QIAsymphony RGQ- Applikationsblatt artus[®] CT/NG QS-RGQ Kit (Probentyp: Urin, stabilisiert in eNaT[™], 400 µl) Juli 2017

Angaben zur Version

Bei dem vorliegenden Dokument *artus* CT/NG QS-RGQ Kit Applikationsblatt für Urin handelt es sich um die Version 1, Revision R3.

Kontrollieren Sie, ob unter <u>www.qiagen.com/products/artusctngqsrgqkitce.aspx</u> neue elektronische Revisionen der Gebrauchsanweisung vorliegen, bevor Sie mit der Testdurch-führung beginnen.

Allgemeine Informationen

Kit	artus CT/NG QS-RGQ Kit, Version 1, 4569365
Validiertes Probenmaterial	Weiblicher und männlicher Urin, stabilisiert in eNaT-Medium
Vorab-DNA-Reinigung	QIAsymphony DSP Virus/Pathogen Midi Kit (KatNr. 937055)
Probenvolumen (inkl. Überschuss-Volumen)	500 µl
Assay-Parameter-Set	artus_CT_NG 400_V1
Standard-Assay-Kontroll-Set	Complex400_V4_DSP artus CT_NG
Bezeichnung der internen Kontrolle in SP-Modul	Complex400_V4_DSP artus CT_NG
Elutionsvolumen	60 µl
Erforderliche Software-Version	Version 4.0 (oder höher)
Volumen Master-Mix	10 µl
Volumen Template	15 µl
Anzahl Reaktionen	6–96
Laufzeit in AS-Modul	Für 6 Reaktionen: ca. 8 Minuten Für 72 Reaktionen: ca. 35 Minuten

Vom Anwender bereitzustellende Ausrüstung und Reagenzien

Probennahme		2-ml-eNaT-Röhrchen (Fa. Copan, KatNr. 606C, www.copaninnovation.com)		
Kit für Nukleinsäure-Reinigung	•	QIAsymphony DSP Virus/Pathogen Midi Kit (KatNr. 937055)		
Adapter für den QIAsymphony SP		Elution-Microtube-Rack QS (Cooling Adapter, EMT, v2, Qsym, KatNr. 9020730) Röhrchen-Einsatz 3B (Tube Insert 3B, 2.0ml v2, sample carrier (24), Qsym, KatNr. 9242083)		
Verbrauchsartikel für den QIAsymphony SP	-	 8-Well-Probenverarbeitungs-Einsätze, (Sample Prep Cartridges, 8-well; KatNr. 997002) 8-Magnetstab-Schutzhülsen (8-Rod Covers; Kat Nr. 997004) 1500-µl-Filter-Pipettenspitzen (Filter-Tips, 1500 µl; KatNr. 997024) 200-µl-Filter-Pipettenspitzen (Filter-Tips, 200 µl; KatNr. 990332) Elutions-Röhrchen (Elution Microtubes CL; KatNr. 19588) Pipettenspitzen-Abfallbeutel (Tip Disposal Bags; KatNr. 9013395) 2-ml-Reaktionsgefäße Typ I, mit Stehrand (Fa. Sarstedt, KatNr. 72.694; <u>www.sarstedt.com</u>) – zur Verwendung für die Proben und internen Kontrollen 14-ml-Rundboden-Röhrchen, 17 x 100 mm, aus Polystyrol (Fa. Becton Dickinson, KatNr. 352051) – zur Verwendung für interne Kontrollen 		
Adapter und Reagenzien- gefäß-Halter für den QIAsymphony AS	•	Reagenziengefäß-Halter 1 QS (Cooling Adapter, Reagent Holder 1, Qsym; KatNr. 9018090) Reagenziengefäß-Halter 2 QS (Cooling Adapter, Reagent Holder 2, Qsym; KatNr. 9018089) RG-Röhrchen-Streifen 72 QS (Cooling Adapter, RG Strip Tubes 72, Qsym; KatNr. 9018092)		

Verbrauchsartikel für den QIAsymphony AS	•	0,1-ml-PCR-Reaktionsgefäße mit Deckel, als 4er-Streifen (Strip Tubes and Caps, 0.1 ml; KatNr. 981103) Konische 2-ml-Röhrchen (Tubes, conical, 2 ml, Qsym AS; KatNr. 997102) Konische 5-ml-Röhrchen (Tubes, conical, 5 ml, Qsym AS; KatNr. 997104)
		Elutions-Röhrchen (Elution Microtubes CL; KatNr. 19588) 1500-µl-Filter-Pipettenspitzen (Filter-Tips, 1500 µl; KatNr. 997024)
	•	200-µl-Filter-Pipettenspitzen (Filter-Tips, 200 µl; KatNr. 990332)
	•	50-µl-Filter-Pipettenspitzen (Filter-Tips, 50 µl; KatNr. 997120)
		Pipettenspitzen-Abfallbeutel (Tip Disposal Bags; KatNr. 9013395)
Für die Probenvorbereitung (eNaT)		ATL-Puffer (Buffer ATL; KatNr. 939016)

Handhabung und Lagerung der Proben

Probennahme	2-ml-eNaT-Röhrchen (Fa. Copan, KatNr. 606C, www.copaninnovation.com)
Probentransport	Bruchsicherer Transport
	Versand bei 20 °C innerhalb von 6 Stunden nach Probennahme
	Versand als Postsendung gemäß den gesetzlichen Vorschriften für den Transport von pathogenem Material*
Probenvorbereitung	Vermeiden Sie Schaumbildung in oder auf den Proben.
	Die Proben sollten vor Beginn des Protokolllaufs auf Raumtemperatur (15–25 °C) äquilibriert sein.
Probenlagerung	Kurzfristig (bis zu 7 Tage nach Eingang im Labor der Testdurchführung): bei 20 °C oder 4 °C, je nach lokalen Bedingungen
	Mittel-/Langfristig (bis zu 2 Wochen): bei 4 °C
	Noch längerfristige Lagerung: bei –20 °C

* International Air Transport Association (IATA). Gefahrgutvorschriften (DGR).

