factor is defined.

Note

The release button is disabled until the concentration factor is defined.

2. Click "Define..". A dialog box opens that enables the concentration factor to be defined.

Define concentration factor	
	Messages
A Define sample transfer and initial elution volume	Enter a value for the sample transfer volume. (570277)
Sample transfer volume Initial elution volume $B \qquad \mu l \qquad C \rightarrow \mu l$	Enter a value for the initial elution volume. (570275)
Calculated concentration factor	
	E OK Cancel

To define a concentration factor

- a) Activate the check box "Define sample transfer and initial elution volume" (A).
- b) Enter the sample transfer volume (B).
- c) Enter the initial elution volume (C).
- d) The calculated concentration factor will be displayed (D).
- e) Click "OK" (E).

If no concentration factors are to be defined

- a) Deactivate the check box "Define sample transfer and initial elution volume" (A).
- b) Click "OK" (E). No concentration at the sample level will be displayed.
- 3. After the concentration factor has been defined, the following will happen.

		San	nple	8													A
		Pos.	\checkmark		Style	Sample ID	Status	Туре	Targets	Ct	Result	Flags	Sample comment	B	DX .		0.00
1		1	.⊡		—	D1		Test	Test	13.36	6,544,914.22 IU/µI	-		0	0	\odot	
	1								IC	31.42	Signal detected	-					ЧI.
1		2	.⊡		—	D1		Test	Test	13.40	6,379,977.20 IU/µI			0	0	0	
1	1								IC	34.21	Signal detected						
		3	⊡`			D1		Test	Test	13.60	5,499,024.44 IU/µI	-		0	0	\odot	
	ľ								IC	34.33	Signal detected	•					γШ
	-		- •	-										~	~	~	-111
		Conc.	in 🛛	Sam	nple 🔻	Conc. unit IU/µI		V	Show IC	🗌 Ignore ir	valid controls 🛛 🔲 Use scienti	ific format Assay comm	ent				
	L	_ 6	3														
Į		Cr	eate	supp	port pac	kage			Save and	i close	Reset	ve Close	D Releas	se / rej	port dal	ð	
L				ŵ	User D	efined Test Mode							September 28, 2017	Gina	a Doe	⊣	- III

- If "Conc. in sample" (B), is chosen, a quantitative result is displayed (A).
- The concentration factor is displayed (C).
- The button "Release/ report data..." (D) is enabled.
- The defined concentration factor will be noted in the report

1.3.1.3 General Information about Approving Samples

The results of all samples determined by Rotor-Gene AssayManager v1.0 must be approved (accepted or rejected) in the "Results" area of the "Approval" screen.

	CAACEN Setup Approval	XT Service Con	Ç^C B Iguration Develop	> ment			Atlanta	Berlin Chicago	Dortmund	
	Analyzed UDT experime APT_1P_ValidCheck									×
	Plots and information									٦
	Raw data Processed data Standard cur	ve Experiment	Assay A	udit Trail						
	Run comment	Run operator		External ord	der ID	Messages				
		fdoe Run released by		Work list so	urce Work list read-only					
					No					
	Experiment name Analyzed UDT experiment 1	Reaction volume 50 ul	Rotor type 72-Well Rotor	Created from	m worklist					
	Run start End of run	Run on SW version	Cycler Serial No.	Work list las	st changed by	Work list created on Work list last changed or				
	18/12/2011 19:00:00 19/12/2011 05:00:12		0409102			30/12/2011 06:00:00 30/12/2011 06:00:00]			
	💌 Results									٦
	Standards / controls									
	Pos. 🗹 Style Sample ID	Status Type	Targets	Ct Ret	sult F	lags	Sample comment	1	8 DK D	9
Recults	, 41 🗹 🖬 QS1	QS	Test	20.16 Sk	gnal detected -				0 0 0	
Nesures_			Tot	24.76 56	gnal detected .					
area	, 42 🗹 🖬 — US1	us	IC	24.66 Sk	onal detected -					
	43 🔽 🖬 — 052	QS	Test	23.17 Sk	anal detected				0 0 0	
	,		IC	25.16 Sk	gnal detected -					ų,
	Conc. in Sample V Conc. unit Default unit	T Show I	C Ignore invali	id controls	Use scientific format A	ssay comment				
L	Create support package					Save and close Reset Save	Close	Release	/ report data	
	i User Defined Test Mode			_				Sentember 5, 2017	Gina Doe	→ 13

The "Results" table consists of two tables:

- "Standards / controls"
- "Samples"

Behavior of the "Results" table

Initially, the approval buttons in the "Samples" table are disabled — only the approval buttons in the "Standards / controls" table are enabled. The external controls must be approved first. After all external controls have been approved, the approval buttons in the "Samples" table are enabled.

The results area contains the "Results" table with the following detailed information about the individual samples.

- "Position"
- "Color"
- "Style"
- "Sample ID"
- "Status"
- "Type"
- "Target"
- "C_T"
- "Result"
- "Flags"
- "Sample comment"

Sample results to be approved have three additional approval buttons at the dedicated row end. These buttons are used to interactively accept or reject the sample results. As a visual aid, the background color of the approval bar changes according to the approval state. Initially, all test samples of a finished experiment have the status "Undefined" and are displayed with a yellow background. An "Accepted" sample will change its background color to green. A "Rejected" sample changes its background color to red.

Background color	Status of test sample
• • •	Undefined
• 0 0	Accepted
0 0 0	Rejected

Step-by-step procedure to approve samples

1. In the "Results" table, scroll to the sample to be approved. Every sample result to be approved has three radio buttons at the dedicated row end.

	St	andar	ds	control	Is										
	Pos.			Style	Sample ID	Status	Type	Targets	Ct	Result	P	Ex	D		
•	1			—	Standard 1_1		QS	GPER	26,67	Signal detected	0	0	0	۶	
•	2			—	Standard 1_2		QS	GPER	26,64	Signal detected	0	0	•	Ш	
	3			—	Standard 1_3		QS	GPER	26,68	Signal detected	0	0	۲	IJ	Here approval buttons for
	4				Standard 1_4		QS	GPER	26,77	Signal detected	0	0	•	Ш	external contro
	5				Standard 2_1		QS	GPER	27,50	Signal detected	0	0	۲		
1	e				Standard 2-2		05	ODER	27.65	Signal detected	10	0	0-	•	

2. Either accept or reject the result of a sample.

Optional: Enter a comment in the "Sample comment" column.

3. Repeat steps 1 and 2 for every sample until all sample results have either been accepted or rejected. To approve several sample results at once highlight the

dedicated rows using the row selector . To highlight adjacent rows, click the first element's row selector, hold down the left mouse button, and move the cursor to last element to be highlighted using the mouse wheel. All rows in between are highlighted. Use the "Control" key to make multiple selections of non-adjacent rows. A right-click in the highlighted rows opens the context menu, which can be used to approve or reject all highlighted sample results at once.

Note

It is also possible to approve sample results only partly and approve the other sample results of an assay later. The button bar provides the following buttons to manage the approval process:

Save and close Reset Save	Close
То	Click
Save all changesChange to "Assay selection" screen	Save and close
 Cancel all changes Revert to the previous saved approval status; amplification plots and result table options are not reset 	Reset
 Save all changes and remain in this screen 	Save
 Discard all changes to its previous status Close this screen and change to "Assay selection" screen 	Close

1.3.1.4 Concept of Approval Buttons in UDT Plug-in

Approval of external controls

After clicking "Start Approval" in the assay selection screen the "Approval" screen will be displayed. In the UDT Basic Plug-in, only the rules and parameters defined in "Core Analysis" and "Assay & Sample Analysis" of the "Development" environment can be applied to the raw data. The automatic data scan (AUDAS) method cannot be applied for assay analysis. This means that the amplification curves of external controls, such as quantitation standards, no template controls, positive controls, etc., as well as the amplification curves of the test samples cannot automatically be checked for anomalies by Rotor-Gene AssayManager v1.0.

In the UDT Basic Plug-in, the results of all external controls have to be approved before the results of the test samples. Thus, only the approval buttons for external controls are activated at the beginning of the approval process. The approval buttons for the test samples will be activated as soon as all external controls are approved.

Note

During the approval process in UDT Mode, manually check the shape of the amplification curves for anomalies and reject the result for external controls with abnormal amplification curves.

The following list provides an overview about common anomalies the amplification curves should be checked for:

- Does the amplification curve contain spikes?
- Does the baseline fluorescence contain a strong dip?
- Is the baseline fluorescence abnormally steeply rising, indicating too strong a linear growth?
- Is the baseline fluorescence too wavy?
- Is the amplification curve saturated?
- Does the amplification curve contain any other anomalies?

If one or more of these conditions are fulfilled, the corresponding external control result should be rejected. Thereby, these external controls are excluded from the analysis of the test samples. Options to ignore invalid controls have been added as check boxes (\mathbf{A})

U K	esuits												
Sar	nples												4
Pos.	✓	Style	Sample ID	Status	Туре	Targets	Ct	Result	Flags	Sample comment	B	DX.	D
1	⊡`□	—	D1		Test	Test	13.36	6,544,914.22 IU/µI	-		0	0	0
*						IC	31.42	Signal detected	-				
2	⊡`□	-	D1		Test	Test	13.40	6,379,977.20 IU/µI			0	0	0
*						IC	34.21	Signal detected	-				
3	☑`■		D1		Test	Test	13.60	5,499,024.44 IU/µI	-		0	0	0
*						IC	34.33	Signal detected	-				
											1 0	~	~
Conc.	Conc. in Sample T Conc. unit IU/µI T Show IC Ignore invalid controls Use scientific format Assay comment												
Create support package Save and close Reset Save Close Release / report data													
	ń	User	Defined Test Mode							September 28, 2017	Gin	a Doe	÷

Note

Desults

Rejecting one or more external controls may result in the invalidity of the whole assay depending on the rules defined in the "Sample and Assay Analysis" section of the Development Environment.

For amplification curves without any of the mentioned anomalies, the approval buttons should be used to accept or reject the external control result presented by Rotor-Gene AssayManager v1.0. The following table provides an overview about different scenarios:

Rotor-Gene AssayManager v1.0 analysis	Approver accepts the external control result	Expected behavior of the approver
External control result is valid and displayed ("Signal detected", "No signal", or target concentration).	Yes	Click "Accepted".
External control result is invalid justified by at least one corresponding flag.	Yes	Click "Accepted".
External control result is valid and displayed ("Signal detected", "No signal", or target concentration).	No (e.g., the analysis rules defined during assay profile development are not strict enough and an invalid result is not automatically detected by Rotor- Gene AssayManager v1.0)	Click "Rejected".
External control result is invalid justified by at least one corresponding flag.	No (e.g., the result of a generally good- looking external control was set to invalid because of an analysis rule that was set too strict during assay profile development)	Click "Rejected".

Note

A result automatically set to invalid by Rotor-Gene AssayManager v1.0 cannot be converted to a valid result anymore even if the result is rejected.

For approval of quantitative assays, the standard curve is not displayed until all external controls were approved with either the status "Accepted" or "Rejected". After approval of all external controls, the standard curve and its dedicated parameters, such as the efficiency, are calculated and displayed in the "Standard curve" sub tab. Based on the standard curve the resulting target concentrations in the test samples are calculated and displayed in the sample results area.

Note

If a valid quantification standard is rejected, the standard curve will be re-calculated without the rejected quantification standrad. All samples will then be analyzed according to the re-calculated standard curve.

Approval of test sample results

After approval of the external controls, the results of the test samples are automatically analyzed and set by Rotor-Gene AssayManager v1.0. The results have to be approved and released by the user logged in with the role of approver.

Note

During the approval process with the UDT Basic Plug-in in UDT Mode, manually check the shape of the amplification curves for anomalies and reject the result for samples with abnormal amplification curves.

The following list provides an overview about common anomalies the amplification curves should be checked for:

- Does the amplification curve contain spikes?
- Does the baseline fluorescence contain a strong dip?
- Is the baseline fluorescence abnormally steeply rising, indicating too strong a linear growth?
- Is the baseline fluorescence too wavy?
- Is the amplification curve saturated?
- Does the amplification curve contain any other anomalies?

If one or more of these conditions are fulfilled, the corresponding test sample result should be rejected.

For amplification curves without any of the mentioned anomalies the approval buttons should be used to accept or reject the sample result presented by Rotor-Gene AssayManager v1.0. The following table provides an overview about different scenarios:

Rotor-Gene AssayManager v1.0 analysis	Approver accepts the test sample result	Expected behavior of the approver
Sample result is valid and displayed ("Signal detected", "No signal", or target concentration).	Yes	Click "Accepted".
Sample result is invalid justified by at least one corresponding flag.	Yes	Click "Accepted" and re-test the sample.
Sample result is valid and displayed ("Signal detected", "No signal", or target concentration).	No (e.g., the analysis rules defined during assay profile development are not strict enough and an invalid result is not automatically detected by Rotor- Gene AssayManager v1.0)	Click "Rejected" and re-test the sample.
Sample result is invalid justified by at least one corresponding flag.	No (e.g., the result of a generally good- looking test sample was set to invalid because of an analysis rule that was set too strict during assay profile development)	Click "Rejected" and re-test the sample.

Note

A result automatically set to invalid by Rotor-Gene AssayManager v1.0 cannot be converted to a valid result anymore even if the result is rejected.

Ignoring Invalid Controls

Rotor-Gene AssayManager v1.0 UDT Basic Plug-in software lets you ignore invalid controls in the "Approval" environment. To do this, click on the check box "Ignore invalid controls" (A), and sample results are not invalidated.

