<u>۶</u> 19

ipsogen[®] JAK2 MutaScreen RS Kiti El Kitabı

Sürüm 1

IVD

Kantitatif in vitro tanı amaçlı

Rotor-Gene[®] Q, Applied Biosystems[®], ABI PRISM[®] ve LightCycler[®] cihazlarıyla kullanım için

CE

REF 673123

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, ALMANYA

R3 MAT 1072513TR

Sample & Assay Technologies

QIAGEN Örnek ve Test Teknolojileri

QIAGEN herhangi bir biyolojik örneğin içeriğinin izolasyonunu ve tespitini sağlayan yenilikçi örnek ve test teknolojilerinin öncü sağlayıcısıdır. Gelişmiş yüksek kaliteli ürünlerimiz ve hizmetlerimiz örnekten sonuca başarı sağlar.

QIAGEN şu standartları belirler:

- DNA, RNA ve proteinlerin saflaştırılması
- Nükleik asit ve protein ölçümleri
- mikroRNA araştırması ve RNAi
- Örnek ve test teknolojilerinin otomasyonu

Misyonumuz, üstün başarı ve önemli buluşlar elde etmenizi sağlamaktır. Daha fazla bilgi için, **www.qiagen.com** adresini ziyaret edin.

İçindekiler

Kullanım Amacı	4
Özet ve Açıklama	4
Prosedür Prensibi	6
Sağlanan Malzemeler	8
Kit içeriği	8
Gerekli Olan Ancak Sağlanmayan Malzemeler	9
Uyarılar ve Önlemler	10
Genel önlemler	10
Reaktifi Saklama ve Kullanma	11
Prosedür	12
Örnek DNA hazırlığı	12
Nükleik asitlerin saklanması	12
Protokoller	
72 tüplük rotora sahip Rotor Gene Q cihazlarında qPCR	12
Applied Biosystems ve ABI PRISM cihazlarında qPCR	21
■ LightCycler 480 cihazında qPCR	30
■ LightCycler 2.0 cihazında qPCR	37
Sonuçların Yorumlanması	42
Grafik gösterimi ve kalite kontrol kriterleri	42
Normalize FAM/VIC oranını ve genotiplemeyi hesaplama	43
Sorun giderme kılavuzu	46
Kalite Kontrol	48
Sınırlamalar	48
Performans Özellikleri	48
Klinik dışı çalışmalar	48
Klinik çalışmalar	50
Referanslar	55
Semboller	56
İletişim Bilgileri	56
Sipariş Bilgileri	57

Kullanım Amacı

ipsogen JAK2 MutaScreen RS Kiti miyeloproliferatif neoplazm şüphesi olan bireylerden elde edilen genomik DNA'daki JAK2 V617F/G1849T mutasyonunun tespiti için tasarlanmıştır. JAK2 V617F/G1849T yokluğu diğer JAK2 mutasyonlarının varlığını ekarte etmez. Test, 615 ila 619 (1) kodonlarında bulunan ek mutasyonlar olması durumunda yanlış negatif sonuçlar bildirebilir.

Not: Bu kit, bu kılavuzda verilen aşağıdaki talimatlarla, belirtilen onaylanmış reaktifler ve cihazlarla birlikte kullanılmalıdır. Bu ürünün herhangi bir etiket dışı kullanımı ve/veya bileşenlerin değiştirilmesi QIAGEN sorumluluğunu geçersiz kılar.

Özet ve Açıklama

Janus tirozin 2 (JAK2) genini etkileyen tekrarlayan somatik mutasyon V617F, 2005 (2-5) yılında tanımlanarak miyeloproliferatif neoplazmın (MPN) anlaşılması, sınıflandırılması ve tanısında büyük ilerlemeye öncülük etmiştir. JAK2, eritropoietin dahil olmak üzere birçok sitokin için önemli bir hücre içi sinyal molekülüdür.