Verfahren

Vorbereitung der Carrier-RNA und Zugabe der internen Kontrolle zu den Proben

Die Verwendung des QIAsymphony DSP Virus/Pathogen Midi Kits in Kombination mit dem *artus* CT/NG QS-RGQ Kit erfordert das Mitführen der internen Kontrolle (CT/NG RG IC) während der Nukleinsäure-Reinigung, um die Effizienz der Probenverarbeitung und des nachfolgenden Assays zu überwachen.

Interne Kontrollen müssen zusammen mit der Carrier-RNA-Lösung (CARRIER; angesetzt in AVE-Puffer), zugegeben werden, wobei das Gesamtvolumen des Gemischs aus interner Kontrolle und Carrier-RNA-Lösung weiterhin 120 µl beträgt.

Die folgende Tabelle gilt für die Zugabe der internen Kontrolle im Verhältnis von 0,1 µl pro 1 µl Elutionsvolumen. Wir empfehlen, für jeden Lauf das Gemisch frisch, unmittelbar vor Gebrauch anzusetzen.

Für die Berechnung der internen Kontrolle (IC) sollte der "IC Calculator" in der QIAsymphony Management Console (QMC) verwendet werden

Komponente	Volumen (µl) (SAR Röhrchen)*	Volume (µl) (BD™ Röhrchen)†
Carrier-RNA-Stammlösung (CARRIER)	3	3
Interne Kontrolle [‡]	9	9
AVE-Puffer	108	108
Endvolumen pro Probe (ohne Totvolumen)	120	120
Gesamtvolumen für n Proben	(n x 120) + 360§	(n x 120) + 600¶

* 2-ml-Reaktionsgefäße Typ I, mit Stehrand (Fa. Sarstedt, Kat.-Nr. 72.694; <u>www.sarstedt.com</u>).

[†] 14-ml-Rundboden-Röhrchen, 17 x 100 mm, aus Polystyrol (Fa. Becton Dickinson, Kat.-Nr. 352051).

[‡] Die Berechnung der Menge an interner Kontrolle basiert jeweils auf dem Ausgangsvolumen an Elutionslösung (90 µl). Das zusätzliche Leervolumen hängt vom Typ des verwendeten Probenröhrchens ab.

⁸ Ein Gemisch aus internen Kontrollen, das drei zusätzlichen Proben (d. h. 360 μl) entspricht, ist erforderlich. Füllen Sie nicht mehr als 1,92 ml Gesamtvolumen ein (entsprechend einer maximalen Anzahl von 13 Proben. Diese Volumina gelten spezifisch für die 2-ml-Reaktionsgefäße Typ I, mit Stehrand (Fa. Sarstedt, Kat.-Nr. 72.694; <u>www.sarstedt.com</u>).

¹ Ein Gemisch der internen Kontrollen, das fünf zusätzlichen Proben (d. h. 600 µl) entspricht, ist erforderlich. Füllen Sie nicht mehr als 13,92 ml Gesamtvolumen ein (entsprechend einer maximalen Anzahl von 111 Proben). Diese Volumina gelten spezifisch für die 14-ml-Rundboden-Röhrchen, 17 x 100 mm, aus Polystyrol der Fa. Becton Dickinson (Kat.-Nr. 352051).

Vorbereiten des QIAsymphony SP

"Waste"-Schublade (Abfall)

Container-Halter 1–4	Leere Verbrauchsartikel-Container
Abfallbeutel-Halter	Leerer Abfallbeutel
Flüssigabfallflaschen-Halter	Flüssigabfallflasche ggf. entleeren und wieder einsetzen

"Eluate"-Schublade (Eluat)

Elutions-Rack	(EMT Rack) Stellplatz 1, die Kühlposition, verwenden
Elutionsvolumen*	Vorausgewähltes Elutionsvolumen: 60 µl
	Ausgangsvolumen Elutionslösung: 90 µl

* Das Elutionsvolumen wird für das Protokoll vorausgewählt. Dies entspricht dem verfügbaren Eluat-Mindestvolumen im letzten Elutionsgefäß. Das Ausgangsvolumen an Elutionslösung ist erforderlich, um sicherzustellen, dass das tatsächliche Eluatvolumen dem gewählten Volumen entspricht.

"Reagenzien und Verbrauchsartikel"-Schublade

Position A1 und/oder A2	1 Reagenzienkartusche (RC) für bis zu 72 Proben oder 2 neue Reagenzienkartuschen für bis zu 144 Proben
Position B1	Puffer ATL; Barcode der Flasche durch Drücken der Schaltfläche "Bottle ID" (Flaschen-Kennung) in der "Reagents and Consumables"-Schublade (Reagenzien und Verbrauchsartikel) scannen
Tip-Rack-Halter, Pos. 1–17	Ausreichend Racks mit 200-µl- und 1500-µl-Einmal- Filterpipettenspitzen laden (siehe Seite 7)
Container-Halter, Pos. 1–4	Verbrauchsartikel-Container mit Probenverarbeitungs- Einsätzen und 8-Magnetstab-Schutzhülsen laden (siehe Seite 7)

"Proben"-Schublade

Probentyp	eNaT-Transportmedium
Probenvolumen (inkl. Überschuss-Volumen)	500 µl
Probenröhrchen (primäre)	2-ml-eNaT-Röhrchen (Fa. Copan, Kat Nr. 606C, <u>www.copaninnovation.com</u>)*
Probenröhrchen (sekundäre)	2-ml-Reaktionsgefäße Typ I, mit Stehrand (Fa. Sarstedt, KatNr. 72.694; www.sarstedt.com)
Einsatz	Röhrchen-Einsatz 3B (Tube Insert 3B; KatNr. 9242083)

* Achten Sie darauf, die Abstrich-Tupfer zu entnehmen, bevor Sie die Primärröhrchen dem QIAsymphony SP zuführen.

Benötigte Kunststoff-Verbrauchsartikel für 1-4 Proben-Chargen

	Eine Proben- Charge, 24 Proben*	Zwei Proben- Chargen, 48 Proben*	Drei Proben- Chargen, 72 Proben*	Vier Proben- Chargen, 96 Proben*
Einmal-Filterpipetten- spitzen, 200 µl ^{†‡}	28	52	74	100
Einmal-Filterpipetten- spitzen, 1500 µl†‡	93	178	263	348
Probenverarbeitungs- Einsätze [§]	18	36	54	72
8-Magnetstab- Schutzhülsen¶	3	6	9	12

* Bei Verwendung von mehr als einem Röhrchen der internen Kontrolle pro Charge und bei Durch-führung von mehr als einem Inventar-Scan werden zusätzliche Einmal-Filterpipettenspitzen benötigt.