$\overline{\bullet}$	Results															
S	am	ple	8													
Pos	5.	✓		Style	Sample ID	Status	Туре	Targets	Ct	Result	Flags	Sample comment	P	DX .		
	1	☑`		—	D1		Test	Test	13.36	6,544,914.22 IU/µI			0	0	0	
•								IC	31.42	Signal detected	÷					1
	2	₽`			D1		Test	Test	13.40	6,379,977.20 IU/µI			0	0	0	
*								IC	34.21	Signal detected	-	-				
	3	☑`			D1		Test	Test	13.60	5,499,024.44 IU/µI			0	0	0	
•								IC	34.33	Signal detected	-					
		- •	-										-	0	~	
Con	Conc. in Sample V Conc. unit U/µ/ V Show IC Ignore invalid controls Use scientific format Assay comment															
	Create support package Save and close Reset Save Close Release / report data															
	tuser Defined Test Mode September 28, 2017 Gina Doe →															

When the check box is activated, the approver has to confirm the message in the 'ignore invalid controls' dialogue box

After the message is confirmed, valid results for test samples are reported. The report contains the sentence "Invalid controls were overruled by the approver to enforce assay validity"

Assay Information

Assay Profile:	APT_1P_ValidCheck_ignore_invalid_controls_UDT (Version 2.3.1)
Assay Kit:	Material number: 0937055 (deviating from assay profile), Lot number: 1234, Expiry date: 8/5/2015 (not expired)
Assay status:	Successful (Invalid controls were overruled by approver to enforce assay validity)

"Results" table options

Scientific format view

To display quantitative results, Rotor-Gene AssayManager v1.0 UDT Basic Plug-in software lets the user choose between scientific format and decimal format in the "Approval" environment and in the report. The approval screen contains a check box "Use scientific format" in the results area below the results table (A). If the check box is activated, the concentrations in the result column of the results report are displayed in scientific format (e.g., 222,732.63 IU/mI would be displayed as 2.23E+05 IU/mI).

		S	amples													
1		Pos	. 🗹	Style	Sample ID	Status	Type	Targets	Ct	Result	Flags	Sample comment	B	DX .	D	18
1	IF.		1 🗹 🕯	• —	D1		Test	Test	13.36	6,544,914.22 IU/µI	•	1	0	0	\odot	
1	Ľ							IC	31.42	Signal detected	-					×П
1			2 🗹 🕯	• —	D1		Test	Test	13.40	6,379,977.20 IU/µI	•		0	0	\odot	
I	Ľ							IC	34.21	Signal detected	-					
	IF.		3 🗹 🕯		D1		Test	Test	13.60	5,499,024.44 IU/µI	•	1	0	0	\odot	112
	Ľ	·						IC	34.33	Signal detected	•					÷Ш
	E		•	_									~	~	~	<u>- II</u>
1	Cone. in Sample V Conc. unit U/jul V Show IC Ignore invalid controls Use scientific format Assay comment															
	Creste support package Save and close Reset Save Close Release / report data															
ľ	m User Defined Test Mode September 28, 2017 Gina Doe → 🗍															

Columns in the "Test Results - Overview" report display the approval status for each sample and control (\blacksquare), the result in concentration unit and scientific format (\blacksquare) and if flags are assigned to a target (\bigcirc)

		Â	1		B I	C
ld	Color	Approval	Target	Ct	Result	Flags
D7		_ /	Virus	32.29	2.86E+01 IU/ml	
		V	IC	26.85	Signal detected	

All concentrations given in this table are concentrations in the eluate

- ! This target has flags
- √ Accepted
- x Rejected

1.3.1.5 Target Results

Rotor-Gene AssayManager v1.0 determines the result of a target by combining all relevant analysis results according to normalization options and sample and assay rules defined in the corresponding assay profile. The target result can either be "Signal detected", "No signal", the calculated target concentration combined with the selected unit, or "INVALID".

- The target gets the result "Signal detected" if a C_T value is detected and the assay is not quantitative. Even quantitative targets may get the result "Signal detected" in case the corresponding standard curve could not be calculated.
- 2. The target gets the result "No signal" if no C_{τ} value is detected.
- The target gets a concentration value as result if a C_τ value is detected, the assay is quantitative, and the target quantification was successful. The concentration is automatically calculated for the selected concentration unit.
- 4. The target result is set to "INVALID" if one or more sample flags are assigned to the sample during analysis by Rotor-Gene AssayManager v1.0 that are defined to set the target result to "INVALID". If the check box "Enable processing of unclear samples" in the configuration settings is deactivated, even results of samples with the upstream flag "Unclear" (e.g., flagged by QIAsymphony AS) are set to "INVALID".

1.3.1.6 Sample Flags

The following sample flags may be assigned to individual targets during analysis by Rotor-Gene AssayManager v1.0. This is a complete list of all flags that can occur when using the UDT Basic Plug-in. Depending on the settings in a specific assay profile not all flags may be relevant.

The appearance of flags in the Rotor-Gene AssayManager v1.0 is connected either with an invalidation of the corresponding target for a test sample, control, or standard, or the flag is only displayed as "warning" without consequences for the result. The column "behavior" below lists how the Rotor-Gene AssayManager v1.0 reacts to a certain flag. For the flag type "Variable", the behavior of the Rotor-Gene AssayManager v1.0 depends on the settings in the specific assay profile.

Flag	Behaviour	Description
ABOVE_UPPER_LOQ	Variable	The upper limit of quantification is exceeded. The target concentration is too high. Only a qualitative result is presented.
ASSAY_INVALID	Invalid	Assay is set to invalid because at least one external control is invalid.
BELOW_LOWER_LOQ	Variable	The lower limit of quantification is not reached. The target concentration is too low. Only a qualitative result is presented.
CONCENTRATION_ABOVE_ACCE PTED_RANGE	Variable	The target concentration is higher than the defined cut- off concentration.
CONCENTRATION_BELOW_ACC EPTED_RANGE	Variable	The target concentration is lower than the defined cut- off concentration.
CORRESPONDING_CONTROL_IN VALID	Invalid	Target is set to invalid because at least one corresponding external control is invalid.

CORRESPONDING_POSITIVE_CO NTROL_TARGET_INVALID	Invalid	The target result is set to invalid because the corresponding positive control is invalid.
CT_ABOVE_ACCEPTED_RANGE	Variable	The detected C_{T} value is higher than the defined cutoff C_{T} .
CT_BELOW_ACCEPTED_RANGE	Variable	The detected C_{T} value is lower than the defined cutoff C_{T} .
FLUORESCENCE_TOO_LOW	Variable	The fluorescence signal is lower than the defined fluorescence cut-off.
FLUORESCENCE_TOO_STRONG	Variable	The fluorescence signal is higher than the defined fluorescence cut-off.
IC_INVALID	Invalid	An internal control in the same tube is invalid.
IC_NO_SIGNAL	Invalid	No signal is detected for an internal control in the same tube.
INHIBITION_BY_CT	Variable	The defined maximum C_{T} range between the C_{T} for the internal control of that sample and the C_{T} for the internal control of the NTC is exceeded.
INHIBITION_BY_FLUORESCENCE	Variable	The defined maximum fluorescence difference between the internal control fluorescence of the NTC and the internal control fluorescence of that sample for the last cycle is exceeded.

LOW_FLUORESCENCE_CHANGE	Warning	The percentage fluorescence change for this sample relative to the sample tube with the largest fluorescence change is lower than a defined limit. This flag corresponds to the NEG (NTC) flag of the Rotor-Gene software and can appear only if the "NTC threshold outlier removal" function of the Rotor-Gene software was enabled in the imported .qit file. For more details refer to the <i>Rotor-Gene Q User Manual</i>
LOW_REACTION_EFFICIENCY	Warning	The reaction efficiency for this sample has not reached a defined limit. This flag corresponds to the NEG (R.Eff) flag of the Rotor-Gene software and can appear only if the " Reaction Efficiency Threshold outlier removal" function of the Rotor-Gene software was enabled in the imported .qit file. For more details refer to the <i>Rotor-Gene Q User Manual</i>
MAX_CORRELATION_IN_STANDA RD_CURVE_EXCEEDED	Variable	Either an upper limit for the R ² value or an upper limit for the R value is exceeded.
MAX_EFFICIENCY_EXCEEDED	Variable	The upper limit for reaction efficiency is exceeded.
MULTI_THRESHOLD_CROSSING	Invalid	The amplification curve crosses the threshold more than once. An unambiguous C_{T} cannot be determined. This flag corresponds to the NEG (Multi C_{T}) flag of the Rotor-Gene software. For

		more details refer to the <i>Rotor-Gene Q User</i> <i>Manual</i> .
NO_CT_DETECTED	Variable	No C_{τ} is detected for this target.
NORM_FACTOR_ALTERATION	Warning	Deviation during the normalization procedure. The amplification curve is displayed with a default normalization; results should be manually checked for correctness.
OTHER_IC_INVALID	Invalid	An internal control in another tube is invalid.
OTHER_IC_NO_SIGNAL	Invalid	No signal is detected for an internal control in another tube.
OTHER_TARGET_INVALID	Invalid	A target in another tube is invalid.
OUT_OF_COMPUTATION_RANGE	Invalid	The calculation of the concentration for this sample exceeds the technical limit.
TOO_LESS_CORRELATION_IN_ST ANDARD_CURVE	Variable	Either a lower limit for the R^2 value or a lower limit for the R value is not reached.
TOO_LESS_EFFICIENCY	Variable	A lower limit for reaction efficiency is not reached.
TOO_MANY_QUANTIFICATION_STA NDARDS_ INVALID	Variable	The number of invalid quantification standards exceeds a minimal number required.
UNCERTAIN	Variable	Results from the automatic data scan (AUDAS) are conflicting with results from the core analysis. An unambiguous automatic

		assessment of data validity is not possible.
UNEXPECTED_CT_DETECTED	Variable	A C_{T} value is detected for a target that should not amplify.
UPSTREAM	Variable	Sample status was set to invalid or unclear by an upstream process (e.g., from QIAsymphony Assay Setup). Note: For "unclear" flags from upstream processes the behavior of Rotor-Gene AssayManager v1.0 is defined in the "Configuration" environment and not in the Assay Profile. "Invalid" flags from upstream processes always result in an invalid corresponding sample in Rotor-Gene AssayManager v1.0.

Core Analysis

Assay and Sample Analysis

1.3.2 Development Environment

The "Development" environment of the UDT Basic Plug-in allows the user to design their own assay profiles. The corresponding assays should have been previously optimized using the standard Rotor-Gene Software. Rotor-Gene experiment and quantitation analysis template files from the Rotor-Gene Software can be imported in Rotor-Gene AssayManager and completed to an assay profile.

1.3.2.1 General Work Flow Assay Profile Development

An assay profile can be created either by modifying an existing assay profile or creating a new one. The general work flow in the Assay profile editor comprises eight steps that are subdivided in eight tabs. The assay developer enters necessary information in every step except for the "Run profile" and "Core analysis". Here, the necessary information is imported from the Rotor-Gene Q Software using *.ret (Rotor-Gene experiment template) and *.qut (quantitation analysis template) files.

The assay profile can be saved and imported to the Rotor-Gene AssayManager database after all information is entered and no errors exist.

1.3.2.2 General GUI Description

The "Development" environment contains the following elements:

Working area

- Start buttons
- Tabs
- "Messages" area
- Working area
- Button bar

Start buttons

Open assay profile... New assay profile...

The start buttons are used to start working with the assay profile development.

When a user changes to the "Development" environment, only the two start buttons are enabled:

Rotor-Gene AssayMar File Help	nager									
QIAGEN	Setup Approval Archive	Service Configuration	ion Development	c	Cycler 1 Cycler 2	Cycler 3	Cycler 4			
Define general parameters for this assay profile										
General >	Profile name and status		Open assay	profile New assay pro	file Message	3				
Compatibility	Assay name		Assay is quantitative							
Run Profile	Short name	Profile version	Sample transfer volume	Initial elution volume						
Targets	Plug-in type	Plug-in version	Calculated conversion facts	μl pr						
Samples	Comment									
AUDAS	Kit material number		QIAsymphony import parame	ters						
Core Analysis	Material number		Assay parameter set name	QIAGEN original						
Assay & Sample Analysis		×			v					
	Ne	w material number		New APS						
			Save assay profile as	Start testing assay	profile					
mi User	Defined Test Mode				I	May 21, 2012	Gina Doe → 🗍			

An assay profile can be customized either by creating a new assay profile (button "New assay profile...") or opening and modifying an existing assay profile (button "Open assay profile...").

Tabs

The whole process of creating/modifying an assay profile is divided into eight different tabs:

- "General Information"
- "Compatibility"
- "Run Profile"
- "Targets"
- "Samples"
- "AUDAS"
- "Core Analysis"
- "Assay & Sample Analysis"

Working area

The content and layout of the working area depends on the active tab.

"Messages" area

The messages area contains all warnings, errors, and information related to the current step.

Button bar

The button bar at the bottom of the screen is available as soon as assay name, short name, and profile version are defined in the "General Information" sub tab. The button bar contains two buttons to save the assay profile and to test the assay profile once it is ready.

- A Save the assay profile.
 - If this button is clicked before assay profile development is finished and all mandatory data are entered, the following message is displayed:

Missing data have to be entered in the yellow marked tabs before the assay profile can be used.

If all mandatory data are entered, clicking the "Save assay profile as..." button opens the following dialog:

The user has to activate the "Assay profile is final" check box. Only assay profiles with this option activated can be imported in the "Configuration" environment for subsequent usage.

B Test the developed assay profile and perform a virtual analysis of a prior finished PCR experiment. Using this button opens a screen with the possibility of uploading a *.rex file from an experiment performed with the Rotor-Gene Software or even Rotor-Gene AssayManager.

Rotor-Gene A	ssayManager											ļ	_
ile Help													
QIAGEN	>>>> Setup	Approval	Archive	XT Service	Configuration	Development			Cycler 1	Cycler 2	Cycler 3	Cycler 4	
Experimen	1						Loa	d .rex file		(App	aly 📄	Back to edit	or
Plots and	information												
Raw data	Processed dat	a Stand	iard curve										
Pasults													_
• Readina													
Pos.	Style Sample I	D	Status	Type Targ	ets Ct	Result		Flags					=î
Samples													
Pos. 🔳	Style Sample I	D	Status	Type Targ	ets Ct	Result		Flags					
Conc. in	▼ Con	c. unit		* S	how IC S	et assay to be valid	1						
á da se	User Defined	Test Mode								May 2	1 2012	Gina Doe	⇒îl

For further details and a step-by-step procedure, see > Testing an assay profile
1.3.2.3 Using the Development Environment

The "Development" environment is used to create a new assay profile either starting from scratch or modifying an existing assay profile. Both alternatives have the same work flow — except that modifying an existing assay profile has a different starting point: an existing assay profile must be opened.

The created or modified assay profile can be tested in a final step.

Tasks assigned to the "Development" environment:

- Creating an assay profile
- Modifying an assay profile
- Testing an assay profile

To accomplish the first two tasks, additional files from the Rotor-Gene application are necessary. These tasks are described in two separate topics:

Creating a *.qut file

Creating a *.ret file

Creating an Assay Profile

The steps to create an assay profile are localized in the "Development" environment.

