artus® EBV QS-RGQ Kit: Caratteristiche delle prestazioni

IVD

REF

4501363

artus EBV QS-RGQ Kit, Versione 2.

QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden

R1

Prima di eseguire il test, controllare la disponibilità di nuove revisioni delle etichette elettroniche all'indirizzo qiagen.com/products/artus-ebv-pcr-kit-ce Lo stato della revisione è indicato dalla data di rilascio (formato: mese/anno).

Limite di sensibilità – plasma

Il limite di sensibilità, tenendo conto della purificazione (limite di rilevamento), è stato calcolato per artus EBV QS-RGQ Kit utilizzando campioni clinici EBV-positivi in combinazione con l'estrazione sul QIAsymphony® SP.

Per il plasma, il limite di sensibilità (tenendo conto della purificazione) dell' artus EBV QS-RGQ Kit è stato determinato utilizzando una serie di diluizioni del materiale EBV da 3160 copie al valore nominale di 1 copia/ml di EBV, aggiunte ai campioni clinici di plasma. I campioni sono stati sottoposti ad estrazione del DNA con il QlAsymphony DSP Virus/Pathogen Midi Kit in combinazione con il protocollo Cellfree1000_DSP (volume di estrazione: 1 ml, volume di eluizione: 60 μl). Ciascuna delle 10 diluizioni è stata analizzata con l'artus EBV QS-RGQ Kit in 4 giorni diversi nell'ambito di 4 sedute con 8 replicati ciascuna. I risultati sono stati determinati mediante un'analisi probit. La Figura 1 illustra graficamente l'analisi probit. Il limite di sensibilità dell'artus EBV QS-RGQ Kit, tenendo conto della purificazione in combinazione con il Rotor-Gene® Q, è di 157 copie/ml (p = 0,05). Ciò significa che esiste una probabilità del 95% che vengano rilevate 157 copie/ml (corrispondenti a 22,29 UI/ml).

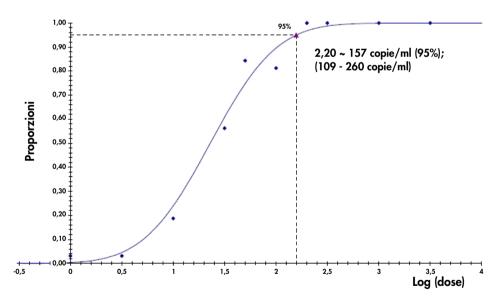


Figura 1. Analisi probit: plasma, EBV (Rotor-Gene Q). Limite di sensibilità, tenendo conto della purificazione (plasma, utilizzando QIAsymphony DSP Virus/Pathogen Midi Kit) e artus EBV QS-RGQ Kit sul Rotor-Gene Q.

Specificità – plasma

La specificità dell'*artus* EBV QS-RGQ Kit è garantita in primo luogo dalla selezione dei primer e delle sonde, e poi dalla selezione di condizioni di reazione stringenti. I primer e le sonde sono stati controllati per accertare eventuali omologie con tutte le sequenze pubblicate nelle banche genetiche mediante analisi comparativa delle sequenze. È stata così assicurata la rilevabilità di tutti i genotipi rilevanti.

Inoltre, la specificità è stata convalidata con 30 diversi campioni di plasma EBV-negativi. Questi campioni non hanno generato segnali con i primer e le sonde specifici di EBV inclusi nell'EBV RG Master.

È stata testata una potenziale reattività crociata dell'*artus* EBV QS-RGQ Kit utilizzando il gruppo di controllo elencato nella sottostante Tabella 1. Nessuno degli agenti patogeni testati è risultato reattivo. Non sono state riscontrate reattività crociate con infezioni miste.

Tabella 1. Analisi della specificità del kit con patogeni potenzialmente cross-reattivi

Gruppo di controllo	EBV (Cycling Green)	Controllo interno (Cycling Yellow)
Virus dell'herpes umano 1 (virus dell'herpes simplex 1)	-	+
Virus dell'herpes umano 2 (virus dell'herpes simplex 2)	-	+
Virus dell'herpes umano 3 (virus Varicella-zoster)	-	+
Virus dell'herpes umano 5 (citomegalovirus)	-	+
Virus umano di tipo 1 della leucemia dei linfociti T	-	+
Virus umano di tipo 2 della leucemia dei linfociti T	-	+

Range lineare – plasma

Il range lineare dell'*artus* EBV QS-RGQ Kit (tenendo conto della purificazione) è stato determinato analizzando una serie di diluizioni del materiale EBV in un range da 1,00 x 10⁷ copie/ml a 6,31 x 10² copie/ml nel plasma. La purificazione è stata eseguita in replicati (n = 4 per concentrazioni ≥1,00 x 10⁶ copie/ml; n = 8 per concentrazioni <1,00 x 10⁶ copie/ml) utilizzando il QIAsymphony DSP Virus/Pathogen Midi Kit in combinazione con il protocollo Cellfree 1000_DSP (volume di estrazione: 1 ml, volume di eluizione: 60 µl). Ogni campione è stato analizzato con l'*artus* EBV QS-RGQ Kit.