† Ein Tip-Rack enthält 32 Filter-Pipettenspitzen.

[‡] Bei der Anzahl der benötigten Filter-Pipettenspitzen sind die Spitzen f
ür einen Inventar-Scan pro Reagenzienkartusche ber
ücksichtigt.

[§] Ein Verbrauchsartikel-Container ("Unit Box") enthält 28 Probenverarbeitungs-Einsätze.

[¶] Ein Verbrauchsartikel-Container ("Unit Box") enthält zwölf 8-Magnetstab-Schutzhülsen.

Zufuhr der Proben und Kontrollen

Stellen Sie sicher, dass sich die beiden Röhrchen mit den Kontrollen ("CT/NG Control CT+/NG-" und "CT/NG Control NG+/CT-") in den ersten Positionen der QlAsymphony Probenzufuhr-Racks befinden. Wenn mehr als 69 Proben verarbeitet werden, müssen zwei zusätzliche Röhrchen mit Kontrolle verfügbar sein (siehe als Beispiel folgende Tabelle). Dies ist wichtig, weil ein PCR-Lauf aus 72 Reaktionsansätzen besteht (69 Proben + 2 Kontrollen im Probenverarbeitungs-Modul (SP) und eine Kontrolle ohne Template (NTC) im Assay-Set-up-Modul (AS)). Wenn mehr als 69 Proben analysiert werden, wird automatisch ein zweiter PCR-Lauf vom AS-Modul pipettiert. Um sicherzustellen, dass dieser Lauf gültig ist, müssen zwei Kontrollen in den PCR-Positionen 1 und 2 sein. Vergewissern Sie sich daher immer, dass sich die beiden Kontrollen für die Probenverarbeitung in den ersten Positionen des PCR-Laufs im Rotor-Gene Q

befinden. Wenn mehr als 45 Proben analysiert werden, empfehlen wir, die Proben auf zwei Chargen im AS-Modul und dementsprechend auf zwei separate Läufe mit dem Rotor-Gene Q MDx 5plex HRM Instrument aufzuteilen. Weitere Informationen sind in den folgenden zwei Tabellen zusammengefasst. Beachten Sie bitte, dass die NTC-Probe nur vom AS-Modul verarbeitet wird, nicht aber vom SP-Modul.

Hinweis: Wir empfehlen nicht, die Anzahl der NTC-Replikate manuell zu ändern. Der Rotor-Gene AssayManager akzeptiert den Lauf nicht, wenn die Anzahl der NTC-Replikate geändert wird.

	SP-Charge 1 Positionen	SP-Charge 2 Positionen	SP-Charge 3 Positionen	SP-Charge 4 Positionen
CT/NG-	1: CT+/NG-		49: CT+/NG-	
Kontrollen	2: NG+/CT-	-	50: NG+/CT-	_
Proben	3–24	25–48	51–72	73–96

Positions-Zuordnung der Proben und Kontrollen (Beis	spiel für 96 Reaktionen)
---	--------------------------

Nach jedem Satz Proben (1–71 und 72–96) fügt das AS-Modul eine NTC-Probe (Kontrolle ohne Template) ein.

Der empfohlene Arbeitsablauf für 96 Proben (inklusive Kontrollen) ist in der folgenden Tabelle wiedergegeben. In diesem Beispiel werden 2 x 46 Proben (+ zwei Kontrollen) in zwei AS-Chargen und zwei PCR-Läufen verarbeitet. Der erste PCR-Lauf, bestehend aus 46 Proben, zwei Kontrollen und einer NTC-Probe, wird abgeschlossen, während die SP-Chargen 3 und 4 verarbeitet werden.

Empfohlener Arbeitsablauf für 96 Proben bei Durchführung als integrierter Lauf

	AS-Charge 1		AS-Charge 2		
	SP-Charge 1 Positionen	SP-Charge 2 Positionen	SP-Charge 3 Positionen	SP-Charge 4 Positionen	
CT/NG-	1: CT+/NG-		49: CT+/NG-		
Kontrollen	2: NG+/CT-	_	50: NG+/CT-	-	
Proben	3–24	25–48	51–72	73–96	

Vorbereiten des QIAsymphony AS

Verbrauchsartikel

Während der Vorbereitung werden für jeden Verbrauchsartikel die entsprechenden Positionen auf dem QIAsymphony AS-Modul auf dem Touchscreen des Geräts angezeigt.

Verbrauchsartikel	Bezeichnung auf Touchscreen	Zur Verwendung mit Adapter/Reagenziengefäß- Halter
Röhrchen-Streifen und Deckel, 0,1 ml (250)	QIA#981103 *StripTubes 0.1	RG Strip Tubes 72 QS
Konische 2-ml-Röhrchen, Qsym AS (500)†	QIA#997102 *T2.0 ScrewSkirt [§]	Reagent Holder 1 QS Reagent Holder 2 QS
Konische 5-ml-Röhrchen, Qsym AS (500)†‡	QIA#997104 *T5.0 ScrewSkirt [§]	Reagent Holder 1 QS Reagent Holder 2 QS
Elution Microtubes CL (24 x 96)	QIA#19588 * EMTR	Elution-Microtube-Rack QS

* Zeigt Verbrauchsmaterialien an, die mithilfe eines Kühladapters mit Barcode gekühlt werden können.

[†] Für Master-Mix-Komponenten, vom System angesetzten Master-Mix, Assay-Standards und Assay-Kontrollen.

[‡] Alternativ können konische 2-ml-Röhrchen (Tubes, conical, 2 ml, Qsym AS; Kat.-Nr. 997102) verwendet werden.

[§] Das Suffix "(m)" im Touchscreen zeigt an, dass die Berechnung des Flüssigkeitsstands beim betreffenden Röhrchen für Reagenzien, die einen konkaven Meniskus bilden, optimiert wurde.