Behavior of the "Development" environment

When a new assay profile is created, the first five tabs are activated and colored yellow. The buttons "Save assay profiles as..." and "Start testing assay profile" in the button bar are initially disabled. These buttons are enabled if valid values in the mandatory fields of the "General Information" tab are entered. This makes it possible to save an assay profile and continue working on it at a later time. The buttons for creating new targets and samples in the "Targets" and "Samples" tabs are disabled initially and enabled if a *.ret file is loaded in the "Run Profile" tab. After a target is defined the "AUDAS" and the "Core Analysis" tabs are enabled. The "Assay & Sample Analysis" tab is enabled when a sample is defined in the "Samples" tab.

Step-by-step procedure to create an assay profile

Precondition: At least one *.qut file and a *.ret file are necessary in the "Run profile" and "Core Analysis" steps. These files have to be created with the Rotor-Gene software. Details can be found here:

- Creating a *.qut file
- Creating a *.ret file

QIAGEN	Setup Approval Archive	XT 않다 Service Configura	tion Development	Cycler 1	Cycler 2	Cycler 3 Cycler 4
		Define	general parameters for this	assay profile		
Seneral	Profile name and status		Open assay pr	ofile New assay profile	Messages	
ompatibility	Assay name		Assay is quantitative			
un Profile	Short name	Profile version	Define sample transfer and	I initial elution volume		
argets	Plug-in type	Plug-in version	Sample transfer volume II	μl		
amples	Comment		Calculated conversion factor			
UDAS						
core Analysis	Kit material number Material number		QIAsymphony import parameters Assay parameter set name	QIAGEN original		
ssay & Sample nalysis						
		-		v		
	Ne	ew material number		New APS		

1. Click the "Development" icon to change to the "Development" environment.

- 2. The "Development" environment opens. In this initial state only the two buttons, "Open assay profile..." and "New assay profile..." are enabled. All other elements are disabled.
- 3. Click "New assay profile...".
- 4. The "Select plug-in" dialog is displayed.

(j) Select	t plug-in
Plug-in and version	
UDT basic 1.0.5	
	OK Cancel

5. Select the "UDT basic" entry from the "Plug-in and version" drop-down list.

- 6. Click "OK".
- 7. The dialog closes. The first five tabs are enabled. The tabs are colored yellow to indicate that mandatory entries are missing. The "General Information" tab is active; the fields "Assay name", "Short name", and "Profile version" are also colored yellow. The "Messages" area shows the corresponding messages.

Rotor-Gene AssayMar File Help	nager					<u>_ 0 ×</u>
QIAGEN	Setup Approval Archive	Service Configurat	ion Development	Cycler 1	Cycler 2 Cycler 3	Cycler 4
		Define	general parameters for this assay	profile		
General >	Profile name and status		Open assay profile	New assay profile	Messages	
Compatibility	Assay name		Assay is quantitative		Enter an assay pro than 0.0.0. (110011	file version higher
Run Profile	Short name	Profile version	Define sample transfer and initial el	ution volume	Enter a short name (1-6 characters) (11	for the assay 10002)
Targets	Plug-in type UDT basic	Plug-in version	Sample transfer volume Initial elution μ μ μ μ	in volume i	Enter the full assay characters). (11000	name (up to 40)1)
Samples	Comment		Calculated conversion factor		Assay kits with any can be used. (1100	r configured. material number (82)
AUDAS						
Core Analysis Assay & Sample Analysis	Kit material number Material number		QIAsymphony import parameters Assay parameter set name QIAGEN	V original		
	Ne	w material number		New APS		, v
			Save assay profile as Star	t testing assay profile		
m User	Defined Test Mode				May 21, 2012	Gina Doe 🛛 → 🖡

- 8. Enter an assay profile name in the "Assay name" field with up to 40 characters.
- 9. Enter a short name in the "Short name" field with up to 6 characters.

10.Enter the assay profile version.

11.Optional steps in the "General Information" tab:

- Enter a comment
 Enter a comment specific for this assay profile in the "Comment" field.
- Define a kit material number
 The user can define kit material numbers for assay kits that must be used in combination with the assay profile. The material number entered during work list setup or transferred from QIAsymphony AS result file must match the material number entered here. Otherwise the run cannot be started.
 - a) Click "New material number".

Kit material number		
Material number		
		1
		T
	New material numb	per

A new material number row is inserted and colored in yellow.

Material number	A
	×

b) Enter a material number.

The new material number is displayed in the "Kit material number" table.

Repeat steps a-b for additional material numbers.

Note: Click the 🔀 icon to remove a material number.

Define an assay profile as quantitative

Activate the check box "Assay is quantitative" to define the assay as being quantitative. In this case at least one quantitative target must be added.

Assay is quantitative

Note

If the assay does not contain quantitation standards, the check box must be unchecked.

 Define sample transfer and initial volume Activate the check box "Define sample transfer and initial elution volume" to enable automatic target concentration calculation for the original sample material.

Define sample transfer and initial elution volume

Sample transfer volume Initial elution volume ↓ µ → ↓ µ ↓
Calculated concentration factor
Define sample transfer and initial elution volume
Define sample transfer and initial elution volume Sample transfer volume Initial elution volume µI → □ µI

- a) Activate the "Define sample transfer and initial volume" check box. The "Sample transfer volume" and "Initial elution volume" fields are enabled and colored yellow.
- b) Enter the sample volume that is transferred to the nucleic acid purification process in the "Sample transfer volume" field.
- c) Enter the volume that is initially used for elution in the "Initial elution volume" field.

The resulting concentration factor will automatically be calculated by Rotor-Gene AssayManager in the "Calculated concentration factor" field.

If this information is not entered, only the target concentration in the eluate can be calculated by Rotor-Gene AssayManager.

 Define an assay parameter set (APS) When using the QIAsymphony for nucleic acid purification and assay setup, the sample and process information can be transferred to Rotor-Gene AssayManager. To connect the QIAsymphony information with the correct assay profile, click "New APS" to enter the dedicated assay parameter set name. The APS name in the assay profile has to match the APS name in the QIAsymphony AS result file exactly, otherwise an import of the result file into Rotor-Gene AssayManager is not possible. a) Click "New APS".

Assay parameter set name	QIAGEN original	

A new APS row is inserted and colored in yellow.

Assay parameter set name	QIAGEN original		.4
		×	
			ï

b) Enter an APS name.

The new APS name is displayed in the QIAsymphony import parameters table.

c) Activate the "QIAGEN original" check box if the assay parameter set is originally from QIAGEN. Deactivate it if not.

Repeat steps a-c for additional APS names.

Note: Click the X icon to remove an APS name.

12.Change to the "Compatibility" tab to set compatibility parameters of the assay profile. The features of this dialog allow you to restrict your assay compatibility to only those rotors, volumes, or instrument types you have tested in your assay validation.

Rotor types	Reaction vol. (µl) 🔺	
36-Well Rotor		
72-Well Rotor		
Rotor-Disc 72		
Rotor-Disc 100		
		T
	New volu	Ime
Cycling compatibility to other assay profile:	New volu	ime
Cycling compatibility to other assay profile: Restricted by cycling profile (default)	Optical configuration	Optical configuration
Cycling compatibility to other assay profile: Restricted by cycling profile (default) Exclusive use only	Optical configuration	Optical configuration
Cycling compatibility to other assay profile: Restricted by cycling profile (default) Exclusive use only Restricted by cycling group	Optical configuration Optical configuration Optical configuration Restricted	Optical configuration
 Cycling compatibility to other assay profile; Restricted by cycling profile (default) Exclusive use only Restricted by cycling group 	Optical configuration Optical configuration Optical configuration Restricted	

Define rotor type compatibility

Rotor types	
36-Well Rotor	
72-Well Rotor	
Rotor-Disc 72	
Rotor-Disc 100	
	~

Activate the check boxes of the rotor types with which the assay profile will be compatible. Multiple activations are possible.

- Define reaction volume
 - a) Click "New volume".

Reaction vol.	(µl)	•	
			11

A new reaction volume row is inserted and colored in yellow.

- b) Enter a reaction volume. When a decimal separator has to be entered, the language configuration of your computer system defines if the decimal separator must be comma or period. On a German system, for example, the comma (25,5 µl) must be used for decimals. On an American system the period (25.5 µl) must be used for decimals. The new reaction volume is displayed in the "Reaction vol." table. Repeat steps a) and b) to add additional reaction volumes.
- Define cycling compatibility conditions to other assay profiles In the "Cycling compatibility to other assay profiles" area three options are available:

es

- "Restricted by cycling profile (default)"
 Assay profiles sharing the same temperature cycling conditions can be applied in parallel on the same rotor.
 - "Exclusive use only" Assay profile cannot be combined with other assay profiles even if exactly the same cycling conditions apply.

 "Restricted by cycling group"
 The assay profile can be applied with other assay profiles sharing the same cycling group. When using this option, a cycling group name must be entered.

> This name must match the cycling group name of other assay profiles that should be compatible. Assay profiles sharing the same cycling group have to share the same temperature cycling conditions.

Define optical configuration compatibility parameters
 Define whether the assay profile can be applied on Rotor-Gene Q instruments
 with any optical configuration, or restrict the optical configuration by selecting an
 appropriate optical configuration option.

Optical configuration		
 Unrestricted 	Optical configuration	
	6plex	
U Resultion	2plex	
	2plex HRM	
	5plex	
	L	

"Unrestricted" means the assay profile can be applied to any technically compatible Rotor-Gene Q instrument.

"Restricted" means the assay profile can only be applied to a Rotor-Gene Q instrument with optical configurations defined in the following step.

Activate the check box of the optical configuration that the assay profile shall be restricted to. Selecting multiple optical configurations is possible.

Optical configuration		
O Unrestricted	Optical configuration	
Destricted	Gplex	
• Resulcied	✓ 2plex	
	2plex HRM	
	5plex	-

For details about the optical configuration of the Rotor-Gene Q instrument, refer to the *Rotor-Gene Q User Manual*.

Note

Assay profiles can never be applied to Rotor-Gene Q instruments with fewer acquisition channels than required by the assay profile. This is prevented by Rotor-Gene AssayManager. The "Optical configuration" area is used to set additional compatibility rules by the assay profile developer, for example, the assay profile should only be applicable to 5plex HRM[®] instruments even if it is also technically compatible with a 2plex or 2plex HRM instrument.

13.Change to the "Run Profile" tab to load a *.ret file.

Rotor-Gene AssayM	anager							
QIAGEN	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Approval	Archive	XT Service	Configuration	Development		
					Define	run profile fo	this assay profile	
General Information	Runp	orofile						Load .ret file
Compatibility	No run	profile loaded	d. Import a R	otor-Gene ru	in template using t	he "Load .ret file	" button.	
Run Profile 💙								
Targets								
Samples								
AUDAS								
Core Analysis								
Assay & Sample Analysis								

14.Click "Load *.ret file".

The file selection dialog opens.

- 15. Browse the directory containing the *.ret file, select it, and click "OK".
- 16.The *.ret file is loaded and run profile parameters are shown:

The run profile is divided into three sections:

- "Automatic gain control"
- "Channels"
- "Temperature profiles and acquisitions"

Note

The run settings cannot be altered using Rotor-Gene AssayManager.

- 17. Activate the check box "Use auto-gain over all tubes of the assay" at the bottom of the screen to apply the auto-gain optimization to all reserved rotor positions, not only on the one rotor position defined during run setup in the Rotor-Gene software. If "Use auto-gain over all tubes of the assay" is checked, the median fluorescence measured in all tubes of the assay is used to optimize the gain setting. This option applies to all different acquisition channels and steps defined in that assay profile.
- 18. Change to the "Targets" tab to define the targets.

🕫 Rotor-Gene AssayMar	nager						
File Help							
QIAGEN	Setup	Approval	Archive S	KT K ervice Confi	guration	ppment	
				D)efine targets a	nd ICs for this assay prof	ile
General Information	Targe	t definitions					
	Name		Туре	Default unit	Additional unit(s	Measured in acquisition	Actions
Compatibility	Test		Qualitative	-	-	Green Cycling 1 Step 2	🖉 🕒 🗙
Run Profile	IC		InternalCo	-	-	Yellow Cycling 1 Step 2	🖉 🕒 🗙
Targets >							
Samples							
AUDAS							
Core Analysis							
Assay & Sample Analysis							
						(New target

19.Click "New target..." to define the targets for the assay profile. The following dialog box opens:

() Create target		
Type Target name Default unit Acquisition	Other units Unit Conv. factor	Messages Select a target type. (190084) Select an acquisition for the target. (190085) Enter a valid target name (1-50 characters). (110076)
	New unit	OK Cancel

20.Select a target type from the "Type" drop-down list.

Туре	
IC	•
IC	
Qualitative	
Quantitative	

Note
In the "General information" tab, the assay profile was either set to be quantitative or not. Therefore, the available target types will differ in the "Targets" step:
If the assay profile is quantitative: IC, Qualitative, and Quantitative can be selected.

- If the assay profile is not quantitative: IC and Qualitative can be selected.
- 21.Enter a target name in the "Target name" field with up to 50 characters.
- 22.For quantitative targets select the default concentration unit from the "Default unit" drop-down list.

Note
This drop-down list is only activated for targets from type "Quantitative".

23.In the "Acquisition" drop-down list all acquisition steps of the PCR cycling are listed that are defined by the *.ret file loaded in the previous tab. The different acquisition steps can be identified by the acquisition channel (e.g., *Green*, *Yellow*, etc.) and the cycling step in which the acquisition is performed during the PCR cycling (e.g.,

Cycling 1 Step 2). Select the acquisition step for the particular target from the dropdown list.

Acquisition	
	•
Green Cycling 1 Step 2	

Note

The available acquisition options depend on the *.ret file loaded in the "Run Profile" tab.

24.Click "New unit" to assign additional concentration units besides the default unit for the target. A drop-down list will appear.

Note

This drop-down list is only available for targets with the type "Quantitative".

25.Select an additional unit and enter a factor to convert the target concentration from the default unit to the selected additional unit.

Note

Multiple additional units can be defined by clicking "New unit" several times.

Example:

Default unit: IU/ml

Other unit: copies/ml

1 IU/mI corresponds to 0.45 copies/mI for detection of the selected target.

Enter 0.45 as conversion factor.