JAK2 V617F mutasyonu polisitemi vera (PV) hastalarının >%95'inde, esansiyel trombositemi (ET) hastalarının %50 ila %60'ında, primer miyelofibroz (PMF) hastalarının %50'sinde saptanmıştır. JAK2 V617F kronik miyelomonositik lösemi, Miyelodisplazik sendrom, sistemik mastositoz ve kronik nötrofilik löseminin bazı nadir durumlarında da tespit edilmiştir ancak KML'de %0'dır (6).

Mutasyon, proteinin (JH2 domaini) 617. pozisyonunda tek bir valin'in (V), fenilalanin'e (F) dönüşümüne neden olan JAK2 geninin 14. eksonundaki 1849. nükleotidinin tek nükleotid değişimine karşılık gelir. JAK2 geninin konstitütif aktivasyonuna, in vitro hematopoetik transformasyona, PV'li tüm hastalarda, ET ve PMF hastalarının büyük bölümünde eritropoietinden bağımsız eritroid koloni (EEC) oluşumuna neden olur (7). JAK2 V617F MPN'deki hematopoetik hücrelerin transformasyonunda önemli bir etmeni temsil eder; ancak tamamen benzer patolojik mekanizmaların aynı benzersiz mutasyonlarla böylesi farklı klinik ve biyolojik antiteler ile sonuçlanması henüz tam olarak açıklanamamıştır.

Geleneksel olarak, MPN'lerin tanısı kliniksel, kemik iliği histolojisi ve sitogenetik kriterlerine göre konulurdu. Hastalığa özgü moleküler markırların keşfi hem sürecin basitleşmesine hem de artan tanı doğruluğuna neden oldu. JAK2 V617F mutasyonunun tespiti artık BCR-ABL negatif MPN tanısı (Tablo 1) için referans DSÖ 2008 kriterlerinin bir parçasıdır ve bu mutasyonun varlığı tanının doğrulanması için önemli bir kriterdir.

Tablo 1. MPN tanısı için DSÖ kriterleri (referans 8'den uyarlanmıştır)

Polisitemi vera (PV) tanı kriterleri	
Majör 1. Hemoglobin (Hgb) >18,5 g.dl ⁻¹ (erkek) veya >16,5 g.dl ⁻¹ (kadın)	-
ya da	
Yaş, cinsiyet, yaşanan yerdeki rakıma göre belirlenmiş referans	
aralığının >99. persentil Hgb veya hematokrit (Hct) değeri ya da	
bazal değerde, demir eksikliğinin düzeltilmesine dayandırılamayan	
≥2 g.dl ⁻¹ seviyesinde devamlılık gösteren artışla ilişkili olduğunda	
Hgb >17 g.dl ⁻¹ (erkek) veya >15 g.dl ⁻¹ (kadın)	
Eritrosit kitlesinin normal öngörülen ortalama değerinden %25'den	
daha fazla artışı	
2. JAK2V617F veya benzer mutasyon varlığı	
Minör 1. Kemik iliğinde her üç seride artış	
2. Serum eritropoyetin düzeyinin normalin altında olması	
3. Endojen eritroid koloni (EEC) oluşumu	
Esansiyel trombositemi (ET) tanı kriterleri	_
Majör 1. Trombosit sayımı ≥450 x 10 ⁹ l ⁻¹	
2. Büyük ve olgun mortoloji ile megakaryosit artışı.	
Granülosit veya eritroid artışının olmaması veya az olması	
3. Kronik miyeloid lõsemi (KML), PV, primer miyelofibroz (PMF),	
miyolodisplastik sendrom (MDS) veya diğer miyeloid neoplazmlar için	
DSO kriterlerinin karşılanmaması	
4. JAKZVOT/F veya diger kional markiriarin gosterilmesi ya da	
Minär	i.
Millor - Primer mivelefibrez (PME) tanı kriterleri	
Majör 1. Patikülin va/vava kallaian fibraziala harabar magakanyasit artu	_
vo atipi varliči va da	
Petikülin fibrozis vokluğunda, megakanyositik değisikliklere, artmış	
kemik iliği sellüleritesi, aranülositik proliferasyon ve sıklıkla azalmış	
eritropoez (örn, prefibrotik) eslik etmelidir	
2 (KML) PV MDS ve diğer miyeloid neonlazmlar için DSÖ	
kriterlerinin karsılanmaması	
3 JAK2V617E veva diğer klonal markırların gösterilmesi va da	
Reaktif kemik iliği fibrozisi bulgusunun olmaması	
Minör 1. Lökoeritroblastozis	
2. Serum laktat dehidrogenaz (LDH) düzevinde artıs	
3. Anemi	
4. El mugyenesi ile hissedilen Splenomegali	