Il range lineare di *artus* EBV QS-RGQ Kit, tenendo conto della purificazione, è stato determinato per coprire le concentrazioni da 6.31×10^2 copie/ml a 1.00×10^7 copie/ml (corrispondenti al range da 8.96×10^1 a 1.42×10^6 IU/ml) per il plasma (Figura 2).

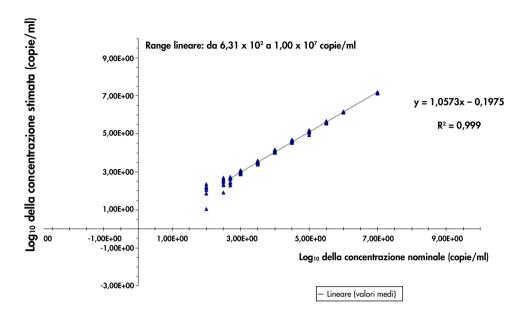


Figura 2. Range lineare dell'*artus* EBV QS-RGQ Kit (plasma). Calcolo del range lineare. La linea retta è stata determinata mediante una regressione lineare del log₁₀ delle concentrazioni calcolate con il log₁₀ delle concentrazioni nominali. La figura mostra l'equazione della linea di regressione.

Robustezza – plasma

La verifica della robustezza consente la determinazione del tasso globale d'errore dell'artus EBV QS-RGQ Kit. Per verificare la robustezza, 30 campioni di plasma EBV-negativi sono stati arricchiti con 500 copie/ml di EBV (concentrazione pari all'incirca a tre volte il limite di sensibilità analitica). In seguito ad estrazione con QIAsymphony DSP Virus/Pathogen Midi Kit in combinazione con il protocollo Cellfree1000_DSP (volume di estrazione: 1 ml, volume di eluizione: 60 µl), i campioni sono stati analizzati con artus EBV QS-RGQ Kit. Inoltre, la robustezza del controllo interno è stata valutata mediante purificazione e analisi dei 30 campioni di plasma arricchiti. Non sono state riscontrate inibizioni di alcun genere. La robustezza dell'artus EBV QS-RGQ Kit è pari al ≥99%.

Sostanze interferenti – plasma

La bilirubina, l'emoglobina e i trigliceridi non hanno mostrato interferenze con l'*artus* EBV QS-RGQ Kit alle concentrazioni riportate nella Tabella 2.

Tabella 2. Sostanze interferenti in campioni di plasma trattati con EDTA

Concentrazione di	Sostanza interferente		C _{T(EBV)}			C _{T(EBV)} SI — C _{T(EBV)} Controllo
EBV (copie/ml)	Elemento	Concentrazione	C₁ medio	DS	CV (%)	Assoluto
	Bilirubina	30 mg/dl	32,30	0,37	1,14	0,58
	Emoglobina	2 g/dl	32,82	0,20	0,60	0,06
1600	Trigliceridi	1 g/dl	32,42	0,28	0,87	0,46
	Albumina	4 g/dl	31,71	0,54	1,69	1,15
	Controllo	-	32,88	0,33	0,99	-

CV: coefficiente di variazione, EBV: Virus di Epstein-Barr; SI: sostanza interferente; DS: deviazione standard

Valutazione clinica – plasma

Le prestazioni cliniche dell'artus EBV QS-RGQ Kit sono state valutate utilizzando campioni clinici e analizzando i relativi riscontri rispetto ai risultati ottenuti applicando un metodo confrontabile. Con l'artus EBV QS-RGQ Kit e il metodo confrontabile, presso un centro esterno sono stati analizzati in totale 166 campioni di plasma trattati con EDTA prelevati sia da pazienti affetti da EBV sia da controlli negativi. I risultati sono stati analizzati in due parti: per la parte uno si è trattato di un'analisi categorica di Concordanza percentuale di positività (Positive Percent Agreement, PPA), Concordanza percentuale di negatività (Negative Percent Agreement, NPA) e Concordanza percentuale complessiva (Overall Percent Agreement, OPA); nella parte due è stata condotta un'analisi dei risultati su un totale di 83 campioni di plasma trattati con EDTA, che rientravano nell'intervallo dinamico comune dell'esame, utilizzando le analisi di regressione di Deming e Passing-Bablok, riportando i risultati assieme al corrispondente coefficiente di correlazione (vedere Tabella 3 e Figura 3).