Create target		
Type Quantitative Target name Quantative Default unit IU/ml Acquisition Green Cycling 1 Step 2	Other units Unit Conv. factor Copi	Messages To display the results in other units than the default unit, a corresponding conversion factor needs to be defined. (110064)
	New unit	- V
		OK Cancel

26.Repeat steps 19–25 for all other targets.

27.Change to the "Samples" tab. Here, the arrangement of the different samples and controls on the rotor can be configured.

	Setup	Approval	Archive		Configur	≯ ation	Development			
				ſ)efine te	st samp	les and co	ntrols for this	assay pr	ofile
Seneral nformation	Sample	definitions								
	Style	Sample nam	1e	Sample or cor	ntrol type	# tubes	Targets	Given conc.	Tube	Actions
Compatibility	-	 Standard 1 	_1	Quantification	Stand	1	Standards	2000 copies/µl	1	2 C 🛛
tun Profile	-	 Standard 1 	_2	Quantification	Stand	1	Standards	2000 copies/µl	1	🖉 🖸 🗙
argets	-	 Standard 1 	_3	Quantification	Stand	1	Standards	2000 copies/µl	1	🖉 🖸 🗙
	-	 Standard 1 	_4	Quantification	Stand	1	Standards	2000 copies/µl	1	0 🗘 🗙
amples >		 Standard 2 	_1	Quantification	Stand	1	Standards	1000 copies/µl	1	2 🗘 🗙
UDAS		 Standard 2_ 	_2	Quantification	Stand	1	Standards	1000 copies/µl	1	2 🗘 🗙
ore Analysis		 Standard 2 	_3	Quantification	Stand	1	Standards	1000 copies/µl	1	2 🖰 🗙
		 Standard 2 	_4	Quantification	Stand	1	Standards	1000 copies/µl	1	2 🗘 🗙
issay & Sample Inalysis	-	 Standard 3 	_1	Quantification	Stand	1	Standards	500 copies/µl	1	2 🖰 🗙
		 Standard 3 	_2	Quantification	Stand	1	Standards	500 copies/µl	1	2 🗘 🗙
		 Standard 3 	_3	Quantification	Stand	1	Standards	500 copies/µl	1	2 🖰 🗙
	-	 Standard 3 	_4	Quantification	Stand	1	Standards	500 copies/µl	1	🖉 🖸 🗙

28.Click "New sample" to create a new sample profile. The following dialog box opens:

Create sample			
Sample or control type Sample name Style # tubes Allow identical names for replicates	Targets Name Given conc.	Tube	Messages At least one target needs to be assigned to a sample. (190110) Select a sample/control type. (10026) Image: Control type in the select assignment of tubes (1 - 100) (230109) Enter a valid sample name (1-40 characters). (110029)
Row pos		New target	OK Cancel

29.Select a sample or control type from the drop-down list. The following items are available:

Note

The control type "Quantification Standard" is only available for quantitative assays.

- 30.Enter a sample name into the "Sample name" field with up to 40 characters.
- 31.Click the color or line style button and select a color or line style for the amplification curve of the sample:

32.Define the number of rotor positions. The specific sample will be positioned and analyzed for different targets in as many rotor positions as entered in the "# tubes" field.

Examples

- a) If one specific sample will be analyzed in one rotor position for target x and in two other rotor position for target y and z, enter a value of 3.
- b) If the sample will analyzed for multiple targets in the same rotor position (multiplex PCR), enter a value of *1*.
- c) Also a multiplex PCR with, for example, three targets in one tube and two targets in another tube, can be configured. In that case enter a number of *2* in "Tube position".
- 33.Click "New target" to assign one or more targets to the sample. The available drop-

down menu items represent the targets defined in the previous tab "Targets".

Targets			
Name	Given conc.	Tube	
		Ō	×
Standards Test			
IC			
	Select a target	name.	
			· · ·
		New	arget

34.Select a specific target from the drop-down list, and enter the tube position within that sample or control type the target will be analyzed in. The entered value must be between *1* and the specified number of tubes for that sample or control type.

Sample or control type	Targets		
Test	Name	Given conc.	Tube
	Test 🔹	-	2 🗙
Sample name		1	
Test Sample Template			
Style			
# tubes			
Allow identical names for replicates			

Examples (continuation of examples in step 32)

- a) If a value of 3 was entered for the # tubes, the tube position for target x would be 1, for target y it would be 2, and for target z it would be 3.
- b) For a multiplex PCR all the different targets must be assigned to tube position 1.

c) Assign the first 3 targets to tube position 1 and the other 2 targets to tube position 2.

For samples from type "Quantification Standard" at least one quantitative target defined in the previous tab "Targets" has to be assigned. If a quantitative target is selected from the drop-down list, the given concentration cell is automatically activated.

The concentration of this quantification standard can be entered followed by defining the tube position. If applicable, also several quantitative targets can be assigned to only one quantification standard. In that case the different quantitative targets should be set up in separate tubes to prevent competition or cross talk during amplification.

Rotor-Gene AssayMa	anager								
QIAGEN	>>>> Setup	Approval Archive	۲ ت Service Configur	≱ ration	Development			(Cyo	er 1
			Define te	st samp	les and co	ntrols for this	assay p	rofile	
General Information	Sample	edefinitions							
	Style	Sample name	Sample or control type	# tubes	Targets	Given conc.	Tube	Actions	
Compatibility	-	 Standard 1_1 	Quantification Stand	1	GPER	2000 copies/µl	1	10	
Run Profile	-	Standard 1_2	Quantification Stand	1	GPER	2000 copies/µl	1		×
Targets		 Standard 1_3 	Quantification Stand	1	GPER	2000 copies/µl	1		×
·	-	 Standard 1_4 	Quantification Stand	1	GPER	2000 copies/µl	1	10	×
Samples >		 Standard 2_1 	Quantification Stand	1	GPER	1000 copies/µl	1	∕₿	×
AUDAS		 Standard 2_2 	Quantification Stand	1	GPER	1000 copies/µl	1	10	× U
Core Analysis		 Standard 2_3 	Quantification Stand	1	GPER	1000 copies/µl	1	10	×
		 Standard 2_4 	Quantification Stand	1	GPER	1000 copies/µl	1	10	×
Assay & Sample Analysis		 Standard 3_1 	Quantification Stand	1	GPER	500 copies/µl	1	0	×
		Standard 3_2	Quantification Stand	1	GPER	500 copies/µl	1	∕ ₿	×
		 Standard 3_3 	Quantification Stand	1	GPER	500 copies/µl	1	0	×
		 Standard 3_4 	Quantification Stand	1	GPER	500 copies/µl	1	∕ ₿	× .
	Rowp	osition					New sa	mple	
				St	ive assay prol	file as	Start test	ing assay pro	ofile
mi Use	r Defined T	est Mode							

For all sample and control types not from type "Quantification Standard" the "Given

conc." cell is deactivated.

Multiple targets can be assigned by clicking "New target" several times. Redundant targets can be removed by clicking "Close". The position of the different sample and control types to each other can be adapted by selecting a certain row and using the row selection buttons to move this row in the list up or down.

Rotor-Gene Assayl/ le Help	anager			415					
QIAGEN	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Apr	proval Archive	Service Configur	¥ ation	Development			Cycle
				Define te	st samp	les and co	ntrols for thi	s assay pi	rofile
General Information	Sam	ple def	finitions						
	St	yle S	ample name	Sample or control type	# tubes	Targets	Given conc.	Tube	Actions
Compatibility	- 1	P	PC_1	Positive Control	1	Test	-	1	
						IC	-	1	
Run Profile		P	PC_2	Positive Control	1	Test	-	1	2 🗅 🗙
						IC	-	1	
Targets		P	PC_3	Positive Control	1	Test	-	1	
i di goto					IC	-	1		
Samples >		— т	fest Sample	Test	1	Test	-	1	
					IC	-	1		
	1 • •		NTC_1	Non-template Control	1	Test	-	1	
AUDAS						IC	-	1	
		•••• N	NTC_2	Non-template Control	1	Test	-	1	
Core Analysis						IC	-	1	
,,			NTC_3	Non-template Control	1	Test	-	1	
Assav & Sample						IC	-	1	
Analysis									
	Rov	v positi	ion 🔥 🔽					New sa	mple
					Sa	ve assay pro	file as	Start testi	ng assay profi
	_	_							

35.Change to the "AUDAS" tab.

Note

AUDAS stands for "Automatic Data Scan". This option is not available for the UDT Basic Plug-in. The AUDAS sub tab is thus inactive and must be skipped for creation of an assay profile with the UDT Basic Plug-in.

36.Change to the "Core Analysis" tab.

The core analysis defines algorithms for normalization of the amplification curves and quantification of the targets. In the "Core Analysis" tab most of the parameter values must be imported from a Rotor-Gene quantification template file. This *.qut file can be generated after analysis of an assay in the standard Rotor-Gene software.

The procedure how to create *.qut files is described in > Creating a *.qut file with Rotor-Gene application.

Note

For every single acquisition channel an individual *.qut file has to be generated.

Rotor-Gene Assayl File Help	lanager			
QIAGEN	Setup Approval Archive S	ervice Configuration	Cycler 1	
		Define analysis parameter	s for each target	
General Information	Core analysis parameters			
Compatibility	Targets	Target: Test	Load .qut file	
Due Des Cla	IC	Parameter	Value	
Run Profile		Filter	Light	
		Eluorescence threshold	1	
Targets		Innored first cycles	0.0136	
		NTC threshold	0	
Samples		Reaction efficiency threshold.	-1	
		Slope correction		
ΔΠΠΔ S		Dynamic tube	~	
Core Analysis > Assay & Sample Analysis	Copy settings to	Crop cycles		

37.Select a target from the "Target" table.

38.Click "Load .qut file".

The file selection dialog is shown.

39. Browse to the directory containing the *.qut file, select it, and click "OK".

The parameters and values are loaded from the file and displayed at the right of the screen.

- 40.Repeat steps 37–39 for every single target.
- 41.Adjust the "Crop cycles" parameters. After successful import of a *.qut file the check box "Crop cycles" will be activated.

The "Crop cycles" function in Rotor-Gene AssayManager has the same impact on sample analysis as the "Crop cycles" function in the standard Rotor-Gene software. If this function was used for sample analysis in the Rotor-Gene software for that assay, it should also be used in Rotor-Gene AssayManager. The values for the "Crop cycles" function will not be imported via the *.qut file, therefore the additional editing is necessary.

Crop cycles

Remove data before cycle	
Remove data after cycle	

If needed, check the check box to define the number of cycles that should be removed from the start and the end of the cycling for analysis. This is useful if larger deviations from a flat baseline are observed in the initial or end cycles, which can occur when using certain chemistries.

After checking the "Crop cycles" check box, the input boxes "Remove data before cycle" and "Remove data after cycle" will be activated. Enter the respective cycle values into these boxes.

Crop cycles								
Remove data before cycle								
5								
Remove data after cycle								
38								

Note

The value for "Remove data after cycle" must be higher than the value of "Remove data before cycle". At least seven cycles must be left for data analysis.

42. Change to the "Assay & Sample Analysis" tab.

In the "Assay & Sample Analysis" tab different rules can be defined for evaluation of

sample, control, and assay results. The different rules are divided in six different sections:

- A: Rules specific for targets and IC in standards and controls
- B: Rules for standard curve
- C: Analysis rules for standards and controls
- D: Analysis rules for the assay
- E: Rules specific for targets and IC in test samples
- F: Analysis rules for test samples

A: Rules specific for targets and IC in standards and controls

In this section rules specific for targets and IC in standards and controls can be defined.

🖉 Rotor-Gene Assay	/Manage	r								
File Help										
QIAGEN	>>>> Setup	Approval	Archive	XT Service C	onfiguration	Development			Cycle) er 1
				Define	assay and sa	ample analysis	rules for this assay	r pro	file	
General Information										
Compatibility	A	Rules specific	for targets	and IC in stan	dards and cont	Parameters	Flag if rule fails	Inv		Â
Run Profile			Test	▼	Has no Ct	• unuments	UNEXPECTED_C		×	
Targets		ITC_3 🔽	Test	•	Has no Ct	•	UNEXPECTED_C		×	
Camples	F	vC_1 V	Test		Has a Ct		NO_CT_DETECTED	2	×	
Samples		PC_2 V	Test	T	Has a Ct	<u> </u>	NO_CT_DETECTED		×	Ш
AUDAS			IC		Has a Ct	•	NO_CT_DETECTED		×	Ш
Core Analysis			IC	•	Has a Ct	•	NO_CT_DETECTED	•	×	Ш
Assay & Sample > Analysis		ITC_3	IC	•	Has a Ct	•	NO_CT_DETECTED		×	Ш
	E	² C_1 v			Has a Ct	<u> </u>	NO_CT_DETECTED		×	Ш
		×C 3 V		V	Has a Ct	• •	NO_CT_DETECTED		×	Ш
								ew rul	e	ļ
					S	ave assay profile a	s Start testin	ig ass	ay pro	file
ni Use	er Defined	I Test Mode								

Click "New rule" to create a new rule.

Several rules for a specific target may be defined in parallel. Rules can be defined by:

- 1. Selecting a specific external control from the "Standard or control" drop-down list.
- 2. Selecting a specific target from the "Target or IC" drop-down list.
- 3. Selecting a rule to be applied from the "Rule" drop-down list. The following rules are available:

Rule name	Rule function	Flag if rules fail
Fluor. >	Normalized fluorescence must be greater than the parameter value to be entered.	FLUORESCENCE_T OO_LOW
Fluor. ≥	Normalized fluorescence must be greater than or equal to the parameter value to be entered.	FLUORESCENCE_T OO_LOW
Fluor. <	Normalized fluorescence must be less than the parameter value to be entered.	FLUORESCENCE_T OO_STRONG
Fluor. ≤	Normalized fluorescence must be less than or equal to the parameter value to be entered.	FLUORESCENCE_T OO_STRONG
C ₇ >	${\rm C}_{_{\rm T}}$ value must be greater than the parameter value to be entered.	CT_BELOW_ACCE PTED_RANGE
C _⊤ ≥	C_{τ} value must be greater than or equal to the parameter value to be entered.	CT_BELOW_ACCE PTED_RANGE
С _т <	$C^{}_{\tau}$ value must be less than the parameter value to be entered.	CT_ABOVE_ACCEP TED_RANGE
C _⊤ ≤	C_{τ} value must be less than or equal to the parameter value to be entered.	CT_ABOVE_ACCEP TED_RANGE
Conc.	Concentration must be greater than the	CONCENTRATION_

>*	parameter value to be entered.	BELOW_ ACCEPTED_RANG E
Conc. ≥*	Concentration must be greater than or equal to the parameter value to be entered.	CONCENTRATION_ BELOW_ ACCEPTED_RANG E
Conc. <*	Concentration must be less than the parameter value to be entered.	CONCENTRATION_ ABOVE_ ACCEPTED_RANG E
Conc. ≤*	Concentration must be less than or equal to the parameter value to be entered.	CONCENTRATION_ ABOVE_ ACCEPTED_RANG E
Has no C _T	The amplification curve may not have a $C_{_{\rm T}}$ value.	UNEXPECTED_CT_ DETECTED
Has a C _⊤	The amplification curve must have a $\rm C_{T}$ value.	NO_CT_DETECTED

* These rules are only available for quantitative targets. They will only be applied if a valid standard curve has been calculated.