Son yıllarda, uluslararası uzmanlar PV ve ET'de yapılan klinik çalışmalar için kriterler önermiştir. Allogreft, alfa-interferon veya hidroksiüre ile ilgili verilere dayanarak, JAK2V617F kantifikasyonu tedavi yanıtının izlenmesi açısından

potansiyel olarak yararlı bir araç olarak kapsama dahil edilmiştir (9). Klinik gelişmede, bazı yeni anti-JAK2 hedefli ilaçlara yanıt olarak JAK2 V617F yükünde bir azalma gözlenmiştir (10).

Prosedür Prensibi

Allelik diskriminasyon testinde, iki TaqMan[®] probu çoklu testte kullanılır. Biri allel 2 dizisiyle tam eşleşir (örn., yabani tip allel) diğeri allel 1 dizisiyle tam olarak eşleşir (örn., mutasyon taşıyan allel). Her bir prob 5' ucunda ayırıcı floresan boya (Haberci, FAM[™] veya VIC[®] gibi) ile etiketlenmiştir ve 3' ucunda floresan olmayan Baskılayıcı molekülü içerir. Problar daha yüksek stabiliteye ve dolayısıyla daha doğru allelik diskriminasyona sahip daha kısa probların kullanımına izin veren minör oluk bağlayıcı (MGB[™]) bir molekül de içerir.

PCR'ın uzama fazı sırasında, Taq polimeraz 5'→3' ekonükleaz aktivitesiyle tam olarak eşleşen probu kesip çıkartarak Haberci boyayı Baskılayıcıdan ayırır ve böylece tespit edilebilir floresan serbest kalır. Tam olarak eşleşmeyen prob Taq polimeraz tarafından kesilip çıkarılmak yerine değiştirilir ve haberci boya serbest kalmaz. Oluşan floresan sinyali (VIC veya FAM) PCR'ın sonunda (son nokta) toplanır ve kontaminasyon riskini de artıran uzun ve zahmetli PCR sonrası adımlara gerek olmadan hemen örnekteki (yabani tip allel, mutasyona uğramış allel veya her ikisi) hedeflenmiş dizinin/dizilerin varlığını gösterir. Hedef dizinin gerçek miktarı belirlenmez.

ipsogen JAK2 MutaScreen RS Kiti bu teknolojiyi şekilde gösterildiği gibi kullanır (bkz. Şekil 1).

Şekil 1. TaqMan probu çoklu test. ipsogen JAK2 MutaScreen RS Kiti allelik diskriminasyon için bu teknolojiyi kullanır.

Sağlanan Malzemeler

Kit içeriği

ipsogen JAK2 MutaScreen RS Kit Katalog no. Reaksiyon sayısı		(19) 673123 19
V617F Positive Control* (V617F Pozitif Kontrol)	MP-VF	30 <i>µ</i> I
V617F Negative Control [†] (V617F Negatif Kontrol)	MN-VF	30 <i>µ</i> I
Reference Scale M1 [‡] (Referans Ölçeği M1)	M1-VF	30 <i>µ</i> I
Reference Scale M2 [‡] (Referans Ölçeği M2)	M2-VF	30 <i>µ</i> I
Reference Scale M3 [‡] (Referans Ölçeği M3)	M3-VF	30 <i>µ</i> I
Reference Scale M4 [‡] (Referans Ölçeği M4)	M4-VF	30 <i>µ</i> I
Reference Scale M5 [‡] (Referans Ölçeği M5)	M5-VF	30 <i>µ</i> I
Reference Scale M6 [‡] (Referans Ölçeği M6)	M6-VF	30 <i>µ</i> I
Primers and probes mix JAK2 V617F [§] (Primer ve prob karışımı JAK2 V617F)	PPM-VF 10x	145 <i>µ</i> l
ipsogen JAK2 MutaScreen RS Kit Handbook (İngilizce)		1

* Pozitif kontrol: %100 V617F DNA.