Adapter und Reagenziengefäß-Halter

Rack/Reagenziengefäß- Halter	Bezeichnung	Erforderliche Anzahl [¶]
Proben-Rack	Elution Microtube Rack QS	1
Reagenziengefäß-Halter	Reagent Holder 1 QS	1
Assay-Racks	RG Strip Tubes 72 QS	1

* Berechnet für einen Assay-Lauf mit 72 Reaktionsansätzen.

Filter-Pipettenspitzen

Beginnen Sie beim Bestücken der "Eluates and Reagents"-Schublade (Eluat und Reagenzien) mit Tip-Racks mit den Pipetten-spitzen-Stellplätzen 1, 2 und 3 und laden Sie dann Tip-Racks in die Pipettenspitzen-Stellplätze 7, 8 und 9 in der "Assays"-Schublade.

Verbrauchsartikel	Bezeichnung auf Touchscreen	Mindestanzahl für 24 Reaktionen	Mindestanzahl für 72 Reaktionen
1500-µl-Filter- Pipettenspitzen (1024)	1500 µl	2	2
200-µl-Filter- Pipettenspitzen (1024)	200 µl	6	6
50-µl-Filter- Pipettenspitzen (1024)	50 µl	24	72
Pipettenspitzen- Abfallbeutel	-	1	1

Aufteilen des Master-Mix

Auch wenn der Kit für 2 x 48 Reaktionen optimiert ist, sind unterschiedliche Kombinationen möglich. Da automatisierte Pipettiersysteme immer ein bestimmtes Totvolumen haben, sind bei Aufteilung des Inhalts eines Röhrchens für 48 Reaktionen nicht 2 x 24 Reaktionen möglich. Die folgende Tabelle gibt einen Überblick über mögliche Kombinationen.

Komponente(n)	Röhrchen Master-Mix	PCR- Läufe	Reaktionen pro PCR-Lauf*	Patienten- proben	Kontrollen [†]
Röhrchen für 2 x 48 Reaktionen	2	2	49	2 x 46	2 x 3
Röhrchen für 1 x 48 Reaktionen	1	1	49	1 x 46	1 x 3
Röhrchen für 1 x 48 Reaktionen	1	2	17	2 x 14	2 x 3

* Berechnung: n Patientenproben + 2 CT/NG-Kontrollen (CT+/NG- und NG+/CT-) + 1 NTC-Probe pro PCR-Lauf.

* Kontrollen: "CT/NG Control CT+/NG-", "CT/NG Control NG+/CT-" und NTC (werden vom Assay-Set-up-Modul pipettiert).

Real-Time-PCR mit dem Rotor-Gene Q MDx 5plex HRM*

Der mit dem *artus* CT/NG QS-RGQ Kit und dem Rotor-Gene Q MDx 5plex HRM Instrument durchgeführte Assay kann entweder manuell mithilfe der Rotor-Gene Q Software 2.1 (oder höher) oder automatisch mit dem Rotor-Gene AssayManager[®] ausgewertet werden. In den folgenden beiden Abschnitten werden die Einstellungen und das Set-up bei Verwendung dieser beiden unterschiedlichen Softwarepakete beschrieben.

^{*} Sofern zutreffend, ein Rotor-Gene Q 5plex HRM Thermocycler mit einem Herstellungsdatum Januar 2010 oder später. Das Herstellungsdatum kann aus der Seriennummer auf der Rückseite des Geräts abgeleitet werden. Die Seriennummer hat das Format "MMJInnn", worin "MM" den Monat der Herstellung (in zwei Ziffern), "JJ" die letzten beiden Ziffern des Herstellungsjahres und "nnn" die individuelle Gerätekennung angeben.

Bereiten Sie den Rotor für den Lauf mit dem Rotor-Gene Q MDx 5plex HRM vor:

- Setzen Sie einen 72-Well-Rotor auf den Rotorhalter.
- Bestücken Sie den Rotor mit Röhrchen-Streifen. Achten Sie darauf, bei Position 1 zu beginnen und die Röhrchen-Streifen in der richtigen Orientierung einzusetzen.
- Füllen Sie nicht belegte Positionen mit leeren Röhrchen-Streifen mitsamt Deckel auf.
- Setzen Sie den Sicherungsring auf und machen Sie ihn fest.
- Setzen Sie den Rotor (mit Sicherungsring) in den Rotor-Gene Q MDx 5plex HRM.

Real-Time-PCR mit Nutzung der Rotor-Gene AssayManager Software

Bei automatischer Auswertung der mit dem artus CT/NG QS-RGQ Kit durchgeführten Assays mit dem Rotor-Gene Basis-Plug-in 1.0.3 AssayManager das artus Version (steht Download muss zum unter www.giagen.com/shop/automated-solutions/accessories/rotor-gene-assaymanager bereit) in Ihrer Rotor-Gene AssayManager Software installiert sein.

Starten Sie den Installationsvorgang durch Doppelklick auf die Datei ArtusBasic.Installation.msi und befolgen Sie die Installationsanweisungen. Eine detaillierte Beschreibung finden Sie im Abschnitt "Installing Plug-ins" (Installation von Plug-ins) im Rotor-Gene AssayManager Core Application Handbuch (*Rotor-Gene AssayManager Core Application* Handbuch).

Um das Assay-Profil artus_CTNG_sample400_QS (Kurzname: CTNG_a) zusammen mit dem *artus* CT/NG QS-RGQ Kit verwenden zu können, muss die Datei AP_artus_CTNG_sample400_QS_V2_0_0.iap (steht zum Download unter <u>www.qiagen.com/products/artusctngqsrgqkitce</u> bereit) in die Rotor-Gene AssayManager Software importiert werden.

Gehen Sie wie folgt vor, um das Assay-Profil in den Rotor-Gene AssayManager zu importieren:

- 1. Wechseln Sie in die Konfigurations-Umgebung ("Configuration Environment") und gehen Sie dort auf die "Assay Profile"-Registerkarte.
- Klicken Sie auf "Import" und wählen Sie im "Open file"-Dialogfenster die Datei AP_artus_CTNG_sample400_QS_V2_0_0.iap aus.
- 3. Klicken Sie auf "Open" ("Öffnen"), um das Assay-Profil zu laden und zur Liste der verfügbaren Assay-Profile hinzuzufügen.