4. If applicable for the selected rule, enter a parameter value in the "Parameters" input box. The input format for the different parameters is as follows:

Parameter	Parameter value format
Fluorescence	Enter a value for the normalized fluorescence between 0 and 100.
$C_{_{T}}$ value	Enter a C_{τ} value between 1 and 100. The value shall not be larger than the number of cycles of the run.
Concentration	Enter a concentration value. This value has to be in the default concentration unit and relates to the target concentration in the eluate. The default concentration unit is displayed in the "Targets" tab.

5. The "Flag if rule fails" column shows the flag that is assigned to the target and displayed if the rule fails.

Example:

Standard or con	Target or IC	Rule	Parameters	Flag if rule fails	Inv.	
NTC_2	Test 🔻	Has no Ct 🛛 🔻		UNEXPECTED_C		×
PC_1 V	Test 🔻	Has a Ct		NO_CT_DETECTED		×

6. Check the check box in the "Inv." column if the result of the selected target should be set to invalid if the corresponding rule fails. If the check box is not checked, the flag will only be displayed as a "warning" and the target will be valid if no other rule or condition causes an invalid result for this target.

B: Rules for standard curve

In this section rules specific for the standard curve of a quantitative assay can be defined. If the assay is not quantitative, no rules can be defined in that section.

🔊 Rotor-Gene AssayMa	anager									
File Help										
QIAGEN	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Approval	Archive	XT Service	Configuration	n Dev	relopment			
				Define	e assay and	d samp	le analysis	rules for this assa	y profile	
General Information										
Compatibility	Bar	Rules for sta get or IC	andard curve	•	Rule		Parameters	Flag if rule fails	Inv.	
Run Profile	0	SPER		•	Eff. ≥	•	0,8	TOO_LESS_EFFI		
	0	SPER			Eff. ≤	•	1,2	MAX_EFFICIENC		
Targets	0	SPER		•	R²≥	•	0,975	TOO_LESS_COR		
Samples				•		▼		-		
AUDAS									lew rule	
Core Analysis	C:	: Analysis rule	es for standa	ards and contr	ols					
		Standard 1_1	Never	invalidate					•	
Assay & Sample > Analysis		Standard 1_2	Never	invalidate					•	
		Standard 1_3	Never	invalidate					•	
		Standard 1_4	Never	invalidate					•	
		Standard 2_1	Never	invalidate						
		Standard 2_2	Never	invalidate					•	
		Standard 2_3	Never	invalidate					•	

Click "New rule" to create a new rule. Several rules may be defined in parallel. Rules

can be defined by:

1. Select the target the rule shall be defined for. Only quantitative targets can be found in the drop-down list.

B: Rules for standard curve					
Target or IC	Rule	Parameters	Flag if rule fails	Inv.	
(ODER			-		×
OFLIX	1				
				New rul	е

2. Select a rule to be applied from the "Rule" drop-down list. The following rules are available:

Rule name	Rule function	Flag if rules fail
R >	The R value of the standard curve must be greater than the parameter value to be entered.	TOO_LESS_CORR ELATION_ IN_STANDARD_CU RVE
R≥	The R value of the standard curve must be greater than or equal to the parameter value to be entered.	TOO_LESS_CORR ELATION_ IN_STANDARD_CU RVE
R <	The R value of the standard curve must be less than the parameter value to be entered.	MAX_CORRELATIO N_IN_ STANDARD_CURVE _EXCEEDED
R≤	The R value of the standard curve must be less than or equal to the parameter value to be entered.	MAX_CORRELATIO N_IN_ STANDARD_CURVE _EXCEEDED
R ² >	The R ² value of the standard curve must be greater than the parameter value to be entered.	TOO_LESS_CORR ELATION_ IN_STANDARD_CU RVE
R² ≥	The R ² value of the standard curve must	TOO_LESS_CORR

	be greater than or equal to the parameter value to be entered.	ELATION_ IN_STANDARD_CU RVE
R ² <	The R ² value of the standard curve must be less than the parameter value to be entered.	MAX_CORRELATIO N_IN_ STANDARD_CURVE _EXCEEDED
R² ≤	The R ² value of the standard curve must be less than or equal to the parameter value to be entered.	MAX_CORRELATIO N_IN_ STANDARD_CURVE _EXCEEDED
Eff. >	The reaction efficiency must be greater than the parameter value to be entered.	TOO_LESS_EFFICI ENCY
Eff. ≥	The reaction efficiency must be greater than or equal to the parameter value to be entered.	TOO_LESS_EFFICI ENCY
Eff. <	The reaction efficiency must be less than the parameter value to be entered.	MAX_EFFICIENCY_E XCEEDED
Eff. ≤	The reaction efficiency must be less than or equal to the parameter value to be entered.	MAX_EFFICIENCY_E XCEEDED
# valid QS ≥	The number of valid quantification standards must be greater than or equal to the parameter value to be entered.	TOO_MANY_QUANT IFICATION_ STANDARDS_INVALI D

3. Enter a parameter value in the "Parameters" input box. The input format for the different parameters is as follows:

Parameter	Parameter value format
R value	Enter a value between 0 and 1.
R ² value	Enter a value between 0 and 1.
Reaction efficiency	Enter a value between 0 and 2 (stands for 0–200%).
Number of valid quantification standards	Enter a value between 0 and 100. The number shall be equal or less than the number of

guantitation standards available for the selected target. Please note that at least two valid quantitation standards with different given concentrations are required for a proper quantification.

- 4. The "Flag if rule fails" column shows the flag that is assigned to the target and displayed if the rule fails.
- 5. Check the check box in the "Inv." column if the quantitative target result of the standards should be set to invalid if the configured rule fails. If the check box is not checked, the flag will only be displayed as a "warning" and the target will be valid if no other rule or condition causes an invalid result for this target.

B: Rules for standard curv	/e					
Target or IC		Rule	Parameters	Flag if rule fails	Inv.	
GPER	•	R ² > V		TOO_LESS_COR		×
L				Ne	ew rule	9

C: Analysis rules for standards and controls

In this section analysis rules specific for standards and controls can be defined.

C: Analysis fules for standards and controls			
Standard or control	Rule		
PC_1	Invalidate if one IC has no signal and no other target in the same tube has a signal.		
PC_2	Invalidate if one IC has no signal and no other target in the same tube has a signal.		
PC_3	Invalidate if one IC has no signal and no other target in the same tube has a signal.		
NTC_1	Invalidate if one IC is invalid or has no signal and no other target in the same tube ha \blacksquare		
NTC_2	Invalidate if one IC is invalid or has no signal and no other target in the same tube ha \blacksquare		
NTC_3	Invalidate if one IC is invalid or has no signal and no other target in the same tube ha $[\mbox{ v}]$		

Section C defines the influence of individual targets with an invalid flag on the validity of the complete standard or control. Individual targets in this context mean all specific targets and internal controls (IC). Please note that all types of invalid flags are taken into account, no matter whether they have been set by the upstream process, the core analysis, or by the rules defined, for example, in Section A and B of the assay and sample analysis.

Furthermore, Section C describes the influence of an IC with no signal on the validity

of the complete standard or control. This takes into account the special role of the IC in real-time PCR to monitor the correct amplification of a sample. The IC signal alone is not conclusive in this context and must be compared to the signal of the corresponding targets in the same tube. For example, a missing signal for the IC only indicates missing amplification, if all other targets in the same tube also do not show amplification. If one of the rules defined in this section is true for a specific target or IC of a standard or control, the complete standard or control is set to invalid in the analysis. This means that all targets of that standard or control are given corresponding invalid flags.

In the "Standard or control" column, every standard or control as defined in the "Samples" sub tab is listed. Select for every standard or control a specific rule from the "Rule" drop-down list. The rules are sorted by stringency, i.e., the first rule of the drop-down list is the most stringent one resulting in more invalidations than rules lower in the table. The lowest rule "never invalidate" results consequently in no change of the validity status of other targets.

C: Analysis rules f	or standards and controls		
Standard or control	Rule		
PC_1	Invalidate if one IC has no signal and no other target in the same tube has a signal.		
PC_2	Invalidate if at least one target is invalid or if one IC has no signal and no other target in the same tube has a signal. Invalidate if one IC is invalid or if one IC has no signal and no other target in the same tube has a signal.		
PC_3	Invalidate if one IC is invalid or has no signal and no other target in the same tube has a signal.		
NTC_1	Never invalidate		
NTC_2	Invalidate if one IC is invalid or has no signal and no other target in the same tube ha		
NTC_3	Invalidate if one IC is invalid or has no signal and no other target in the same tube ha		

The rules are explained in more detail in the table below. The following rules can be applied:

Rule number	Rule name	Rule function	Comments
1	Invalidate if at least one target is invalid or if one IC has no signal and no other target in the same tube has a signal.	 All targets of the selected standard or control will be set to invalid, if: At least one target is invalid. or Any internal control has no signal, and no other target in the same tube has a signal. 	This is the most stringent behavior that can be selected in this section. If any target of the standard or control has an invalid flag (set by the upstream process, the core analysis, or by rules defined in Section A or B), the complete standard or control is set to invalid. The same happens if the

			internal control has no signal (no C_T) and no other target in the same tube as the IC has a signal, which indicates that the PCR run has not correctly amplified the sample. Note: It is recommended to use this most stringent rule for any routine assays. The less stringent rule for any routine assays. The less stringent rules below can be applied if your assay profile is still under development and you want to see the target result even if there was a problem with another target or your PCR amplification.
2	Invalidate if one IC is invalid or if one IC has no signal and no other target in the same tube has a signal.	All targets of the selected standard or control will be set to invalid, if: • Any internal control is invalid. or • Any internal control has no signal, and no other target in the same tube has a signal.	This rule detects an invalid IC in any case and invalidates the corresponding standard or control. Missing amplification by the IC is also detected and invalidates the standard or control. In comparison to rule 1, invalid specific targets have no effect on the validity of the standard or control. Note: Use with caution. For this rule the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid positive or negative control targets will not automatically invalidate other targets for this

			standard or control.
3	Invalidate if one IC is invalid or has no signal and no other target in the same tube has a signal.	All targets of the selected standard or control will be set to invalid, if: • Any internal control is invalid, and no other target in the same tube has a signal. or • Any internal control has no signal, and no other target in the same tube has a signal.	This rule detects an invalid IC or missing amplification via the IC and invalidates in this case all other targets for this standard or control. However, if amplification is detected simultaneously for any non-IC target, no invalidation will occur. Note: Use with caution. For this rule the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid positive or negative control targets will not automatically invalidate other targets for this standard or control.
4	Invalidate if one IC has no signal and no other target in the same tube has a signal.	All targets of the selected standard or control will be set to invalid, if: • Any internal control has no signal, and no other target in the same tube has a signal.	This rule only detects missing amplification via a missing signal for the IC and invalidates in this case all other targets for this standard or control. Note: Use with caution. Invalidity of the IC for any other reason does not result in corresponding invalidity of other targets for this standard or control. Furthermore, for this rule the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid positive

			or negative control targets will not automatically invalidate other targets for this standard or control.
5	Never invalidate	The selected standard or control will never be set to invalid by that part of the analysis.	With this setting, there is no interdependency between targets. However, all individual targets with flags from previous steps keep their flags and any "invalid" status. Note: Use with caution: Any invalidity for any target will not result in the invalidity of any other target for this standard or control.

Examples for Rule 1

Example 1a

Positive control sample of a duplex assay. The positive control consists of one target (PC_1) and an internal control (IC) in the same tube. There is only one rule defined in Section A for the target PC_1:

" C_{τ} for PC_1 < 30" (invalidate, if rules fail)

According to rule 1 the PC_1 is then valid only if

1)"C_T for PC_1 < 30" and no other invalid flag for this target and the IC is valid and has signal.

2) "C_{τ} for PC_1 < 30" and no other invalid flag for this target and the IC is valid but has no signal.

This second case may occur, for example, with a high concentration of PC_1 suppressing the IC signal.

Please note if the second case should be invalidated as well, an additional invalidity rule can be defined for the IC in Section A such as

"IC has a signal".

Example 1b

NTC of the same duplex assay. There is only one rule defined in Section A for the target NTC:

"NTC has no signal" (invalidate, if rules fail)

According to rule 1, the NTC is then valid only if the "NTC has no signal" and and no other invalid flag for this target and the IC is valid and has a signal Please note if the "IC has no signal" and the "NTC has no signal", this rule correctly invalidates the NTC, as the IC has not detected a correct amplification.

Example 1c

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid specific target or an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 1, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 1d

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in any target but no invalid flag.

According to rule 1, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample.

Example 1e

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target or one IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 1, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 1f

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). In one tube both targets, the specific target and the corresponding IC, have no signal but also no invalid flags. According to rule 1, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample in at least one tube.

Examples for rule 2

Example 2a

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid specific target (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B). According to rule 2, the control is maintained as valid. Only the invalid specific target remains invalid (the invalid flag is kept).

Example 2b

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B). According to rule 2, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 2c

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in any target but no invalid flag.

According to rule 2, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample.

Example 2d

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 2, the control is maintained as valid. Only the invalid specific target remains invalid (the invalid flag is kept).

Example 2e

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 2, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 2f

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). In one tube both targets, the specific target and the corresponding IC, have no signal but also no invalid flags. According to rule 2, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample in at least one tube.

Examples for rule 3

Example 3a

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid specific target (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B). According to rule 3, the control is maintained as valid. Only the invalid specific target remains invalid (the invalid flag is kept).

Example 3b

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with a specific target, which has a signal and an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 3, the control is maintained as valid. Only the invalid IC target
remains invalid (the invalid flag is kept).