⁺ Negatif kontrol: %100 yabani tip DNA; %0 V617F DNA.

[‡] Referans ölçeği (genomik DNA dilüsyonları).

§ JAK2 geni için spesifik ters ve ileri primerler, spesifik V617F FAM probu ve yabani tip VIC probu karışımı.

Not: Kullanmadan önce tüpleri kısa süreli santrifüj edin.

Not: Bilinmeyen örneklerin *ipsogen* JAK2 MutaScreen RS Kiti ile analizi genomik DNA ekstraksiyonunu gerektirir. DNA ekstraksiyonunu gerçekleştirmek için gerekli reaktifler (örn., QIAGEN[®] QIAamp[®] DNA Mini Kit, kat. no. 51304) sağlanmamıştır, bunlar kitle birlikte onaylanmış olmalıdır.

Gerekli Olan Ancak Sağlanmayan Malzemeler

Kimyasallar ile çalışırken, her zaman uygun laboratuvar önlüğü, tek kullanımlık eldiven ve koruyucu gözlük kullanın. Daha fazla bilgi için, ürün sağlayıcısından edinebileceğiniz, uygun güvenlik veri sayfalarına (SDSs) başvurun.

Reaktifler

- Nükleaz içermeyen PCR sınıfı su
- Nükleaz içermeyen 1x TE tamponu, pH 8,0 (örn., Thermo Fisher Scientific, kat. no. 12090-015)
- Tampon ve Taq DNA polimeraz: Onaylanan reaktifler: TaqMan Universal PCR Master Mix (Master Mix PCR 2x) (Thermo Fisher Scientific, kat. no. 4304437) ve LightCycler TaqMan Master (Master Mix PCR 5x) (Roche, kat. no. 04535286001)
- 0,5x TBE elektroforez tamponunda hazırlanan %0,8-1'lik agaroz jel için reaktifler

Sarf Malzemeleri

- Nükleaz içermeyen aerosole dirençli steril hidrofobik filtreli PCR pipeti uçları
- 0,5 ml'lik veya 0,2 ml'lik RNaz ve DNaz içermeyen PCR tüpleri
- Buz

Ekipman

- PCR için ayrılmış mikrolitre pipetleri* (1-10 μ l; 10-100 μ l; 100-1000 μ l)
- 0,2 ml/0,5 ml'lik reaksiyon tüpleri için rotora sahip masaüstü santrifüj* (10.000 rpm'ye ulaşma özelliğinde)
- DNA miktar tayini için spektrofotometre*
- Gerçek zamanlı PCR cihazı:* Rotor-Gene Q MDx 5plex HRM veya diğer Rotor-Gene cihazları; LightCycler 2.0 veya 480; Applied Biosystems 7300 Real-Time PCR System, Applied Biosystems 7500 Real-Time PCR System, ABI PRISM 7000 SDS, ABI PRISM 7700 SDS veya ABI PRISM 7900HT SDS; ve ilişkili spesifik malzeme
- Değişken alanlı jel elektroforezi için ekipman*

* Cihazların üreticinin önerilerine göre kontrol ve kalibre edilmiş olduğundan emin olun.

Uyarılar ve Önlemler

İn vitro tanı amaçlı kullanım içindir

Kimyasallar ile çalışırken, her zaman uygun laboratuvar önlüğü, tek kullanımlık eldiven ve koruyucu gözlük kullanın. Daha fazla bilgi için lütfen ürün sağlayıcısından edinebileceğiniz, uygun güvenlik veri sayfalarına (SDSs) başvurun. Bunlar, her bir QIAGEN kiti ve kit bileşenlerine ait SDS'yi bulabileceğiniz, görüntüleyebileceğiniz ve yazdırabileceğiniz **www.qiagen.com/safety** adresinde çevrimiçi olarak uygun ve kompakt PDF biçiminde mevcuttur.

