June 2016

Quick-Start Protocol QIAGEN® Multiplex PCR *Plus* Kit

The QIAGEN Multiplex PCR *Plus* Kit (cat. nos. 206151, 206152 and 206155) should be stored immediately upon receipt at -30 to -15° C in a constant-temperature freezer. The 2x Multiplex PCR Master Mix can also be stored at 2–8°C for up to 2 months if not otherwise stated on label.

Further information

- QIAGEN Multiplex PCR Plus Handbook: www.qiagen.com/HB-0526
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.qiagen.com

Notes before starting

- We have also evaluated several specialized protocols for the following cases: PCR assays with more than 10 products, PCR of long amplicons (≥1.5 kb), sensitive multiplex PCR assays, transgene detection, detection of genetically modified organisms or microorganisms, qualitative or semiquantitative gene expression analysis and exon-specific PCR. For more information, please refer to the *QIAGEN Multiplex PCR* Plus *Handbook*, which can be found at www.qiagen.com/handbooks.
- Always use the cycling conditions specified in this protocol.
- If using an already established multiplex PCR system, use the previously established annealing temperature in combination with the cycling conditions specified in this protocol.
- Annealing time must be 90 s.
- Use equal concentrations (0.2 µM) of all primers.
- For optimal results, we recommend using primer pairs with a T_m of ≥68°C.
- Prepare a 10x primer mix, using 2 µM of each primer.
- Optional: Q-Solution[®] can be used for templates that are GC rich (>65%) or have a high degree of secondary structure. If using Q-Solution for the first time, it is important to perform parallel amplification reactions with and without Q-Solution.

Sample to Insight

- **Optional**: CoralLoad[®] Dye can be used for easy visualization. Note that CoralLoad Dye must not be used if using capillary sequencers.
- The functionality and specificity of all primer pairs should be tested in single reactions before combining them in a multiplex PCR assay.
- Primers labeled with fluorescent dyes should always be kept in the dark.

• PCR must start with an activation step of 5 minutes at 95°C.

Table 1. Protocol selection according to template size

Size of amplicon	Protocol	
Up to 1.5 kb	Protocol 1: Multiplex PCR of fragments up to 1.5 kb in length	
Up to 500 bp	Protocol 2: Multiplex PCR of fragments up to 500 bp in length	

Protocol 1: Multiplex PCR of fragments up to 1.5 kb in length

- Thaw the 2x Multiplex PCR Master Mix (if stored at -20°C), template DNA, RNAse-free water, Q-Solution (optional), CoralLoad Dye (optional) and the primer mix. Mix the solutions completely before use.
- 2. Prepare a reaction mix according to Table 2.

Note: The reaction mix typically contains all the components required for multiplex PCR except the template DNA. Prepare a volume of reaction mix 10% greater than that required for the total number of reactions to be performed.

Table	2.	Reaction	setup
-------	----	----------	-------

Component	Volume/reaction	Final concentration
Reaction mix		
2x Multiplex PCR Master Mix	25 µl	1x
10x primer mix, 2 µM each primer	5 µl	0.2 µM
Optional: Q-Solution, 5x*	5 µl	0.5×
Optional : CoralLoad Dye, 10x [†]	5 µl	lx
RNase-free water	Variable	_
Template DNA (added at step 4)	Variable	≤300 ng DNA
		Start with 100 ng DNA
Total volume	50 µl	

* For GC-rich templates. [†] Do not include if using capillary sequencers for analysis.

- 3. Mix the reaction mix thoroughly and dispense appropriate volumes into PCR tubes or plates. Mix gently, for example, by pipetting the reaction mixture up and down a few times. Due to the hot start, it is not necessary to keep samples on ice during reaction setup.
- 4. Add template DNA (≤300 ng /reaction) to the individual PCR tubes containing the reaction mix (see Table 2).
- 5. Program the thermal cycler according to the manufacturer's instructions, using the conditions outlined in Table 3.
- Place the PCR tubes in the thermal cycler and start the cycling program as outlined in Table 3.
 Note: After amplification, samples can be stored overnight at 2–8°C, or at –20°C for longer storage.

		Comments
5 min	95°C	HotStarTaq <i>Plus</i> DNA Polymerase is activated by this step.
30 s	95°C	
90 s	60°C	If the lowest T _m of your primer mixture is below 60°C, use 57°C as starting annealing temperature.
90 s	72°C	Optimal for targets up to 1.5 kb in length.
35		35 cycles give sufficient results in most cases. See Table 5 for further recommendations.
10 min	68°C	For analysis on capillary sequencers, a final extension time of 30 min must be used.
	30 s 90 s 90 s 35	30 s 95°C 90 s 60°C 90 s 72°C 35

Table 3. Cycling protocol for multiplex PCR of up to 1.5 kb fragments

 Analyze samples on an agarose gel or the QIAxcel® Advanced System or the Agilent® 2100 Bioanalyzer. The optimal amount of PCR product required to give a satisfactory signal with your detection method should be determined individually.

Protocol 2: Multiplex PCR of fragments up to 500 bp in length

- 1. Proceed with steps 1-4 from Protocol 1.
- 2. Program the thermal cycler according to the manufacturer's instructions, using the conditions outlined in Table 4.
- 3. Proceed with steps 6–7 from Protocol 1.

Table 4. Cycling protocol for multiplex PCR of up to 500 bp fragments

		Comments
5 min	95°C	HotStarTaq <i>Plus</i> DNA Polymerase is activated by this step.
30 s	95°C	
90 s	60°C	If the lowest T _m of your primer mixture is below 60°C, use 57°C as starting annealing temperature.
30 s	72°C	Optimal for targets up to 500 bp in length.
35		35 cycles give sufficient results in most cases. See Table 5 for further recommendations.
10 min	68°C	For analysis on capillary sequencers, a final extension time of 30 min must be used.
	30 s 90 s 30 s 35	30 s 95°C 90 s 60°C 30 s 72°C 35

Table 5. Recommendations for template amount and cycle number

Amount of starting template (ng DNA per reaction)	Number of cycles*
100–300	30–35
10–100	35–40
0.1–10	40–45

* If using fluorescently labeled primers and a capillary sequencing instrument as an analysis platform, in general 5 cycles less are recommended.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, Sample to Insigh®, QIAxcel®, Coralload®, HotStarTaq®, Q-Solution® (QIAGEN Group); Agilent® (Agilent Technologies, Inc.). 1103091 06/2016 HB-2111-001 © 2016 QIAGEN, all rights reserved.