Example 3c

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in the specific targets and an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 3, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 3d

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in any target but no invalid flag.

According to rule 3, the control is set to invalid (all targets ([specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample.

Example 3e

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 3, the control is maintained as valid. Only the invalid specific target remains invalid (the invalid flag is kept).

Example 3f

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target has a signal but the corresponding IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B). According to rule 3, the control is maintained as valid. Only the invalid IC target remains invalid (the invalid flag is kept).

Example 3g

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target has no signal and the IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 3, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag).

Example 3h

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). In one tube both targets, the specific target and the corresponding IC, have no signal but also no invalid flags. According to rule 3, the control is set to invalid (all targets [specific ones and the IC] are given an invalid flag) since the PCR process has obviously not correctly amplified the sample in at least one tube.

Examples for rule 4

Example 4a

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid specific target or an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 4, the control is maintained as valid. Only the invalid target remains invalid (the invalid flag is kept).

Example 4b

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in any target but no invalid flag.

According to rule 4, the control is set to invalid (all targets [specific ones and the IC] get an invalid flag) since the PCR process has obviously not correctly amplified the sample.

Example 4c

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target or one IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 4, the control is maintained as valid. Only the invalid target remains invalid (the invalid flag is kept).

Example 4d

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). In one tube both targets, the specific target and the corresponding IC, have no signal but also no invalid flags.

According to rule 4, the control is set to invalid (all targets [specific ones and the IC] get an invalid flag) since the PCR process has obviously not correctly amplified the sample in at least one tube.

Examples for rule 5

Example 5a

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with an invalid specific target or an invalid IC (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 5, the control is maintained as valid. The invalid target remains invalid (the invalid flag is kept).

Example 5b

A 3-plex assay (two specific targets and one IC, all in the same tube) contains a control with no signal in any target but no invalid flag. According to rule 5, the control is maintained as valid.

Example 5c

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). One specific target or one IC has an invalid flag (no matter whether it is set to invalid by the upstream process, the core analysis, or rules defined in Section A or B).

According to rule 5, the control is maintained as valid. Only the invalid target remains invalid (the invalid flag is kept).

Example 5d

An assay with a sample divided over 4 tubes contains one specific target in every tube and a corresponding IC (8 targets overall). In one tube both targets, the specific target and the corresponding IC, have no signal but also no invalid flags. According to rule 5, the control is maintained as valid.

D: Analysis rules for the assay

In this section, analysis rules specific for the complete assay can be defined. These rules define the consequences of any "invalid" results for standards and controls due to the rules described in Section C.

D: Analysis rules for the assay

Invalidate every test sample if at least one external control is invalid	
Invalidate a certain target in every test sample if a corresponding external control containing that target is invalid	
 Invalidate only targets with no signal in the test samples if any positive control (normal positive controls, positive extraction controls or quantification standards) containing that target is invalid 	
O Never invalidate samples	

Select one of the four radio buttons to apply the corresponding analysis rule to the assay. The following rules are available:

Rule name	Rule function
Invalidate every test sample if at least one external control is invalid.	A flag is set to all targets of every test sample that the assay is invalid if at least one external control is invalid.
	If the rule is applied during assay analysis because of an invalid external control, the assay can be set manually

	to be valid by checking the check box "Set assay to be valid" in the "Approval" environment. This functionality must be enabled first in the "Configuration" environment. Further information can be found under Concept of approval buttons in UDT plug-in.
Invalidate a certain target in every test sample if a corresponding external control containing that target is invalid.	Certain targets of test samples are set to invalid if any standard or control containing the same target was set to invalid.
Invalidate only targets with no signal in the test samples if any positive control (normal positive controls, positive extraction controls, or quantification standards) containing that target is invalid.	Certain targets of test samples are set to invalid if the target result is "No signal" and any positive control containing the same target was set to invalid.
Never invalidate samples.	Samples will never be set to invalid by that part of the analysis.

Note

The rules in the drop-down menu are sorted for strictness in descending order.

E: Rules specific for targets and IC in the test samples

In this section, analysis rules specific for targets and internal control in the test samples can be defined. Several rules for a specific target may be defined in parallel.

E: Rules	specific f	for targ	ets and	IC in	test s	amples	

Target or IC	Rule	Parameters	Flag if rule fails	Inv.	
	Has a Ct	`	NO_CT_DETECTED		×
			Ne	w rule	

Click "New rule" to create a new rule.

1. Select a specific target from the "Target or IC" drop-down list.

Target or	IC
IC	•
Test	•
Test Test	T

2. Select a rule to be applied from the "Rule" drop-down list. The following rules are available:

Rule name	Rule function	Flag if rules fail
Fluor. >	Normalized fluorescence must be greater than the parameter value to be entered.	FLUORESCENCE_TOO_L OW
Fluor. ≥	Normalized fluorescence must be greater than or equal to the parameter value to be entered.	FLUORESCENCE_TOO_L OW
Fluor. <	Normalized fluorescence must be less than the parameter value to be entered.	FLUORESCENCE_TOO_ STRONG
Fluor. ≤	Normalized fluorescence must be less than or equal to the parameter	FLUORESCENCE_TOO_ STRONG

	value to be entered.	
C _T >	C_{T} value must be greater than the parameter value to be entered.	CT_BELOW_ACCEPTED_ RANGE
C _⊤ ≥	C_{T} value must be greater than or equal to the parameter value to be entered.	CT_BELOW_ACCEPTED_ RANGE
C _T <	C_{T} value must be less than the parameter value to be entered.	CT_ABOVE_ACCEPTED_ RANGE
$C_{T} \leq$	C_{T} value must be less than or equal to the parameter value to be entered.	CT_ABOVE_ACCEPTED_ RANGE
Conc. >*	Concentration must be greater than	CONCENTRATION_BELO
	the parameter value to be entered.	W_ ACCEPTED_RANGE
Conc. ≥*	Concentration must be greater than	CONCENTRATION_BELO
	or equal to the parameter value to be entered.	W_ ACCEPTED_RANGE
Conc. <*	Concentration must be less than the parameter value to be entered.	CONCENTRATION_ABOVE
		ACCEPTED_RANGE
Conc. ≤*	Concentration must be less than or equal to the parameter value to be entered.	CONCENTRATION_ABOVE
		ACCEPTED_RANGE
Has no C_{T}	The amplification curve may not have a $\rm C_{T}$ value.	UNEXPECTED_CT_ DETECTED
Has a $C_{_{T}}$	The amplification curve must have a $C_{_{\rm T}}$ value.	NO_CT_DETECTED
Inhibition by C _T	For inhibition testing by C_{T} this rule has to be applied to every single target of a test sample. Note that the rule has a different meaning depending on whether it is applied to an internal control or to another target. Inhibition testing is only useful for multiplex PCRs with all targets of a sample analyzed in the same tube.	INHIBITION_BY_CT

	If this rule is applied to a target that is not the IC: Enter the minimum C_{T} value for which the inhibition rule should be applied. If the C_{T} value of this target is greater than the entered value or there is no signal at all, the inhibition check will be applied. If the entered C_{T} value is not exceeded or if another test target has a signal, the inhibition check will not be applied.	
	If applied to the IC: The difference between the C_{T} value of the internal control of the test sample and the mean C_{T} value of the internal control of the NTCs has to be less than the value to be entered.	
	x = (C _T of test sample IC) – (mean C _T of all NTC ICs) x must be less than the value to be entered.	
Inhibition by fluorescen ce	For inhibition testing by fluorescence this rule must be applied to every single target of a test sample. Note that the rule has a different meaning depending on whether it is applied to an internal control or to another target. Inhibition testing is only useful for multiplex PCRs with all targets of a sample analyzed in the same tube.	INHIBITION_BY_ FLUORESCENCE
	If this rule is applied to a target that is not the IC: Enter the minimum C_{T} value for which the inhibition rule should be applied. If the C_{T} value of this target is greater than the entered value or there is no signal at all, the inhibition check will be applied. If the entered	

	parameter value to be entered. If the target concentration is greater than the parameter value to be entered the displayed target result depends on the status of the invalidation check box:	
	 If the invalidation check box is activated, the result will be "INVALID". If the invalidation check box is deactivated, only a qualitative result will be presented ("Signal detected"). 	
< Lower LOQ*	This rule is only applied if a signal was detected for the selected target. LOQ stands for Limit Of Quantification. The concentration of the target must be greater than the parameter value to be entered. If the target concentration is less than the parameter value to be entered the displayed target result depends on the status of the invalidation check box:	BELOW_LOWER_LOQ
	 If the invalidation check box is activated, the result will be "INVALID". If the invalidation check box is deactivated, only a qualitative result will be presented ("Signal detected"). 	

* These rules are only available for quantitative targets. They will only be applied is a valid standard curve has been calculated.

3. If applicable for the selected rule, enter a parameter value in the "Parameters" input box. The input format for the different parameters is as follows:

Parameter	Parameter value format
Fluorescence	Enter a value for the normalized fluorescence between 0 and 100.
$C_{_{T}}$ value	Enter a $C^{}_{\tau}$ value between 1 and 100. The value shall not be larger than the number of cycles of the run.

Concentration	Enter a concentration value. This value must be in the default concentration unit and is relating to the target concentration in the eluate.
Inhibition by C_{τ}	For a target that is not the IC: Enter a C_{τ} value between 1 and the number of cycles defined in the assay profile.
	For IC: Enter a value for the maximum Delta C_T between IC _{Test} and IC _{NTC} which may not be exceeded.
Inhibition by fluorescence	For a target that is not the IC: Enter a C_{τ} value between 1 and the number of cycles defined in the assay profile.
	For IC: Enter a value for x that has to be between 0 and 1.
	$\mathbf{x} = (Fl_{IC NTC} - Fl_{IC Test}) / (Fl_{IC NTC})$
	$FI_{IC NTC}$: Mean normalized fluorescence of all NTC ICs $FI_{IC Test}$: Normalized fluorescence of test sample IC
> Upper LOQ	Enter the maximum concentration within the linear range of the target. This value must be in the default concentration unit and is related to the target concentration in the eluate.
< Lower LOQ	Enter the minimum concentration within the linear range of the target. This value must be in the default concentration unit and is related to the target concentration in the eluate.

- 4. In the "Flag if rule fails" box the flag that will be applied if the rule fails is automatically displayed.
- Check the check box in the "Inv." column if the target result should be set to invalid if the configured rule fails. If the check box is not checked, the flag will only be added as warning to a valid result.

F: Analysis rules for test samples

In this section, analysis rules specific for test samples can be defined.

F: Analysis rules for test samples

Select analysis rule	
Invalidate if one IC has no signal and no other target in the same tube has a signal.	
Invalidate if at least one target is invalid or if one IC has no signal and no other target in the same tube has a signa Invalidate if one IC is invalid or if one IC has no signal and no other target in the same tube has a signal. Invalidate if one IC is invalid or has no signal and no other target in the same tube has a signal.	ĺ.
Invalidate if one IC has no signal and no other target in the same tube has a signal. Never invalidate	

The function of Section F corresponds to Section C above, but describes the impact of the analysis result for individual targets on the validity of the whole test sample. Individual targets in this context means all specific targets and internal controls (IC). Please note that all types of invalid flags are taken into account, no matter whether they have been set by the upstream process, the core analysis, or by the rules defined, for example, in Sections A and B of the assay and sample analysis. Furthermore, Section C describes the influence of an IC with no signal on the validity of the test sample. This takes into account the special role of the IC in real-time PCR to monitor the correct amplification of a sample. The IC signal alone is not conclusive in this context and must be compared to the signal of the corresponding targets in the same tube. For example, a missing signal for the IC only indicates a missing amplification, if also all other targets in the same tube do not show amplification. If one of the rules defined in this section is true for a specific target or IC of a test sample, the complete test sample is set to invalid in the analysis. This means that all targets of that test sample are given corresponding invalid flags.

Rule name	Rule function	Comments
Invalidate if at least one target is invalid or if one IC has no signal and no other target in the same tube has a signal.	 All targets of the test samples will be set to invalid, if: At least one target is invalid. or Any internal control has no signal, and no other target in the same tube has a signal. 	This is the most stringent behavior that can be selected in this section. If any target of a test sample has an invalid flag (set by the upstream process, the core analysis, or by rules defined in Section A or B), the complete test sample is set to invalid. The same happens if the internal control has no signal (no C_T) and no other target in the

Select an analysis rule from the drop-down list. The following rules can be applied:

		same tube as the IC has a signal which indicates that the PCR run has not correctly amplified the sample. Note: It is recommended to use this most stringent rule for any routine assays. The less stringent rules below can be applied if your assay profile is still under development and you want to see target result even if there was a problem with another target or your PCR amplification.
Invalidate if one IC is invalid or if one IC has no signal and no other target in the same tube has a signal.	 All targets of the test samples will be set to invalid, if: Any internal control is invalid. Or Any internal control has no signal, and no other target in the same tube has a signal. 	This rule detects an invalid IC in any case and invalidates the corresponding test sample. A missing amplification by the IC is also detected and invalidates the test sample. In comparison to rule 1, invalid specific targets have no effect on the validity of the test sample. Note: Use with caution. For this rule the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid individual targets will not automatically invalidate other targets for this test sample.
Invalidate if one IC is invalid or has no signal and no other target in the same tube has a signal.	 All targets of the test sample will be set to invalid, if: Any internal control is invalid, and no other target in the same tube has a signal. or 	This rule detects an invalid IC or a missing amplification via the IC and invalidates in this case all other targets for this test sample. However, if amplification is detected simultaneously for any non-

	 Any internal control has no signal, and no other target in the same tube has a signal. 	IC target, no invalidation will occur. Note: Use with caution. For this rule the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid individual targets will not automatically invalidate other targets for this test sample.
Invalidate if one IC has no signal and no other target in the same tube has a signal.	 All targets of the selected test sample will be set to invalid, if: Any internal control has no signal, and no other target in the same tube has a signal. 	This rule only detects missing amplification via a missing signal for the IC and invalidates in this case all other targets for this test sample. Note: Use with caution. An invalidity for the IC for any other reason does not result in a corresponding invalidity of other targets for this test sample. Also, for this rule, the validity status of any non-IC target is not relevant for other targets. For higher multiplex assays, this may have the result that invalid individual targets will not automatically invalidate other targets for this test sample.
Never invalidate	The selected standard or control will never be set to invalid.	With this setting, there is no interdependency between targets. However, all individual targets with flags from previous steps keep their flags and any "invalid" status. Note: Use with caution: Any invalidity for any target will not result in the invalidity of any other target for this test

sample.	
Note	
The rules in the drop-down list are sorted for stringency in descending order.	
Note The rules in the drop-down list are sorted for stringency in descending order.	