Örneği ve test atığını yerel güvenlik düzenlemelerinize göre atın.

Genel önlemler

qPCR testleri ekipman bakımı dahil olmak üzere, moleküler biyolojiye özel ve yürürlükteki yönetmeliklere ve ilgili standartlara uygun iyi laboratuvar uygulamaları gerektirir.

Bu kit in vitro tanı amaçlı kullanım içindir. Bu kit içinde sağlanan reaktifler ve talimatlar en iyi performans için onaylanmıştır. Reaktiflerin daha fazla seyreltilmesi ya da inkübasyon sürelerinin ve sıcaklıkların değiştirilmesi hatalı veya uyumsuz verilere neden olabilir. PPM-VF reaktifi ışığa maruz kalması durumunda değişikliğe uğrayabilir. Tüm reaktifler bu testle kullanılmak üzere özel olarak formüle edilmiştir. Testin en iyi performansı için hiçbir değişim yapılmamalıdır.

Aşağıdakilerin önlenmesine çok dikkat edin:

- Kalıp DNA degradasyonuna neden olabilecek DNaz kontaminasyonu
- Yanlış pozitif sinyale yol açan DNA veya PCR taşınma kontaminasyonu

Bu nedenle aşağıdakileri öneririz.

- Nükleaz içermeyen laboratuvar malzemeleri (örn., pipetler, pipet uçları, reaksiyon şişeleri) kullanın ve testi gerçekleştirirken eldiven takın.
- Örneklerin ve reaktiflerin çapraz kontaminasyonunu önlemek için tüm pipetleme adımları için yeni aerosole dirençli pipet uçları kullanın.
- Ön-PCR ana karışımını hiçbir DNA matrisinin (DNA, plasmid) içeri sokulmadığı ayrılmış bir alanda özel malzemeler (pipetler, uçlar vb.) kullanarak hazırlayın. Kalıbı ayrı bir bölgede (tercihen farklı bir odada) özel malzemeler (pipetler, uçlar vb.) kullanarak ekleyin.

Reaktifi Saklama ve Kullanma

Kitler kuru buzda gönderilir ve teslim alındıktan sonra -15°C ila -30°C arasında saklanmalıdır.

- Primer ve prob karışımlarının (PPM-VF tüpü) ışığa maruz kalma süresini en aza indirin.
- Açmadan önce tüpleri yavaşça karıştırın ve santrifüj edin.
- Tüm kit bileşenlerini orijinal kaplarında saklayın.

Bu saklama koşulları hem açılmış hem de açılmamış bileşenler için geçerlidir. Etiket üzerinde belirtilenlerin dışındaki koşullarda saklanan bileşenler düzgün çalışmayabilir ve test sonuçlarını olumsuz etkileyebilir.

Her bir reaktif için son kullanma tarihleri kendi bileşen etiketleri üzerinde belirtilmiştir. Doğru saklama koşulları altında, bu ürün etiketin üstünde yazılı olan son kullanma tarihine kadar performansını korur.

Bu ürünün instabilitesini belirten hiçbir belirgin işaret yoktur. Ancak, pozitif ve negatif kontroller bilinmeyen numunelerle aynı anda çalışılmalıdır.

Prosedür

Örnek DNA hazırlığı

Genomik DNA tam kandan, saflaştırılmış periferal kan lenfositlerinden, polinükleer hücrelerden veya granülositlerden elde edilmelidir. Sonuçları karşılaştırabilmek için, aynı hücresel fraksiyonu ve DNA ekstraksiyon yöntemini kullanmanızı öneririz. DNA ekstraksiyonu laboratuvarda kullanılan herhangi bir yöntemle veya ticari yöntemle gerçekleştirilmelidir.