Tabella 3. Dati dello studio sulle prestazioni cliniche per campioni di plasma trattati con EDTA

Misura della concordanza	Frequenze	Concordanza percentuale	Limite inferiore di confidenza bilaterale al 95% binomiale di Clopper-Pearson (esatto)	Limite superiore di confidenza bilaterale al 95% binomiale di Clopper-Pearson (esatto)
Concordanza percentuale complessiva	154/166	92,77	87,71	96,21
Concordanza percentuale di positività	100/102	98,04	93,10	99,76
Concordanza percentuale di negatività	54/64	84,38	73,14	92,24

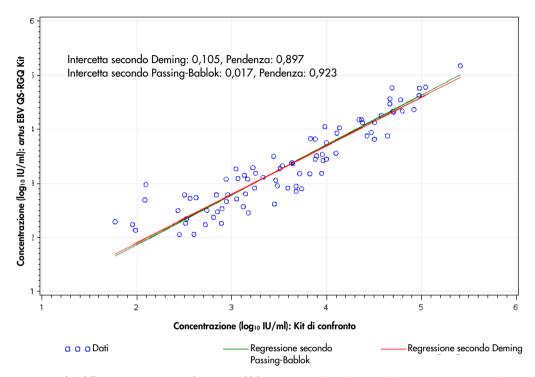


Figura 3. Grafico della regressione con rette di Passing-Bablok e Deming. Nell'analisi sono inclusi campioni compresi tra il limite inferiore e il limite superiore di quantificazione per entrambi i kit.

Il risultato dell'analisi di regressione lineare tra i due esami è stato un coefficiente di correlazione Pearson dello 0,922 e un coefficiente di correlazione Spearman dello 0,928.

Limite di sensibilità – sangue intero

Per il sangue intero, il limite di sensibilità (tenendo conto della purificazione) dell'artus EBV QS-RGQ Kit è stato determinato utilizzando una serie di diluizioni del materiale EBV da 3160 copie al valore nominale di 3,16 copie/ml di EBV, aggiunte ai campioni di sangue intero umano. I campioni sono stati poi sottoposti ad estrazione del DNA con QIAsymphony DNA Mini Kit in combinazione con il protocollo VirusBlood200_DSP (volume di estrazione: 200 µl, volume di eluizione: 60 µl). Ciascuna delle 10 diluizioni è stata analizzata con artus EBV QS-RGQ Kit in 3 giorni diversi nell'ambito di 3 sedute con 11 replicati ciascuna. I risultati sono stati determinati mediante un'analisi probit. La Figura 4 illustra graficamente l'analisi probit.

Il limite di sensibilità dell'*artus* EBV QS-RGQ Kit, tenendo conto della purificazione in combinazione con il Rotor-Gene Q, è di 288,29 copie/ml (p = 0,05). Ciò significa che esiste una probabilità del 95% che vengano rilevate 288,29 copie/ml (corrispondenti a 40,36 UI/ml).

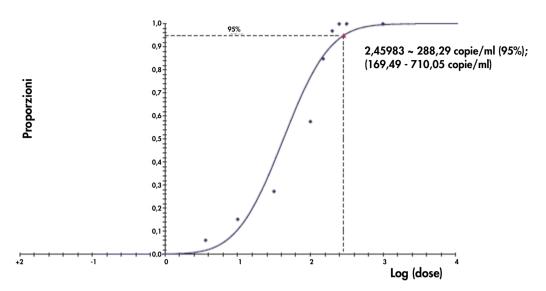


Figura 4. Analisi probit: sangue intero, EBV (Rotor-Gene Q). Limite di sensibilità, tenendo conto della purificazione (sangue intero, utilizzando QIAsymphony DNA Mini Kit), dell'artus EBV QS-RGQ Kit sul Rotor-Gene Q.

Specificità – sangue intero

La specificità dell'*artus* EBV QS-RGQ Kit è garantita in primo luogo dalla selezione dei primer e delle sonde, e poi dalla selezione di condizioni di reazione stringenti. I primer e le sonde sono stati controllati per accertare eventuali omologie con tutte le sequenze pubblicate nelle banche genetiche mediante analisi comparativa delle sequenze. È stata così assicurata la rilevabilità di tutti i genotipi rilevanti.