For examples of how the different rules can be applied, please refer to Section C above.

43.After all assay and sample analysis rules are set, click "Save assay profile as...". 44.The following dialog is displayed:

45.Confirm that the assay profile is final by activating the "Assay profile is final" check box (if this check box is not checked, the assay profile cannot be imported for work list setup in Rotor-Gene AssayManager).

46.Click "OK".

47. The "Save assay profile as..." dialog is displayed.

48.Browse the target directory and click "OK".

Note

Before the new assay profile can be used for setting up a work list, it must be imported to the Rotor-Gene AssayManager database. Go to the "Assay Profiles" tab in the "Configuration" environment, click "Import...", and select the file to be imported. Click "Open" to import the new assay profile to the Rotor-Gene AssayManager database.

Related topics

Testing an assay profile

Modifying an Assay Profile

The alternative to creating an assay profile from scratch is to import an existing one and modify it accordingly. The work flow for modifying an existing assay profile is the same as described in **>** Creating an Assay Profile. The only difference is that instead of clicking "New assay profile...", "Open assay profile..." is used.

Step-by-step procedure to modify an assay profile

1. Click the "Development" icon to change to the "Development" environment.

QIAGEN	Setup Approval Archive	کی کی ک Service Configura	tion Development		Cycler 1	Cycler 2	Cycler 3	Cycler 4	
		Define	general parameters	for this assay profile					
General >	Profile name and status		Open	assay profile New assay	profile	Messages			
Compatibility	Assay name		Assay is quantitat	ive					
Run Profile	Short name	Profile version	Define sample tran	nsfer and initial elution volum	ie				
Targets	Plug-in type	Plug-in version	Sample transfer volu	\rightarrow μ μ					
Samples	Comment		Calculated conversion factor						
AUDAS									
Core Analysis	Kit material number Material number		QIAsymphony import p Assay parameter set na	arameters Ime QIAGEN original					
Assay & Sample Analysis									
	N	ew material number		New AF					
			Save assay profile	as Start testing ass	ay profile				

- The "Development" environment opens. In this initial state only the two start buttons, "Open assay profile..." and "New assay profile...", are enabled. All other elements are disabled.
- 3. Click "Open assay profile...".

The "Select assay profile to load" dialog opens.

- 4. Browse the directory containing the assay profile to be used, select it, and click "OK".
- 5. Continue with step 7 in the procedure described in Creating an assay profile.

Related topics

Testing an assay profile

Testing an Assay Profile

An assay profile currently in the development process can be tested by performing a virtual analysis of a previously finished PCR experiment. The current assay profile can be tested using real experiment data. The outcome of this process is the answer to the question "What would the results have been if a previously finished experiment would be run with the currently developed assay profile?".

A *.rex file (containing raw experiment data and sample data) from an experiment performed with the Rotor-Gene software or Rotor-Gene AssayManager can be loaded. The data of the *.rex file are analyzed with the currently developed assay profile — specifically the rules and parameters defined in the "Core Analysis" and "Assay & Sample Analysis" sub tabs. Raw data, processed data, and — for quantitative assays — also the standard curve can be checked and compared to the results generated by the assay profile.

Test screen

The screen to test assay profiles has three parts:

- An interactive button bar at the top
- "Plots and information" area
- "Results" area

QLAGEN	>>>> Setup	Approval	Archive	XT Service Cor	Ç[©] nfiguration	Development		Atlanta	Berlin Chie	ago Dortmur	nd
Experimen	nt						Load .rex file)	Apply	Back to ed	itor
Plots an	d information										
Raw data	Processed da	ita Star	dard curve								
Results											
Standards	/ controls										
Pos. 🔳	Style Sample	ID	Status Typ	e Targets	Ct	Result	Flags				
Samples Pos.	Style Sample	ID	Status Typ	e Targets	Ct	Result	Flags				
					100						
<u> </u>											
Conc. in	T Cor	nc. unit	Ŧ	Show I	C 🗌 Ig	nore invalid controls	Use scientific format				
	📩 User Defined	Test Mode							September 28, 2017	Gina Doe	⇒Ø

A *.rex file is loaded using the "Load .rex file..." button at the top of the screen. Clicking "Apply" starts the analysis process using the loaded *.rex file and the currently developed assay profile. Clicking "Back to editor" changes to the "Development" environment.

Note

The assay profile test environment is designed to be very similar to the "Approval" environment. For further information about the functionalities, refer to the description of the "Approval" environment in the *Rotor-Gene AssayManager v1.0 Core Application User Manual*.

Step-by-step procedure to test an assay profile

1. Click "Start testing assay profile" in the button bar of the "Development" environment.

The screen to test assay profiles is opened.

2. Click "Load *.rex file" in the button bar.

The "Select *.rex file to load" dialog opens.

3. Change to the directory containing the *.rex file, select it, and click "OK".

Note

The run profile of the *.rex file must match the run profile of the assay profile exactly. Even the positions of external controls and test samples on the rotor must be identical.

If run settings or sample type definitions differ between the two files, a corresponding error message will be displayed.

Note

Empty rotor positions must have the sample type "None" in the rex file to be loaded. Only test sample positions may be of the sample type "Unknown".

Note

The testing environment only supports rex files with samples defined on one page. Rex files with samples defined on several pages cannot be loaded.

4. Click "Apply" in the button bar to start the analysis process using the currently developed assay profile.

Raw experiment data from the *.rex file are analyzed using the assay profile.

The results are presented in the "Plots and information" area and the "Results" table.

Note

If changes were made to the assay profile, the results in the test environment will not automatically be updated when returning. The "Apply" button must be clicked to update the results.

Note

The loaded *.rex file must contain only raw experiment data and sample data. If the "crop cycles" function has already been used on the file, the *.rex file cannot be used in the Assay Profile test environment and will be indicated by a corresponding message. Therefore, re-open the *.rex file with the Rotor-Gene Q software and delete the crop cycled raw channel. Click on "Options of the corresponding raw channel and select "Delete this raw channel". After the export of the *.rex file, it can be used in the Rotor-Gene AssayManager v1.0 assay profile test environment.

Creating a .qut file

The core analysis defines algorithms for the normalization of the amplification curves and quantification of the targets. In the "Core Analysis" tab most of the parameter values must be imported from a Rotor-Gene quantification template file. This *.qut file can be generated after analysis of an assay in the standard Rotor-Gene software.

Generating *.qut files in Rotor-Gene software

Analysis

After opening the raw data of a PCR run and clicking "Analysis", the "Analysis" window appears.

Saving a *.qut file

Select the "Quantitation" tab in the "Analysis" window. Double-click on the channel name or select the channel and click "Show" to open the channel of interest.

Analysis	×
2 Std Curves (R) Quantitation	el.) Other Melt
Cycling A.Gre	en (Page 1)
<u>S</u> how	<u>H</u> ide
🗖 Auto-shrink wir	ndow

Three windows appear: the main screen, the standard curve, and the results. Adapt the analysis options as required (e.g., set threshold, activate dynamic tube normalization, apply slope correction, etc.).

Note For details regarding the different analysis options in the Rotor-Gene software refer to the *Rotor-Gene Q User Manual*.

At the bottom right of the screen expand the "Imported Settings" by clicking

CT Calculation							
🔲 Invert Raw Data							
<u>T</u> hreshold : Eliminate Cycles <u>b</u> efore :	0.4192 1						
Auto-Find Thres	hold						
Standard Curve conc= 10 [^] (-0.300*CT + 10.780) CT = -3.334*log(conc) + 35.943 Type : Floating							
Import Curve	Reset						
Imported Settings							
Import	Export						

Click "Export..." to export the selected analysis options to a Rotor-Gene Quantitation Analysis Template.

Save Quantitat	ion Analysis Ten	nplate				? 🗙
Save in:	📋 My Document	\$	•	← 🗈	-111 📩	
My Recent Documents Desktop	ed My Music @My Pictures					
My Documents						
My Computer						
Mu Network	File name:				•	Save
Places	Save as type:	Rotor-Gene Quantitation Ana	alysis Te	mplate	•	Cancel

Enter a file name, browse the target directory, and confirm by clicking "Save". The Rotor-Gene Quantitation Template file extension is *.qut.

Note

For every single acquisition channel an individual *.qut file has to be generated.

Creating a .ret file

The "Run Profile" tab allows loading of a Rotor-Gene experiment template file (*.ret file) to define the cycling conditions and the acquisition channels for the assay profile. These parameters cannot directly be configured or modified in Rotor-Gene AssayManager. The configuration can only be done in the standard Rotor-Gene software. See the *Rotor-Gene Q User Manual* for details.

Saving templates in the Rotor-Gene software

Set up a run in the Rotor-Gene software using the Advanced wizard according to the assay requirements. In the "New Run Wizard window 4" the run settings are summarized and can be saved as a template using "Save Template". Alternatively open a finished run and select the "Save As Template..." function from the file menu. For details regarding saving templates refer to the *Rotor-Gene Q User Manual*.

New Run Wizard
Summary :
Setting Value Green Gain 7 Rotor 36-Well Rotor Sample Layout 1, 2, 3, Reaction Volume (in microliters) 25
Once you've confirmed that your run settings are correct, click Start Run to begin the run. Click Save Template to save settings for future runs.
Skip Wizard << Back

Loading templates in Rotor-Gene AssayManager

To load a Rotor-Gene experiment template file (*.ret file) in Rotor-Gene AssayManager click "Load *.ret file...."

A dialog box opens where the source directory can be selected. Select the desired *.ret file and click "Open".

(坐	Select a run profile				
Loc	ok in	IdentManual	T			
Pat	:h	C:\Subversion\Trunk\Documentation\IdentManual				
	Name	*	Last modified			
	Manu	al	4/16/2012 9:26:09 AM			
	Maps		4/19/2012 2:25:17 PM			
	Templ	ates	3/9/2012 5:33:15 PM			
	Topics	;	4/20/2012 2:42:47 PM			
	Rotor-	Gene SYBR Green PCR Demo Kit.ret	4/23/2012 10:22:48 AM			
			•			
File	name		File type			
			ret files (*.ret)			
			Open Cancel			

After successful loading of the template file the detailed run settings can be checked. The different run settings can be enlarged or collapsed using the "+" or "–" buttons in the list.

Note

The run settings cannot be altered using Rotor-Gene AssayManager v1.0.

At the bottom of the screen there is a check box labeled "Use auto-gain over all tubes of the assay". Activate this check box to apply the auto-gain optimization to all reserved rotor positions and not only on the one rotor position defined during run setup in the Rotor-Gene software.

If "Use auto-gain over all tubes of the assay" is checked, the median gain determined on all reserved rotor positions of that assay will be applied during data acquisition. This option applies to all different acquisition channels and steps defined in that assay profile.

1.3.2.4 Report Profiles for UDT Assays

In a report profile used to report data for a UDT Basic Plug-in assay several options must be set in a certain way in order to get an appropriate PDF report. Report profiles can be created and managed in the "Report Profiles" tab of the "Configuration" environment.

The following configuration is useful for report profiles used for standard UDT Basic Plug-in assays with one rotor position per sample ID:

1. Go to "External Controls - Overview" in the "Content selection" area and select the "Show target result only" radio button.

2. Go to "External Controls - Details" in the "Content selection" area and deselect the "Sample result" check box.

3. Go to "Test Results - Overview" in the "Content selection" area and select the "Show target result only" radio button.

4. Go to "Test Results - Details" in the "Content selection" area and deselect the "Sample result" check box.

In addition to these configurations, the report profiles can be adapted to the individual needs for the report.

Only for UDT Basic Plug-in assays, where a sample is split into several rotor positions, the "Sample result" option in the report profile mentioned above is essential.

1.4 Hint for Online Documentation

Rotor-Gene AssayManager uses plug-ins to increase its functionality. In order to have a clear distinction between the core application user manual and the plug-in user manuals and to keep the documentation short and focused, general topics are explained in the core application user manual.

Providing you with the best information depends on the environment you are currently in, especially for the following items:

- Help for "Plots and information" table
- Help for "Results" table
- Help for testing an assay profile

1.4.1 Help for Plots and Information Table

The help information for the "Plots and Information" table is available either in the UDT Basic Plug-in User Manual or in the Rotor-Gene AssayManager Core Application User Manual .

The table below shows — depending on the current environment — where to find more information.

Environment	Help file and topic
Approval	UDT Basic Plug-in User Manual (i.e., this manual)
	Topic: ▶General information about approving samples
Archive	Rotor-Gene AssayManager Core Application User Manual
	 Topics: Basic Concepts → Environments → "Archive" Environment Using Rotor-Gene AssayManager → Administrative Tasks → Managing Archives
Development	UDT Basic Plug-in User Manual (i.e., this manual)
	Topic: ▶ Testing an assay profile

In case the information cross-references the *Rotor-Gene AssayManager Core Application User Manual*, open the help file using the Windows Start menu:

Start → All Programs → QIAGEN → Rotor-Gene AssayManager

1.4.2 Help for Result Table

The help information for the "Results Table" is available either in the UDT Basic Plug-in User Manual or in the Rotor-Gene AssayManager Core Application User Manual .

The table below shows — depending on the current environment — where to find more information.

Environment	Help file and topic
Approval	Rotor-Gene AssayManager Core Application User Manual
	Topic: ■ Using Rotor-Gene AssayManager → Standard Tasks → Approving a Run
Archive	Rotor-Gene AssayManager Core Application User Manual
	 Topic: Using Rotor-Gene AssayManager → Administrative Tasks → Managing Archives
Development	UDT Basic Plug-in User Manual (i.e., this manual)
	Topic: ▶Testing an Assay Profile

in case the information cross-references the *Rotor-Gene AssayManager Core Application User Manual*, open the help file using the Windows Start menu:

Start → All Programs → QIAGEN → Rotor-Gene AssayManager

1.4.3 Core Analysis

The help information for the "Core Analysis" is available in the "Creating an Assay Profile" section. Click the link below to jump to the corresponding section:

Core Analysis

1.4.4 Assay and Sample Analysis

The help information for "Assay and Sample Analysis" is available in the "Creating an Assay Profile" section. Click the link below to jump to the corresponding section:

Assay and Sample Analysis

1.5 Error messages

The following list provides all error messages that might occur during the operation of this plug-in provide the following information to the service specialist:

- Actions performed before the error message occurred
- Error ID

Note

The error ID is unique and helps QIAGEN Technical Services to clearly identify the error message.