DNA miktarı 260 nm'deki optik yoğunluğun ölçümü ile tespit edilir. DNA kalitesi spektrofotometre veya jel elektroforezi ile değerlendirilmelidir.

A₂₆₀/A₂₈₀ oranı 1,7-1,9 aralığında olmalıdır. Daha küçük değerler genellikle protein veya organik kimyasallar ile kontaminasyonu gösterir. %0,8-1'lik agaroz jelindeki elektroforetik analiz izole edilmiş DNA'nın yaklaşık 20 kb'lık farklı bir bant olarak görülmesine izin vermelidir. Hafif bir simir kabul edilebilir.

Elde edilen DNA, TE tamponunda 5 ng/ μ l'ye seyreltilir. qPCR reaksiyonu, 25 ng saflaştırılmış genomik DNA için optimize edilmiştir.

Nükleik asitlerin saklanması

24 saate kadar kısa süreli saklama için saflaştırılmış nükleik asitlerin 2-8°C'de, 24 saatin üzerindeki uzun süreli saklama için -20°C'de saklanmasını öneririz.

Protokol: 72 tüplük rotora sahip Rotor Gene Q cihazlarında qPCR

Bu cihazı kullanırken, tüm ölçümleri Tablo 2'de gösterildiği gibi çift tekrarlı gerçekleştirmenizi öneririz.

Tablo 2. 72 tüplük rotora sahip Rotor Gene Q MDx 5plex HRM veya Rotor Gene Q 5plex HRM cihazları için reaksiyon sayısı

Örnekler	Reaksiyonlar
JAK2 V617F primer ve prob karışı	mı (PPM-VF) (56 reaksiyon)
19 DNA örneği	19 x 2 reaksiyon
2 DNA kontrolü	2 x 2 reaksiyon (MP-VF, MN-VF, her biri iki kere test edilmiştir)
Referans ölçeği	6 x 2 reaksiyon (M1 ila M6, her biri iki kere test edilmiştir)
Su kontrolü	2 reaksiyon

72 tüplük rotora sahip Rotor Gene Q cihazlarında örnek işleme

Şekil 2. ipsogen JAK2 MutaScreen RS Kiti ile deney için önerilen rotor ayarları. MP-VF: pozitif kontrol; MN-VF: negatif kontrol; M1 ila M6: referans ölçeği; S: DNA örneği; H₂O: su kontrolü.

Not: Her zaman test edilecek örneği rotorun 1. konumuna yerleştirmeye özen gösterin. Aksi takdirde, kalibrasyon adımı sırasında, cihaz kalibrasyonu gerçekleştirmez ve yanlış floresan verileri elde edilir.

Tüm diğer konumları boş tüplerle doldurun.

72 tüplük rotora sahip Rotor Gene Q cihazlarında qPCR

Not: Tüm adımları buzda gerçekleştirin.

Prosedür

1. Tüm gerekli bileşenleri çözündürün ve buza yerleştirin.

Bileşenler, prosedürü başlatmadan önce yaklaşık 10 dakika dondurucu dışına alınmalıdır.

- 2. Tüm tüpleri vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- **3.** İşlenecek örnek sayısına göre aşağıdaki qPCR karışımını hazırlayın. Tüm konsantrasyonlar reaksiyonun son hacmi içindir.

Tablo 3, 25 μ l son reaksiyon hacmi elde etmek için hesaplanmış bir reaksiyon karışımının hazırlanması için pipetleme şemasını tanımlar. Ön karışım aynı primer ve prob karışımı kullanılarak reaksiyon sayısına göre hazırlanabilir. Pipetleme hatasını telafi etmek için ilave hacimler eklenir.

Rotor-Gene cihazlarında, *ipsogen* JAK2 MutaScreen RS Kiti bir deneyde iki tekrarlı olarak 19 örneğin analizi için kullanılabilir (Şekil 2).