Inoltre, la specificità è stata convalidata con 30 diversi campioni di sangue intero EBV-negativi. Questi campioni non hanno generato segnali con i primer e le sonde specifici di EBV inclusi nell'EBV RG Master.

È stata rilevata una potenziale reattività crociata dell'*artus* EBV QS-RGQ Kit utilizzando il gruppo di controllo elencato nella Tabella 1 (vedere pag. 3). Nessuno degli agenti patogeni testati è risultato reattivo. Non sono state riscontrate reattività crociate con infezioni miste.

Range lineare – sangue intero

Il range lineare dell'artus EBV QS-RGQ Kit (tenendo conto della purificazione) è stato determinato analizzando una serie di diluizioni del materiale EBV in un range da 5,00 x 10⁷ copie/ml a 1,00 x 10³ copie/ml nel sangue intero. La purificazione è stata eseguita in replicati (n = 4 per concentrazioni ≥1,00 x 10⁷ copie/ml; n = 8 per concentrazioni <1,00 x 10⁷ copie/ml) utilizzando QIAsymphony DNA Mini Kit in combinazione con il protocollo VirusBlood200 _DSP (volume di estrazione: 200 µl, volume di eluizione: 60 µl). Ogni campione è stato analizzato con l'artus EBV QS-RGQ Kit. Il range lineare di artus EBV QS-RGQ Kit, tenendo conto della purificazione, è stato determinato per coprire le concentrazioni da 1,00 x 10³ copie/ml a 5,00 x 10⁷ copie/ml (corrispondenti al range da 1,4 x 10² a 7,0 x 10⁶ IU/ml) per il sangue intero (Figura 5).

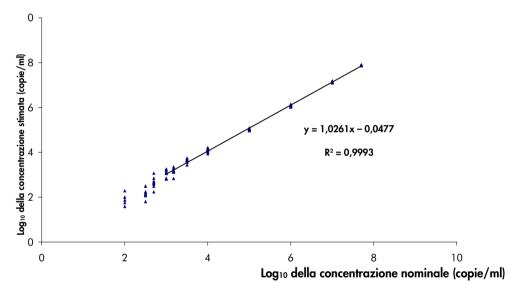


Figura 5. Range lineare dell'*artus* EBV QS-RGQ Kit (sangue intero). Calcolo del range lineare. La linea retta è stata determinata mediante una regressione lineare del log₁₀ delle concentrazioni calcolate con il log₁₀ delle concentrazioni nominali. La figura mostra l'equazione della linea di regressione.

Robustezza – sangue intero

La verifica della robustezza consente la determinazione del tasso globale d'errore dell'artus EBV QS-RGQ Kit. Per verificare la robustezza, 51 campioni di sangue intero EBV-negativi sono stati arricchiti con 750 copie/ml di EBV (concentrazione pari all'incirca a tre volte il limite di sensibilità analitica). In seguito ad estrazione con QlAsymphony DNA Mini Kit in combinazione con il protocollo VirusBlood200_DSP (volume di estrazione: 200 µl, volume di eluizione: 60 µl), i campioni sono stati analizzati con artus EBV QS-RGQ Kit. Inoltre, la robustezza del controllo interno è stata valutata mediante purificazione e analisi dei 51 campioni di sangue intero arricchiti. Non sono state riscontrate inibizioni di alcun genere. La robustezza dell'artus EBV QS-RGQ Kit è pari al ≥99%.

Sostanze interferenti – sangue intero

Sono state analizzate le sostanze che potrebbero potenzialmente interferire con i risultati dell'*artus* EBV QS-RGQ Kit; nella Tabella 4 sono riportate le relative concentrazioni che non hanno interferito con il kit.

Tabella 4. Sostanze interferenti in campioni di sangue intero

Concentrazione di		nza interferente	$C_{T(EBV)}$			C _{T(EBV) SI} — C _{T(EBV) Controllo}	
EBV (copie/ml)	Elemento	Concentrazione	C₁ medio	DS	CV (%)	Assoluto	
	Bilirubina	30 mg/dl	34,44	0,27	0,78	0,73	
	Trigliceridi	1 g/dl	34,58	0,32	0,91	0,59	
gDNA gDNA gDNA gDNA Controllo	gDNA	3 µg/campione	34,79	0,18	0,52	0,38	
	gDNA	2,5 µg/campione	34,57	0,39	1,13	0,60	
	gDNA	2 μg/campione	34,73	0,49	1,41	0,44	
	gDNA	1 μg/campione	34,86	0,22	0,62	0,31	
	Controllo	-	35,17	0,40	1,13	-	