Error ID	Error Text
560010	The assay '{0}' could not be found.
560011	The external control '{0}' could not be found.
560012	The target '{0}' could not be found.
560014	An error occurred while retrieving test samples for assay profile {0}.
560015	Rule parameter for rule '{0}' could not be found.
560017	Could not create rule because of unexpected rule parameter {0}.
560018	Could not create rule of type {0}.
560019	Could not create rule description of type {0}.
560020	No rule with rule name {0} was found.
560021	No rule type {0} was found.
560022	Could not create rule because of unexpected rule parameter count: expected was {0}, but was {1}.
560023	No rule description type {0} was found.
560024	samples collection should at least contain one sample
570003	The provided curve is invalid.
570012	Slope correction cannot be performed without activation of 'DynamicTube' option. Check Rotor-Gene .qut-file and retry.
570014	The provided cycle threshold value is zero. Check Rotor-Gene .qut-file and retry.
570015	The slope of the provided regression line is zero.
570016	Schema validation failed: {0}

Error ID	Error Text
570017	Quantitation template could not be loaded. File reading failed. Check Rotor-Gene .qut-file and retry.
570018	Quantitation template could not be loaded. The file does not contain all mandatory fields. Create a file where all fields including the threshold are set.
570026	The entered number for N1 is invalid. Enter a valid number (1 - {1}).
570027	N2 for target {0} must not be greater than {1}. Enter a valid number in the N2 field.
570031	Enter a valid number for N2 (1 to maximum number of cycles).
570033	The run template does not contain any cycling parameters.
570034	The run profile must only contain "Cycling" and "Hold" steps. Check the run profile and the assay profile for consistency.
570035	Enter a valid number for N1 (1 to maximum number of cycles).
570036	The loaded rex-file contains a melt step. The assay profile does not allow melt steps. Check the rex-file and the assay profile for consistency.
570037	Enter a valid value for {0} of target {1} ({2}-{3}).
570057	No target profile with the name {0} was found.
570066	Shorten the sample comment to max. 256 characters.
570067	Shorten the assay comment to max. 256 characters.
570070	Failed to generate report. Reason: {0}
570073	Failed to launch the application {0}. Reason:
570074	File {0} not found.
570106	The concentration value must be less than the parameter value to be entered.
570107	The R value must be greater than the parameter value to be entered.
570112	The concentration value must be less than the parameter value to be entered.
570113	The concentration value must be less than or equal to the parameter value to be entered.
570114	The Ct value must be less than the parameter value to be entered.
570115	The Ct value must be less than or equal to the parameter value to be entered.
570116	The concentration value must be greater than the parameter value to be entered.
570117	The concentration value must be greater than or equal to the parameter value to be entered.
570118	The Ct value must be greater than the parameter value to be entered.
570119	The Ct value must be greater than or equal to the parameter value to be entered.
570120	The fluorescence must be greater than the parameter value to be

Error ID	Error Text
	entered. (Rule is only evaluated, if a Ct value is present.)
570121	The fluorescence must be greater than or equal to the parameter value to be entered. (Rule is only evaluated, if a Ct value is present.)
570135	The R value must be greater than or equal to the parameter value to be entered.
570136	The efficiency must be greater than the parameter value to be entered.
570137	The efficiency value must be greater than or equal to the parameter value to be entered.
570138	The number of valid quantification standards must be greater than or equal to the parameter value to be entered.
570156	Invalidate if one IC has no signal and no other target in the same tube has a signal.
570157	Invalidate if one IC is invalid or has no signal and no other target in the same tube has a signal.
570158	Invalidate if one IC is invalid or if one IC has no signal and no other target in the same tube has a signal.
570159	Invalidate if at least one target is invalid or if one IC has no signal and no other target in the same tube has a signal.
570172	{0}Please enter valid parameters. For more information, place the cursor over the rule name.
570175	Defines the lower limit of quantification. For concentrations below the parameter value to be entered, only a qualitative result is presented.
570176	Defines the upper limit of quantification. For concentrations above the parameter value to be entered, only a qualitative result is presented.
570186	The fluorescence must be less than the parameter value to be entered.
570187	The fluorescence must be less than or equal to the parameter value to be entered.
570192	This assay type is not supported by AUDAS.
570195	Sample result not supported
570202	Enter a valid password.
570203	This user is deactivated. Contact your local administrator.
570205	Password expired
570206	Enter a valid number for target {0} in the "Remove data after cycle field".
570207	Enter a valid number for target $\{0\}$ in the "Remove data before cycle" field $(1 - 40)$.
570208	The value for "Remove data after cycle" must be higher than the value of "Remove data before cycle". The difference between these values must be at least 7.
570209	The value in the Remove data after cycle field for target {0} must not be greater than {1}.
570210	Enter a valid number lower than $\{1\}$ in the "Remove data before cycle"

Error ID	Error Text
	field for target {0}.
570211	The value in the Remove data after cycle field for target {0} must not be smaller than {1}.
570212	The value for "Remove data before cycle" for target {0} must be higher than {1}.
570220	Copying of the selected cells failed. Only adjacent cells can be copied. Copy and paste the selected cells individually.
570222	Paste operation is cancelled. Selected cell(s) must be contiguous.
570223	Paste operation is cancelled. Selected cell(s) must be contiguous.
570224	Paste operation is cancelled. Selected cell(s) must be editable for pasting.
570225	Pasting failed. The selected target area is smaller than the clipboard entry. Select a different target area or reduce data to be copied.
570226	Paste operation is cancelled. Select some cell(s).
570229	There is not enough space for the information to be pasted.
570231	This user was deactivated because the password was entered wrong too many times. Contact your local administrator. The current session will be closed.
570237	The release was not performed but data was saved.
570238	The customized report generation is not supported by this plug-in.
570249	The R value must be less than the parameter value to be entered.
570250	The R value must be less than or equal to the parameter value to be entered.
570251	The efficiency must be less than the parameter value to be entered.
570252	The efficiency value must be less than or equal to the parameter value to be entered.
570253	The R ² value must be less than the parameter value to be entered.
570254	The R ² value must be less than or equal to the parameter value to be entered.
570255	The R ² value must be greater than the parameter value to be entered.
570256	The R ² value must be greater than or equal to the parameter value to be entered.
570274	The initial elution volume is invalid. Enter a valid volume (1 – 999 999 999).
570276	The sample transfer volume is invalid. Enter a valid volume (1 – 999 999 999).
570279	Sample results will be reported as valid despite one or more invalid external controls. You are abou to ignore analysis rules from the assay profile.
570280	The generated report could not be opened. Verify that you have installed a pdf viewer on your system

1.6 Appendix

The appendix contains the Liability Clause and the License Terms for the UDT basic plug-in.

Note

Further information, such as a glossary, can be found in the *Rotor-Gene* AssayManager Core Application User Manual

Liability Clause

QIAGEN shall be released from all obligations under its warranty in the event repairs or modifications are made by persons other than its own personnel, except in cases where the Company has given its written consent to perform such repairs or modifications.

All materials replaced under this warranty will be warranted only for the duration of the original warranty period and in no case beyond the original expiration date of original warranty unless authorized in writing by an officer of the Company. Read-out devices, interfacing devices, and associated software will be warranted only for the period offered by the original manufacturer of these products. Representations and warranties made by any person, including representatives of QIAGEN, which are inconsistent or in conflict with the conditions in this warranty shall not be binding upon the Company unless produced in writing and approved by an officer of QIAGEN.

License Terms

Software License Agreement

TERMS AND CONDITIONS of an LEGAL AGREEMENT (the "Agreement") by and between QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden, Germany, ("QIAGEN") and you (either an individual or a legal entity), the licensee of the software (hereinafter referred to as "SOFTWARE").

By opening the sealed software package(s) you are agreeing to be bound by the terms of this Agreement. If you do not agree to the terms of this Agreement, promptly return the unopened software package(s) and the accompanying items (including written materials) to the place you obtained them for a full refund.

1. GRANT OF LICENSE

Scope. Subject to the terms and conditions of this agreement, QIAGEN grants you a worldwide, perpetual, non-exclusive, and nontransferable license to use the SOFTWARE solely for your internal business purposes.

You shall not:

- modify or alter the whole or any part of the SOFTWARE nor merge any part of it with another software nor separate any components of the SOFTWARE from the SOFTWARE nor, save to the extent and in the circumstances permitted by law, create derivative works from, or, reverse engineer, decompile, disassemble or otherwise derive source code from the SOFTWARE or attempt to do any of these things
- copy the SOFTWARE (except as provided above)
- assign rent, transfer, sell, disclose, deal in, make available or grant any rights in the Software Product in any form to any person without the prior written consent of QIAGEN;
- remove alter, obscure, interfere with or add to any proprietary notices, labels,

trademarks, names or marks on, annexed to, or contained within the SOFTWARE;

- use the SOFTWARE in any manner that infringes the intellectual property or other rights of QIAGEN or any other party; or
- use the SOFTWARE to provide on-line or other database services to any other person.

Single-Computer Use. In case you purchased a single-computer license of the SOFTWARE this Agreement permits you to use only one copy of the SOFTWARE on a single computer.

Multi-Computer Use. In case you purchased a multi-computer license of the SOFTWARE from QIAGEN, this Agreement permits you to use multiple copies of the SOFTWARE on a maximum number of computers as specified in the purchase Agreement between QIAGEN and you ("**Purchase Agreement**").

Trial versions. Trial versions of the SOFTWARE may expire after a period of 30 (thirty) days without prior notice.

Open Software/Third Party Software. This Agreement does not apply to any other software components identified as subject to an open source license in the relevant notice, license and/or copyright files included with the programs (collectively the "**Open Software**") Furthermore, this Agreement does not apply to any other software for which QIAGEN is only granted a derived right to use ("**Third Party Software**"). Open Software and Third Party Software may be supplied in the same electronic file transmission as the SOFTWARE, but are separate and distinct programs. The SOFTWARE is not subject to the GPL or any other open source license.

If and insofar QIAGEN provides Third Party Software, the license terms for such Third Party Software shall additionally apply and prevail. If Open Software is provided, the license terms for such Open Software shall additionally apply and prevail. QIAGEN shall provide you with the corresponding source code of relevant Open Software, if the respective license terms of the Open Software include such obligation. QIAGEN shall inform if the SOFTWARE contains Third Party Software and/or Open Software and make available the corresponding license terms on request.

2. UPGRADES

If the SOFTWARE is an upgrade from a previous version, you are granted a single license to both copies, and you may not separately transfer the prior version(s) except as a one-time permanent transfer to another user of the latest upgrade and all prior versions as allowed in Section 4 below.

3. COPYRIGHT

The SOFTWARE, including any images, and text incorporated in the SOFTWARE, is copyrighted and is protected by German copyright laws and international treaty provisions. You may not copy any of the printed materials accompanying the SOFTWARE.

4. OTHER RESTRICTIONS

You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written materials on a permanent basis to another end user provided you delete the setup files from your computer, and the recipient agrees to the terms of this Agreement. You may not reverse engineer, decompile, or disassemble the SOFTWARE. Any transfer of the SOFTWARE must include the most recent upgrade and all prior versions.

5. NO WARRANTY

The SOFTWARE is provided "as is" without warranty of any kind, express or implied, including without limitation any implied warranties of merchantability, fitness for a particular purpose or non-infringement with respect to the SOFTWARE and the accompanying written materials.

6. CUSTOMER REMEDIES

QIAGEN entire liability and your exclusive remedy shall be, at QIAGEN's option, either (a) return of the price paid or (b) repair or replacement of the SOFTWARE that does not meet QIAGEN's Limited Warranty and that is returned to QIAGEN with a copy of your receipt. This Limited Warranty is void if failure of SOFTWARE has resulted from accident, abuse or misapplication. Any replacement of SOFTWARE will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.

7. LIMITED LIABILITY

In no event shall QIAGEN or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss, unforeseeable damage, lack of commercial success, indirect damage or consequential damage - in particular financial damage – or for damage resulting from third party claims) arising out of the use or inability to use the SOFTWARE, even if QIAGEN has been advised of the possibility of such damages.

The above restrictions of liability shall not apply in cases of personal injury or any damage resulting from willful acts or gross negligence or for any liability based on the Product Liability Act (Produkthaftungsgesetz), guarantees or other mandatory provisions of law.

The above limitation shall apply accordingly in case of:

- delay,
- compensation due to defect,
- compensation for wasted expenses.

8. NO SUPPORT

Nothing in this agreement shall obligate QIAGEN to provide any support for the SOFTWARE. QIAGEN may, but shall be under no obligation to, correct any defects in the SOFTWARE and/or provide updates to licensees of the SOFTWARE. You shall make reasonable efforts to promptly report to SOFTWARE any defects you find in the SOFTWARE, as an aid to creating improved revisions of the SOFTWARE.

Any provision of support by QIAGEN for the SOFTWARE (including network installation support), if any, shall solely be governed by the Purchase Agreement or an according Support Agreement.

9. TERMINATION

If you fail to comply with the terms and conditions of this Agreement, QIAGEN may terminate this Agreement and your right and license to use the SOFTWARE. You may terminate this Agreement at any time by notifying QIAGEN. Upon the termination of this Agreement, you must delete the SOFTWARE from your computer(s) and archives.

YOU AGREE THAT UPON TERMINATION OF THIS AGREEMENT FOR ANY REASON, QIAGEN MAY TAKE ACTIONS SO THAT THE SOFTWARE NO LONGER OPERATES.

10. GOVERNING LAW, VENUE

This Agreement shall be construed and interpreted in accordance with the laws of Germany, without giving effect to conflict of laws provisions. The application of the provisions of the UN Sales Convention is excluded. Notwithstanding any other provision under this Agreement, the parties to this Agreement submit to the exclusive jurisdiction of the Düsseldorf courts.
Trademarks: QIAGEN®, QIAsymphony®, Rotor-Gene®, Rotor-Gene AssayManager® (QIAGEN Group); Microsoft®, Windows® (Microsoft Corporation).

02/2018 © 2018 QIAGEN, all rights reserved.

Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

www.qiagen.com

Technical Support

www.support.qiagen.com