	Reaksiyo	n sayısı (µl)	Son	
Bileşen	1	56+1*	konsantrasyon	
TaqMan Universal PCR Ana karışımı, 2x	12,5	712,5	1x	
Primer ve prob karışımı, 10x	2,5	142,5	1x	
Nükleaz içermeyen PCR sınıfı su	5	285	-	
Örnek (adım 4'te eklenecek)	5	her biri 5	-	
Toplam hacim	25	her biri 25	-	

Tablo 3. qPCR Karışımının hazırlanması

* 19 örnek; 1 deney/kit.

- qPCR karışımını vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- 5. Her tüpe qPCR ön karışımından 20 μ l dağıtın.
- 6. İlgili tüpe örnek DNA materyalinden veya kontrollerden 5 μ l ekleyin (toplam hacim 25 μ l).
- 7. Yukarı aşağı pipetleme yaparak yavaşça karıştırın.
- 8. PCR tüplerini kapatın. Tüpleri üreticinin tavsiyelerine göre 72 tüplük rotora yerleştirin. Tüm diğer konumları boş tüplerle doldurun.

- Kilitleme halkasının (Rotor-Gene cihazının aksesuarı) çalışma sırasında tüplerin yanlışlıkla açılmasını önlemek için rotorun üstüne yerleştiğinden emin olun. Rotoru üreticinin tavsiyelerine göre Rotor-Gene Q cihazına yerleştirin.
- 10. JAK2 DNA'sının tespiti için, sıcaklık profilini aşağıdaki adımlara göre oluşturun.

Genel test parametrelerinin ayarlanması	Şekil 3, 4
DNA amplifikasyonu	Şekil 5
Floresan kanal hassasiyetinin ayarlanması	Şekil 6

Cihaz kullanıcı kılavuzunda Rotor-Gene cihazlarının programlanmasıyla ilgili daha fazla bilgi bulabilirsiniz. Şekillerde, yazılım ayarları kalın siyah olarak çerçevelenmiştir. Şekiller, Rotor-Gene Q Cihazları için verilmiştir.

11. Rotor-Gene Yazılımını başlatın. "New Run" (Yeni Çalışma) iletişim kutusunda, "New" (Yeni) seçeneğini tıklatın.

Şekil 3. "New Run" (Yeni Çalışma) iletişim kutusu.

 "New Run Wizard" (Yeni Çalışma Sihirbazı) iletişim kutusunda, hacmi 25 μl olarak ayarlayın ve "Next" (Sonraki) düğmesini tıklatın.

New Run Wizard	This screen displa clicking Next whe	ays miscellaneous options for the run. Complete the fields, n you are ready to move to the next page.	This box displays help on elements in the wizard. For help
	Operator :	DB	on an item, hover your mouse over the item for help. You
1	Notes :	Programme PCR allelic discrimination	can also click on a combo box to display help about its available settings.
all of the second	Reaction Volume (µL):	25	
Se Se Se Se Se Se Se Se Se Se Se Se Se S	Sample Layout :	1, 2, 3	
		<< Back Next>>	

Şekil 4. Genel test parametrelerinin ayarlanması.

 Bir sonraki "New Run Wizard" (Yeni Çalışma Sihirbazı) iletişim kutusundaki "Edit Profile" (Profili düzenle) düğmesini tıklatın ve sıcaklık profilini Tablo 4 ve Şekil 5'te gösterildiği gibi programlayın. Hem Yeşil (FAM) hem de Sarı (VIC) kanallar için her bir döngüde, 60°C'deki son tarama adımını eklediğinizden emin olun.

Tablo 4. Sıcaklık profili

Tutma	Sıcaklık: 50 derece Süre: 2 dak.
Tutma 2	Sıcaklık: 95 derece Süre: 10 dak.
Döngü	50 kez 15 sn. için 92 derece 1 dak. için 60 derece; tek Yeşil Döngü A kanalındaki FAM floresan taraması Sarı Döngü A kanalındaki VIC floresan taraması

Şekil 5. DNA amplifikasyonu.