Hinweis: Dieselbe Version eines Assay-Profils kann nicht ein zweites Mal importiert werden.

Starten eines Laufs bei Verwendung des Rotor-Gene AssayManager

Nach Installation des Plug-ins und Import des Assay-Profils kann der Rotor-Gene AssayManager die in der QIAsymphony AS-Ergebnisdatei enthaltenen Daten nutzen, um einen Real-Time-PCR-Amplifikationslauf mit nachfolgender automatisierter Interpretation der Ergebnisse einzurichten.

QIAsymphony AS-Ergebnisdateien können entweder auf einen USB-Stick oder mithilfe der QIAsymphony Management Console übertragen werden. Falls die QIAsymphony AS-Ergebnisdatei auf einen USB-Stick heruntergeladen wird, wird sie im .zip-Format in dem Ordner x:\Log\results\AS gespeichert.

Hinweis: Vor dem Import der QIAsymphony AS-Ergebnisdatei muss die .zip-Datei extrahiert werden. Falls die QIAsymphony AS-Ergebnisdatei mit der QIAsymphony Management Console (QMC) übertragen wird, ist dieser Schritt nicht erforderlich.

Gehen Sie zur Durchführung eines PCR-Laufs wie folgt vor:

- 1. Starten Sie den Rotor-Gene AssayManager.
- 2. Wechseln Sie in die "Setup"-Umgebung und wählen Sie in "Import type" die Option "QIAsymphony" als Quelle für den Import aus. Öffnen Sie im "Select file"-Dialogfenster (Datei auswählen) die entsprechende QIAsymphony AS-Ergebnisdatei und klicken Sie dann auf "Open". Die Arbeitsliste wird dann zur Liste der verfügbaren Arbeitslisten ("Available work lists") hinzugefügt.
- Der PCR-Lauf kann von dieser Liste der verfügbaren Arbeitslisten aus gestartet werden, indem Sie auf den Anwenden-Button in der "Apply"-Spalte des entsprechenden Arbeitslisten-Eintrags klicken (geben Sie die Namen der importierten QS-Arbeitslisten ein).
- 4. Geben Sie einen Namen für das Experiment ein.
- 5. Wählen Sie einen Thermocycler aus und bestätigen Sie, dass der Sicherungsring angebracht ist.
- 6. Klicken Sie auf die grüne "Start run"-Schaltfläche.

Beenden und Freigeben eines Laufs

Wechseln Sie zum Bildschirm des jeweils verwendeten Thermocyclers, um den Fortschritt des Laufs zu verfolgen. Wenn der Lauf beendet ist, klicken Sie auf "Finish run..." (Lauf abschließen), um den Thermocycler freizugeben und die Probe in der "Approval"-Umgebung zu genehmigen.

- 7. Wählen Sie die "Approval"-Umgebung (Genehmigung).
- 8. Klicken Sie auf "Apply filter" (Filter anwenden) (oder wählen Sie vorab eigene Filteroptionen).
- 9. Wählen Sie das Experiment aus.
- 10.Klicken Sie auf "Start approval", um den Genehmigungsvorgang zu starten.
- 11.Akzeptieren Sie die Ergebnisse für jede zu analysierende Probe: Verwenden Sie die "Accepted"-Schaltfläche (Akzeptiert) für die zu testenden Proben, deren Ergebnisse vom Rotor-Gene AssayManager ausgewertet wurden und die Sie akzeptieren wollen. Verwenden Sie die "Rejected"-Schaltfläche (Abgelehnt), falls das Ergebnis der zu

testenden Probe nach Evaluierung durch den Rotor-Gene AssayManager aus irgendeinem Grund nicht akzeptabel erscheint.

Hinweis: Ein Ergebnis, das vom Rotor-Gene AssayManager automatisch mit "ungültig" bewertet wurde, kann nicht mehr in ein gültiges Ergebnis umgewandelt werden, auch wenn das Ergebnis abgelehnt wird.

- 12.Klicken Sie auf "Release /report data..." (Daten freigeben/ausgeben ...).
- 13. Wählen Sie ein Bericht-Profil und klicken Sie auf "OK". Der Bericht wird erstellt und automatisch gespeichert. Hinweis: Der Benutzer muss über Genehmigungsrechte verfügen, um einen Lauf freizugeben.
- 14.Entnehmen Sie den Rotor aus dem Rotor-Gene Q MDx 5plex HRM und verwerfen Sie die Röhrchen-Streifen unter Beachtung der einzuhaltenden Sicherheitsbestimmungen.

Interpretation der Ergebnisse bei Nutzung der Rotor-Gene AssayManager Software

Das Profil "artus CT/NG QS-RGQ AssayProfile" für Urinproben stellt automatisch den Schwellenwert ein und enthält sämtliche Regeln für die automatische Interpretation der Assay-Ergebnisse. Auf der Grundlage dieser Regeln ermittelt die Software die Gültigkeit oder Ungültigkeit von Proben und Kontrollen. Diese automatische Auswertung führt zur Ausgabe der folgenden entsprechenden Status-Indikatoren (sog. "Flags").

WICHTIG: Im NG-Kanal wird ein Cut-off-Wert von 40 CT verwendet, der das Ergebnis "UNGÜLTIG" mit dem Flag "CT_ABOVE_ACCEPTED_RANGE" produziert. Folgende Anweisungen müssen genau befolgt werden.

- Wenn für NG als ungültig mit dem Flag "CT_ABOVE_ACCEPTED_RANGE" ausgegeben wird und die interne Kontrolle nachweisbar und gültig ist, kann die Probe als **gültige NG-negative Probe** ausgewertet werden. Es ist keine Testwiederholung erforderlich.
- Wenn NG als ungültig mit irgendeinem anderen Flag ausgegeben wird, sollte die Probe erneut gemessen werden.
- Wenn CT, gleichgültig mit welchem Flag, als ungültig ausgegeben wird, sollte die Probe erneut gemessen werden.

