Plug-in RAS Extension Pyro® Guida rapida

Per l'installazione e l'utilizzo con strumenti PyroMark® Q24 e software PyroMark Q24 versione 2.0

Informazioni sul plug-in RAS Extension Pyro

Il pacchetto del plug-in RAS Extension Pyro include:

- Plug-in RAS Extension Pyro Guida rapida
- due file di installazione
- report di riferimento per la verifica della funzionalità del plug-in RAS Extension Pyro

Nota: Il plug-in RAS Extension Pyro è destinato esclusivamente all'utilizzo in combinazione con i kit NRAS Pyro e i kit RAS Extension Pyro dedicati adatti per le applicazioni descritte nei rispettivi manuali dei kit NRAS Pyro e RAS Extension Pyro.

Installazione del plug-in RAS Extension Pyro

Importante: Il plug-in RAS Extension Pyro deve essere installato su strumenti PyroMark Q24 con software PyroMark Q24 versione 2.0.

- 1. Se è aperto, chiudere il software PyroMark Q24 2.0.
- 2. Aprire il file di installazione *.zip ed estrarre i file.
- 3. Fare doppio clic sul file setup.exe.
- 4. Seguire le istruzioni delle finestre di dialogo.
- Avviare il software PyroMark Q24 2.0. Nel menu "Reports" (Report) della modalità AQ, sotto "AQ Add On Reports/RAS Extension" (Report aggiuntivi AQ/ Estensione RAS), compare il report del plug-in RAS Extension Pyro.
- 6. Verificare la funzionalità del plug-in (vedere "Verifica della funzionalità del plug-in RAS Extension Pyro" nel seguito).

Verifica della funzionalità del plug-in RAS Extension Pyro

Importante: La verifica dovrebbe essere eseguita ogni volta che si effettua un aggiornamento o l'installazione di nuovo software sul computer.

La seguente procedura illustra come verificare che il software funzioni correttamente e non abbia subito alcun effetto a causa delle modifiche apportate al computer.

- Aprire la seduta "RAS Extension Example" (Esempio estensione RAS) accessibile nel browser dei collegamenti sotto "Shortcuts/Example Files/PyroMark Runs/RAS Extension" (Collegamenti/File di esempio/sedute PyroMark/Estensione RAS).
- 2. Eseguire un'analisi "RAS Extension" per tutti i pozzetti come descritto in "Analisi di una seduta PyroMark Q24" nel seguito.
- 3. Confrontare i risultati con il report di riferimento. Se i risultati sono identici, il corretto funzionamento del plug-in è confermato.

Analisi di una seduta PyroMark Q24

La seguente procedura descrive l'analisi delle mutazioni di una seduta RAS Extension conclusa utilizzando il plug-in RAS Extension Pyro.

- 1. Nella porta USB del computer inserire la penna USB contenente il file del processo elaborato.
- 2. Utilizzando Windows® Explorer, spostare il file della seduta dalla penna USB alla posizione desiderata sul computer.
- 3. Aprire il file della seduta nella modalità AQ del software PyroMark Q24, selezionando "Open" (Apri) nel menu "File" oppure facendo doppio clic sul file (V) nel browser dei collegamenti.

4. Selezionare "AQ Add On Reports/RAS Extension" da "Reports" nel menu (Figura 1).
Nota: le mutazioni nel codone 61 del gene KRAS devono essere analizzate separatamente utilizzando il plug-in KRAS, selezionando "AQ Add On Reports/KRAS" (Report aggiuntivi AQ/KRAS) dal menu "Reports" (Figura 1).

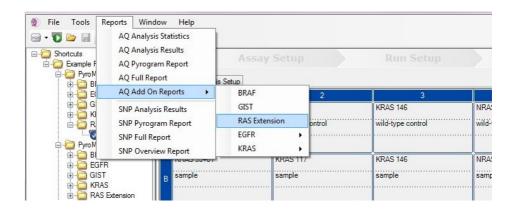


Figura 1. Analisi delle mutazioni di una seduta RAS Extension conclusa utilizzando il plug-in RAS Extension Pyro.

5. I pozzetti vengono analizzati automaticamente per rilevare tutte le mutazioni riportate nella Tabella 1 (a eccezione del codone 61 del gene KRAS). I risultati per tutte le analisi RAS Extension vengono riportati in una tabella riassuntiva (Figura 2), seguita dai risultati dettagliati che includono i tracciati Pyrogram® e la qualità dell'analisi.