CV: coefficiente di variazione, EBV: Virus di Epstein-Barr; gDNA: DNA genomico; SI: sostanza interferente; DS: deviazione standard

Valutazione clinica – sangue intero

Le prestazioni cliniche dell'artus EBV QS-RGQ Kit sono state valutate utilizzando campioni clinici e analizzando i relativi risultati applicando un metodo confrontabile. Con l'artus EBV QS-RGQ Kit e il metodo confrontabile, presso un centro esterno sono stati analizzati in totale 178 campioni di sangue intero prelevati sia da pazienti affetti da EBV sia da controlli negativi. I risultati sono stati analizzati in due parti: per la parte uno si è trattato di un'analisi categorica di PPA, NPA e OPA; nella parte due è stata condotta un'analisi dei risultati di un totale di 98 campioni di sangue intero, che rientravano nell'intervallo dinamico comune dell'esame, utilizzando le analisi di regressione di Deming e Passing-Bablok, riportando i risultati assieme al corrispondente coefficiente di correlazione (vedere Tabella 5 e Figura 6).

Tabella 5. Dati dello studio sulle prestazioni cliniche per campioni di sangue intero

Misura della concordanza	Frequenze	Concordanza percentuale	Limite inferiore di confidenza bilaterale al 95% binomiale di Clopper-Pearson (esatto)	Limite superiore di confidenza bilaterale al 95% binomiale di Clopper-Pearson (esatto)
Concordanza percentuale complessiva	169/178	94,94	90,62	97,66
Concordanza percentuale di positività	115/119	96,64	91,62	99,08
Concordanza percentuale di negatività	54/59	91,53	81,32	97,19

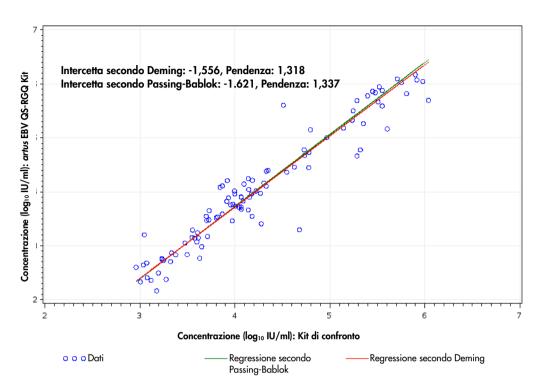


Figura 6. Grafico della regressione con rette di Passing-Bablok e Deming. Nell'analisi sono inclusi campioni compresi tra il limite inferiore e il limite superiore di quantificazione per entrambi i kit.

Il risultato dell'analisi di regressione lineare tra i due esami è stato un coefficiente di correlazione Pearson dello 0,956 e un coefficiente di correlazione Spearman dello 0,945.

Riproducibilità

I dati di riproducibilità consentono una regolare valutazione delle prestazioni dell'*artus* EBV QS-RGQ Kit, nonché un confronto di efficacia con altri prodotti. Questi dati sono ottenuti dalla partecipazione a programmi di valutazione consolidati.

Contaminazione crociata

L'assenza di contaminazione crociata fra i campioni per l'intero flusso di lavoro è stata dimostrata dal corretto rilevamento di tutti i campioni positivi e negativi in posizioni alternate (modello a scacchiera) per un sistema *artus* QS-RGQ rappresentativo.

I prodotti correlati e le informazioni per l'ordine sono elencati nel manuale di artus EBV QS-RGQ Kit.

Cronologia delle revisioni del documento

Data	Modifiche
R1 11/2019	Aggiornamento di <i>artus</i> EBV QS-RGQ Kit dalla Versione 1 alla Versione 2, aggiornamenti al layout.

Per informazioni aggiornate sulla licenza e per le clausole di esclusione della responsabilità specifiche dei prodotti, consultare il manuale del kit o il manuale utente QIAGEN®. I manuali dei kit e i manuali utente QIAGEN sono disponibili sul sito www.qiagen.com oppure possono essere richiesti al servizio di assistenza tecnica QIAGEN o al proprio distributore locale.

Marchi commerciali: QIAGEN®, Sample to Insight®, QIAsymphony®, artus®, Rotor-Gene® (Gruppo QIAGEN).

I marchi registrati, i marchi di fabbrica ecc. utilizzati in questo documento, anche se non indicati in modo specifico come tali, non devono essere considerati non protetti dalla legge 11/2019 HB-2733-D01-001 © 2019 QIAGEN, tutti i diritti riservati.