Flag	Status	Beschreibung
ASSAY_INVALID	ungültig	Der Assay ist ungültig, weil mindestens eine der externen Kontrollen ungültig ist.
CT_ABOVE_ ACCEPTED_RANGE	ungültig	Der gemessene CT-Wert ist größer als der definierte Cut-off-CT.
		WICHTIG: Wenn NG als ungültig mit diesem Flag ausgegeben wird, kann die Probe als gültige NG- negative Probe ausgewertet werden, vorausgesetzt die interne Kontrolle ist gültig.

Flag	Status	Beschreibung
CT_BELOW_ ACCEPTED_RANGE	ungültig	Der gemessene C_T -Wert ist kleiner als der definierte Cut-off- C_T .
CURVE_SHAPE_ ANOMALY	ungültig	Die anhand der Rohdaten erstellten Amplifikationskurve weist eine Form auf, die von dem etablierten Verhalten für diesen Assay abweicht. Es besteht eine hohe Wahrscheinlichkeit für falsche Ergebnisse oder eine Fehlinterpretation des Ergebnisses.
FLAT_BUMP	ungültig	Die Amplifikationskurve weist die Form einer flachen Welle auf, die von dem etablierten Verhalten für diesen Assay abweicht. Es besteht eine hohe Wahrscheinlich- keit für falsche Ergebnisse oder eine Fehlinterpretation des Ergebnisses (falsche CT-Wertbestimmung).
FLUORESCENCE_ TOO_LOW	ungültig	Das Fluoreszenzsignal ist niedriger als der definierte Fluoreszenz-Cut-off-Wert.
IC_INVALID	ungültig	Die interne Kontrolle ist ungültig. Target und interne Kontrolle sind in demselben Röhrchen.
IC_NO_SIGNAL	ungültig	Kein Signal bei der internen Kontrolle detektiert. Target und interne Kontrolle sind in demselben Röhrchen.
INHIBITION_BY_CT	ungültig	Der definierte maximale CT-Wertebereich zwischen dem CT für die interne Kontrolle dieser Probe und dem CT für die interne Kontrolle der NTC-Probe wurde über- schritten.
INHIBITION_BY_ FLUORESCENCE	ungültig	Der definierte maximale Fluoreszenz-Unterschied zwischen dem Fluoreszenzsignal für die interne Kontrolle der NTC-Probe und dem Fluoreszenzsignal für diese Probe wurde beim letzten Zyklus überschritten.

Flag	Status	Beschreibung
LOW_FLUORESCENCE_ CHANGE	Warnung	Die prozentuale Fluoreszenzänderung in Relation zum Probenröhrchen mit der höchsten Fluoreszenzänderung ist bei dieser Probe kleiner als der definierte Grenzwert.
		Hinweis: Falls eine gültige Probe mit diesem Flag gekennzeichnet ist, wird die genehmigende Person gebeten, den durch dieses Flag beschriebenen Umstand besonders zu beachten, bevor die Entscheidung getroffen wird, ob das Ergebnis zu akzeptieren oder abzulehnen ist.
MULTI_THRESHOLD_ CROSSING	ungültig	Die Amplifikationskurve schneidet die Schwellenwert- Gerade an mehreren Stellen. Ein eindeutiger Cī-Wert kann nicht bestimmt werden.
NO_CT_DETECTED	ungültig	Kein CT-Wert für diese Target-DNA bestimmt.
NORM_FACTOR_ ALTERATION	Warnung	Abweichung während des Normalisierungsvorgangs. Die Amplifikationskurve wird mit einer Standard- Normalisierung angezeigt; die Ergebnisse sollten manuell auf ihre Richtigkeit überprüft werden.
OTHER_TARGET_ INVALID	ungültig	Ein anderes Target in derselben Probe ist ungültig.
SATURATION	ungültig	Die Rohdaten-Fluoreszenz erreicht schnell eine Sättigung vor dem Wendepunkt der Amplifikationskurve.
SPIKE	Warnung	Ein Ausreißer ("Spike") in der Rohdaten-Fluoreszenz wurde in der Amplifikationskurve detektiert; er liegt jedoch außerhalb des Bereichs, in dem der CT-Wert bestimmt wird
		Hinweis: Falls eine gültige Probe mit diesem Flag gekennzeichnet ist, wird die genehmigende Person gebeten, die mit dem Flag bereitgestellten Informationen besonders zu beachten, bevor die Entscheidung getroffen wird, ob das Ergebnis zu akzeptieren oder abzulehnen ist.

Flag	Status	Beschreibung
SPIKE_CLOSE_TO_CT	ungültig	In der Amplifikationskurve wurde ein Ausreißer ("Spike") nahe am CT-Wert detektiert.
STEEP_BASELINE	ungültig	In der Amplifikationskurve wurde eine stetig ansteigende Basislinie bei der Rohdaten-Fluoreszenz detektiert.
STRONG_BASELINE_ DIP	ungültig	In der Amplifikationskurve wurde eine starke Abnahme der Basislinie bei der Rohdaten-Fluoreszenz detektiert.
strong_noise	ungültig	Ein starkes Hintergrundrauschen wurde außerhalb der Anstiegsphase der Amplifikationskurve detektiert.
STRONG_NOISE_ IN_GROWTH_PHASE	ungültig	Ein starkes Hintergrundrauschen wurde in der (exponentiellen) Anstiegsphase der Amplifikationskurve detektiert.
UNEXPECTED_CT_ DETECTED	ungültig	Es wurde ein Cī-Wert bestimmt für ein Target, das eigentlich nicht amplifiziert werden darf.
UPSTREAM	variabel	Probenstatus wurde von einem vorgelagerten Prozess (z. B. Assay-Set-up durch QlAsymphony AS) auf "invalid" (ungültig) oder "unclear" (unklar) gesetzt.
		Hinweis: Für die Flags des Status "unklar" ("unclear"), die von vorgelagerten Prozessen vergeben werden, wird das Verhalten der Rotor-Gene AssayManager Software in der Konfigurations-Umgebung ("Configuration") definiert.
		Im Falle der Flags "invalid" (ungültig) aus vorgelagerten Prozessen werden derartige Proben vom Rotor-Gene AssayManager immer als ungültig gekennzeichnet.
WAVY_BASE_ FLUORESCENCE	ungültig	In der Amplifikationskurve wurde ein wellenförmiger Verlauf der Basislinie bei der Rohdaten-Fluoreszenz detektiert.