Nota: Le mutazioni del codone 61 del gene KRAS devono essere analizzate separatamente mediante il plug-in KRAS Pyro.

Importante: il plug-in RAS Extension Pyro riporta la mutazione (Tabella 1) il cui segnale atteso meglio corrisponde al tracciato Pyrogram osservato.

Tabella 1. Mutazioni analizzate mediante il plug-in RAS Extension Pyro

Sostituzione acido nucleico Sostituzione aminoacido LOB (unità %) LOD (unità %) ID COSMIC* (V69)

Sostituzione acido nucleico	Sostituzione aminoacido	LOB (unità %)	LOD (unità %)	ID COSMIC* (V69)
KRAS codone 59 (GCA)				
175G>A	A59T	0,5	3,5	546
176C>G	A59G	0,5	3,5	28518
KRAS codone 117 (AAA)				
351A>C	K117N	1,0	4,0	19940
351A>T	K117N	3,6	7,1	28519
KRAS codone 146 (GCA)				
436G>A	A146T	2,7	6,6	19404
436G>C	A146P	1,8	4,8	19905
437C>T	A146V	2,1	5,1	19900
NRAS codone 12 (GGT)				
34G>A	G12S	1,4	3,4	563
34G>T	G12C	0,6	2,5	562
34G>C	G12R	0,4	2,4	561
35G>A	G12D	1,8	3,8	564
35G>T	G12V	3,8	8,8	566
35G>C	G12A	0,5	2,5	565
NRAS codone 13 (GGT)				
37G>A	G13S	1,2	3,2	571
37G>T	G13C	1,2	3,2 (4)†	570
37G>C	G13R	0,3	2,3	569
38G>A	G13D	0,8	2,8	573
38G>T	G13V	0,0	2 (5)†	574
38G>C	G13A	0,8	2,8	575
NRAS codone 59 (GCT)				
175G>A	A59T	3,8	6,9	578
176C>G	A59G	0,0	3,0	-
NRAS codone 61 (CAA)				

Sostituzione acido nucleico	Sostituzione aminoacido	LOB (unità %)	LOD (unità %)	ID COSMIC* (V69)
181C>A	Q61K	4,1	6,7	580
182A>G	Q61R	0,8	2,2	584
182A>T	Q61L	0,7	2,1	583
183A>T	Q61H	0,4	1,8	585
183A>C	Q61H	5,4	8,0	586
183A>G	Q61Q	2,1	5,8	587
NRAS codone 117 (AAG)				
351G>C	K117N	1,4	4,4	-
351G>T	K117N	3,0	6,0	_
NRAS codone 146 (GCC)				
436G>A	A146T	1,4	4,4	27174
436G>C	A146P	3,5	7,2	-
437C>T	A146V	4,8	7,8	-

^{*} Fonte: Catalogue of Somatic Mutations in Cancer, disponibile online presso il Sanger Institute all'indirizzo Web www.sanger.ac.uk/genetics/CGP/cosmic/.

 $^{^{\}dagger}$ Livello di mutazione più basso che, in un campione, genera una frequenza misurata \geq LOD.

Summary

Well	Assay Name	Sample ID	Result	Frequency [% units]	Nucleotide Substitution	Amino Acid Substitution	Info
A1	KRAS Codon 59	wild-type control	No mutation detected				
A2	KRAS Codon 117	wild-type control	No mutation detected				
A3	KRAS Codon 146	wild-type control	No mutation detected				
A4	NRAS Codon 12 and 13	wild-type control	No mutation detected				
A5	NRAS Codon 59	wild-type control	No mutation detected				
A6	NRAS Codon 61	wild-type control	No mutation detected				
A 7	NRAS Codon 117	wild-type control	No mutation detected				
A8	NRAS Codon 146	wild-type control	No mutation detected				
B1	KRAS Codon 59	sample	Mutation	35,0	175G>A	A59T	
B2	KRAS Codon 117	sample	No mutation detected				
В3	KRAS Codon 146	sample	Mutation	29,6	437C>T	A146V	
B4	NRAS Codon 12 and 13	sample	No mutation detected				
B5	NRAS Codon 59	sample	Mutation	20,5	176C>G	A59G	
B6	NRAS Codon 61	sample	No mutation detected				
B7	NRAS Codon 117	sample	Potential low level mutation	5,0	351G>C	K117N	<u> </u>
B8	NRAS Codon 146	sample	No mutation detected				
01	KRAS Codon 59	NTC	Failed Analysis				Δ
C2	KRAS Codon 117	NTC	Failed Analysis				A
C3	KRAS Codon 146	NTC	Failed Analysis				A