Die Ergebnisse der Rotor-Gene AssayManager Software sind von einem Benutzer mit der zugewiesenen Benutzer-Rolle "Genehmiger" ("Approver") zu genehmigen oder abzulehnen. Weitere Informationen über den Genehmigungsprozess finden Sie in dem Rotor-Gene AssayManager Handbuch mit dem Titel *artus* Basic Plug-in Handbuch (*Rotor-Gene AssayManager* artus *Basic Plug-in User Manual*.).

Real-Time-PCR mit Nutzung der Rotor-Gene Q Software 2.1 (oder höher)

Spezifische Einstellungen für den artus CT/NG QS-RGQ Kit

Bei Verwendung der Rotor-Gene Software 2.1 gelten spezifisch die Einstellungen in der folgenden Tabelle.

Reaktionsvolumen (µl)	25
Halten ("Hold")	Haltetemperatur: 95 °C
	Haltezeit: 15 Minuten
	45 Zyklen
Zykleneinstellungen	95 °C für 11 Sekunden
	60 °C für 20 Sekunden 72 °C für 20 Sekunden
	60 °C
Einstellung der automatischen Verstärkungsoptimierung	(Proben: CT: Grün, NG: Orange; interne Kontrolle (IC): Gelb)

Weitere detaillierte Anweisungen finden Sie in dem Protokollblatt "Settings to run artus QS-RGQ Kits" unter <u>www.qiagen.com/products/artusctngqsrgqkitce</u>.

Interpretation der Ergebnisse bei Nutzung der Rotor-Gene Q Software 2.1 (oder höher)

Der mit dem *artus* CT/NG QS-RGQ Kit und dem Rotor-Gene Q MDx 5plex HRM Instrument durchgeführte Assay kann manuell mithilfe der Rotor-Gene Q Software 2.1 (oder höher) ausgewertet werden. Dieser Abschnitt beschreibt die Interpretation der mit dem Rotor-Gene Q MDx 5plex HRM erhaltenen Ergebnisse. Kontrollieren Sie auch die Angaben zum Probenstatus in den Report-Dateien des QIAsymphony SP/AS bei der Auswertung des vollständigen Workflows von der Probe bis zum Endergebnis. Es sollten nur Proben mit dem Status "valid" (gültig) ausgewertet werden.

Signaldetektion und Schlussfolgerungen

Signal im Kanal Cycling Green	Signal im Kanal Cycling Orange ≤ 40 Cts	Signal im Kanal Cycling Orange > 40 Cts	Signal im Kanal Cycling Yellow	Interpretation
Ja	Nein	Nein	Ja/Nein*	Gültiges Ergebnis: CT-DNA nachgewiesen, NG-DNA nicht nachgewiesen
Ja	Nein	Ja	Ja/Nein*	Gültiges Ergebnis: CT-DNA nachgewiesen, NG-DNA nicht nachgewiesen
Nein	Ja	Nein	Ja/Nein*	Gültiges Ergebnis: CT-DNA nicht nachgewiesen, NG-DNA nachgewiesen
Ja	Ja	Nein	Ja/Nein*	Gültiges Ergebnis: CT- und NG-DNA nachgewiesen
Nein	Nein	Ja	Ja	Gültiges Ergebnis: keine CT- oder NG-DNA nachgewiesen†
Nein	Nein	Nein	Ja	Gültiges Ergebnis: keine CT- oder NG-DNA nachgewiesen†
Nein	Nein	Ja	Nein	Ungültiges Ergebnis: Eine Aussage ist nicht möglich‡
Nein	Nein	Nein	Nein	Ungültiges Ergebnis: Eine Aussage ist nicht möglich‡

* In diesem Fall ist die Detektion eines Signals im Kanal "Cycling Yellow" unwesentlich, da hohe Ausgangskonzentrationen an CT-DNA (positives Signal im Kanal "Cycling Green" und/oder "Cycling Orange") zu einem reduzierten oder ausbleibenden Fluoreszenz-Signal der internen Kontrolle im Kanal "Cycling Yellow" führen können (Kompetition).

[†] Falls der C_T-Wert für die interne Kontrolle einer negativen Probe mehr als 5 Zyklen über dem C_T-Wert für die interne Kontrolle der NTC-Probe (Kontrolle ohne Template) des Laufs ist (C_{T IC Probe} – C_{T IC NTC} > 5), dann sollte bei dieser Probe davon ausgegangen werden, dass eine Inhibition vorliegt. Eine Aussage zum Ergebnis ist nicht möglich.

[†] Informationen in Bezug auf mögliche Fehlerursachen und ihre Behebung können dem Abschnitt "Troubleshooting guide" (Hilfe zur Fehlerbehebung) im *artus* CT/NG QS-RGQ Kit Handbuch (artus *CT/NG QS-RGQ Kit Handbook*) entnommen werden.

Schwellenwert-Einstellung für die PCR-Analyse

Die empfohlenen Schwellenwert-Einstellungen für den *artus* CT/NG-Assay sind in der folgenden Tabelle zusammengefasst.

Empfohlene Schwellenwert-Einstellungen

Fluoreszenz-Kanal	Schwellenwert-Einstellung
Cycling Green	0,07
Cycling Orange	0,10
Cycling Yellow	0,03

Beispiele positiver und negativer PCR-Reaktionen

Der *artus* CT/NG QS-RGQ Kit enthält zwei Kontrollen, um die Nukleinsäure-Extraktionsprozedur und die PCR zu überwachen: "CT/NG Control CT+/NG-" und "CT/NG Control NG+/CT-". Diese Kontrollen werden wie die anderen Proben dem QIAsymphony SP/AS zugeführt und genau wie diese verarbeitet. Die interne Kontrolle ("CT/NG RG IC") wird während des DNA-Extraktionsprozesses zur Probe pipettiert und ist in allen Proben und in der NTC-Probe vorhanden.

Die Kontrollen werden während des PCR-Set-up-Prozesses verwendet und sollten zu spezifischen Ergebnissen bei der PCR führen, die den Ergebnissen in den folgenden Abbildungen entsprechen.