Figura 2. Esempio di tabella riassuntiva dei risultati di un'analisi mediante plug-in RAS Extension Pyro.

Interpretazione dei risultati e rilevazione delle mutazioni di basso livello

Si raccomanda vivamente di includere un campione wild-type in ogni seduta a scopo di confronto e come controllo dei livelli di fondo.

Importante: Uno schema inatteso di picchi può determinare una valutazione di qualità "Check" (Controllare) o "Failed" (Non superato). Ciò può indicare una mutazione inattesa che non viene analizzata dal report del plug-in. I campioni interessati da questo fenomeno

devono essere analizzati manualmente utilizzando il software PyroMark Q24 e tenendo conto delle possibile presenza di mutazioni inattese. Per i dettagli, consultare il manuale del kit NRAS Pyro o del kit RAS Extension Pyro come appropriato.

Importante: Il tracciato Pyrogram deve sempre essere confrontato con l'istogramma riportato nella sezione dei risultati dettagliati del report del plug-in e può essere visualizzato nel software PyroMark Q24 facendo clic con il tasto destro del mouse nella finestra Pyrogram. Il tracciato Pyrogram deve essere esaminato per valutare la presenza di eventuali picchi imprevisti. Nel caso in cui i picchi misurati non corrispondano all'altezza delle barre dell'istogramma e ciò non possa essere spiegato con mutazioni rare o inattese, non sarà possibile utilizzare il risultato come base per la valutazione dello stato mutazionale. È consigliabile analizzare nuovamente il campione.

Importante: I campioni per i quali è riportata la possibile presenza di una mutazione di basso livello (frequenza compresa tra LOD e LOD + 3 unità percentuali) devono essere nuovamente processati in duplicato con un campione di DNA di controllo non metilato. In tal caso viene generata un'avvertenza. Il campione deve essere considerato positivo per la mutazione soltanto se entrambi i duplicati confermano il risultato dell'analisi generale e sono visibilmente differenti dal campione di controllo normale. In caso contrario, il campione deve essere considerato wild-type.

Importante: Per un esame più accurato dei campioni i cui risultati segnalano una potenziale mutazione di basso livello, è consigliabile eseguire un'ulteriore analisi manuale del campione mediante il software PyroMark Q24, ad esempio un confronto con la frequenza mutazionale del campione di controllo (per informazioni dettagliate, vedere "Protocollo 6: analisi di una seduta PyroMark Q24" nell'appropriato manuale del kit RAS Extension Pyro). Se nel campione di controllo viene misurata una frequenza superiore al valore LOB, ciò indica che nella seduta corrispondente è presente un livello di fondo più alto del normale che potrebbe influenzare la quantificazione allelica, in particolare per i livelli mutazionali bassi. In questo caso, i risultati che segnalano la possibile presenza di mutazioni di basso livello non costituiscono una base per la valutazione dello stato mutazionale ed è consigliabile processare nuovamente i campioni con possibili mutazioni di basso livello.

Per informazioni aggiornate sulla licenza e per i disclaimer specifici dei prodotti, consultare il manuale del kit o il manuale utente QIAGEN®. I manuali dei kit e i manuali utente QIAGEN sono disponibili sul sito **www.qiagen.com** oppure possono essere richiesti al servizio di assistenza tecnica QIAGEN (QIAGEN Technical Services) o al proprio distributore locale.

Marchi commerciali: QIAGEN®, Sample to Insight®, Pyro®, Pyrogram®, PyroMark® (gruppo QIAGEN); Windows® (Microsoft Corporation). 1106191 02/2017 © QIAGEN, tutti i diritti riservati. PROM-8093-003

Ordini www.qiagen.com/contact | Assistenza tecnica support.qiagen.com | Sito web www.qiagen.com