Abbildung 1. Cycling Green: CT-Positivkontrolle. Ergebnisse eines Laufs mit der Kontrolle "CT/NG Control CT+/NG-".

Abbildung 2. Cycling Orange: NG-Positivkontrolle. Ergebnisse eines Laufs mit der Kontrolle "CT/NG Control NG+/CT-".

Abbildung 3. Cycling Yellow: interne Kontrolle. Ergebnisse eines Laufs mit der internen Kontrolle "CT/NG RG IC".

Die zu erwartenden CT-Werte für die Kontrollen bei einem erfolgreichen und gültigen PCR-Experiment sind in der folgenden Tabelle zusammengefasst.

Erwartete C_T-Werte

C _T -Wertebereich (Minimum bis Maximum)			
Kontrolle/Probe	Cycling Green	Cycling Yellow	Cycling Orange
Kontrolle "CT+/NG-"	28,99–37,94	≤ 33,44	-
Kontrolle "NG+/CT-"	-	≤ 33,44	27,22–35,08
NTC-Probe	-	≤ 33,44	-
Patientenprobe	beliebig	≤ Cī-Wert der NTC- Probe im aktuellen Lauf + 5 Cī	beliebig

Falls bei einer der Kontrollen oder der zugehörigen IC kein Signal erhalten wird, ist der Lauf als ungültig einzustufen.

Beschränkungen des Tests

Es wurde eine Untersuchung durchgeführt, um die Leistungsfähigkeit des *artus* CT/NG QS-RGQ Kits bei der Analyse von Proben, die hohe Konzentrationen an CT oder NG bei gleichzeitiger Anwesenheit des jeweils anderen Erregers in niedriger Kopienzahl enthielten, zu bewerten. Die Ergebnisse sind in der folgenden Tabelle zusammengefasst.

Leistungsfähigkeit des artus CT/NG QS-RGQ Kits bei unterschiedlichen Konzentrationen der Target-DNA

Erreger A	Erreger B	Trefferquote für Erreger B (%)
1,00 x 10 ⁶ KBE/ml N. gonorrhoeae	23 EK/ml C. trachomatis	100
1,00 x 10 ⁵ EK/ml C. trachomatis	58,5 KBE/ml N. gonorrhoeae	100

Hinweis: Niedrigere Konzentrationen für "Erreger B" können zu niedrigeren Trefferquoten führen.

Aktuelle Lizenzinformationen und produktspezifische rechtliche Hinweise finden Sie im Handbuch oder der Gebrauchsanweisung des jeweiligen QIAGEN-Kits. Handbücher und Gebrauchsanweisungen zu QIAGEN Kits finden Sie im Internet unter www.qiagen.com oder können beim Technischen Service von QIAGEN oder bei Ihrem örtlichen Händler angefordert werden.

Warenzeichen: QIAGEN®, QIAsymphony®, artue®, Rotor-Gene®, Rotor-Gene AssayManager® (QIAGEN Group); BD™ (Becton, Dickinson and Company); eNaT™ (Copan Italia Spa).

Eingeschränkte Nutzungsvereinbarung für artus CT/NG QS-RGQ

Mit der Nutzung dieses Produkts erkennen Käufer und Nutzer des Produkts die folgenden Bedingungen an:

- 1. Das Produkt darf nur gemäß den mit dem Produkt und diesem Handbuch bereitgestellten Protokollen und nur mit den Komponenten, die im Kit mitgeliefert werden, verwendet werden. QIAGEN gewährt im Rahmen seiner Eigentumsrechte keinerlei Lizenz, die zu den Kits gehörenden Komponenten mit anderen Komponenten, die nicht zu den Kits gehören, zu verwenden oder zu kombinieren, mit Ausnahme der Anwendungen, die in den mit dem Produkt bereitgestellten Protokollen, diesem Handbuch sowie zusätzlichen, unter www.qiagen.com verfügbaren Protokollen beschrieben werden. Einige dieser zusätzlichen Protokolle wurden von QIAGEN-Anwender QIAGEN-Anwenderz zur Verfügung gestellt. Diese Protokolle wurden von QIAGEN nicht eingehend geprüft oder optimiert. QIAGEN übernimmt für diese Protokolle keine Garantie und garantiert auch nicht, dass sie keine Rechte Dritter verletzen.
- 2. Über die ausdrücklich erwähnten Lizenzanwendungen hinaus übernimmt QIAGEN keinerlei Garantie dafür, dass dieses Kit und/oder die mit diesem Kit durchgeführte(n) Anwendung(en) die Rechte Dritter nicht verletzen.
- 3. Dieses Kit und seine Komponenten sind für den einmaligen Gebrauch lizenziert und dürfen nicht wiederverwendet, aufgearbeitet oder weiterverkauft werden.
- 4. QIAGEN lehnt außer der ausdrücklich gewährten Lizenzgewährung jede weitere Lizenzgewährung ab, sowohl ausdrücklich als auch konkludent.
- 5. Käufer und Nutzer des Kits stimmen zu, keinerlei Schritte zu unternehmen oder anderen die Einleitung von Schritten zu gestatten, die zu unerlaubten Handlungen im obigen Sinne führen könnten oder solche erleichtern könnten. QIAGEN kann die Verbote dieser eingeschränkten Nutzungsvereinbarung an jedem Ort gerichtlich geltend machen und wird sämtliche Ermittlungs und Gerichtskosten, inklusive Anwaltsgebühren, zurückfordern, die ihr bei der Geltendmachung dieser eingeschränkten Nutzungsvereinbarung oder irgendeines ihrer geistigen Eigentumsrechte im Zusammenhang mit dem Kit und/oder seinen Komponenten entstehen.

Aktualisierte Nutzungs- und Lizenzbedingungen finden Sie im Internet unter **www.qiagen.com**.

Der Kauf dieses Produkts berechtigt den Käufer zu dessen Nutzung in der humanen In-vitro-Diagnostik. Außer dieser speziellen Berechtigung wird durch den Kauf kein allgemeines Patent und keine Lizenz jeglicher Art erworben.

HB-1517-S02-003 07-2017

© 2017 QIAGEN, alle Rechte vorbehalten.

Bestellungen www.qiagen.com/contact | Technischer Support support.qiagen.com | Website www.qiagen.com