14. Floresan kanallarının tespit aralığı PCR tüplerindeki floresan yoğunluklarına göre belirlenmelidir. "Auto-Gain Optimisation Setup" (Otomatik Optimizasyon Sağlama Kurulumu) iletişim kutusunu açmak için "New Run Wizard" (Yeni Çalışma Sihirbazı) iletişim kutusundaki "Gain Optimisation" (Optimizasyon Sağlama) düğmesini tıklatın. "Optimise Acquiring" (Taramayı Optimize Et) düğmesini tıklatın (Şekil 6) ve ardından her bir kanal için (Yeşil ve Sarı, Şekil 6) "Auto-Gain Optimisation Settings" (Otomatik Optimizasyon Sağlama Ayarları) iletişim kutularındaki "OK" (TAMAM) düğmesini tıklatın. Her bir kanal için "Perform Optimisation Before 1st Acquisition" (Optimizasyonu İlk Taramadan Önce Gerçekleştir) kutusunu işaretlediğinizden emin olun (Şekil 6).

Auto-Gain Optimisation Setup	Auto-Gain Optimisation Channel Settings 🛛 🛛 🔀
Optimisation : Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry ou are performing. Set temperature to Optimise Acquiring Perform Optimisation Before 1st Acquisition Perform Optimisation Degrees At Beginning Of Run	Channel Settings : Channel : Green Tube Position : 1 $\frac{x}{x}$ Target Sample Range : 5 $\frac{x}{x}$ Flue to 10 $\frac{x}{x}$ FL Acceptable Gain Range 10 $\frac{x}{x}$ to 10 $\frac{x}{x}$
Channel Settings :	OK Cancel Help
Add Name Tube Position Min Reading Max Reading Min Gain Max Gain Edit Green 1 5FI 10FI -10 10 Bemove Yellow 1 5FI 10FI -10 10 Remove All	Auto-Gain Optimisation Channel Settings Channel Settings : Channel: Yellow Tube Position : Target Sample Range : 5 Target Sample Range : 10 Acceptable Gain Range : 10 To Target Sample Range : 10
	OK Creat Link

Şekil 6. Floresan kanal hassasiyetinin ayarlanması.

15. Kanal kalibrasyonu aracılığıyla belirlenen kazanç değerleri otomatik olarak kaydedilir ve programlama prosedürünün son menü penceresinde listelenir. Programı çalıştırmak için "Start Run" (Çalışmayı Başlat) düğmesini tıklatın.

Sar	moles :	c. Format : 123456,	./89123467 💌 Unit	: copies/re	eactio More Uption:	\$
						ī
c	lid	Name	Tupe	Groups	Given Conc.	•
Č	1	PC	Positive Control	areapo	diretroctio.	
	2	PC	Positive Control		-	
	3	H20	NTC			
	4		None			
	5	NC	Negative Control			
	6	NC	Negative Control			
	7	H20	NTC			
	8		None			
	9	RS	Unknown			
	10	RS	Unknown			
	11		None			
	12		None			
	13	S1	Unknown			
	14	S1	Unknown			
	15	S2	Unknown			
	16	S2	Unknown			
	17	S3	Unknown			
	18	S3	Unknown			
	19	S4	Unknown			
	20	S4	Unknown			-
-					• •	

16. Rotor-Gene yazılımındaki rotor ayarlarını girin (Şekil 7).

Şekil 7. Rotor-Gene ayarları: "Edit Samples" (Örnekleri Düzenle).

Rotor-Gene Q 5plex HRM cihaz ayarı için son nokta analizi prosedürü

17. PCR programı sonlandırıldıktan sonra, araç çubuğundaki "Analysis" (Analiz) düğmesini tıklatın (Şekil 8).

Şekil 8. Analiz.

 "Analysis" (Analiz) iletişim kutusunda (Şekil 9), "Cycling A Green" (Döngü A Yeşil) seçeneğini çift tıklatın ve ardından "OK" (TAMAM) düğmesini tıklatın. Cycling A yellow (Döngü A sarı) için tekrarlayın.

Şekil 9. Miktar Tayini: "Cycling A. Green" (Döngü A. Yeşil).

19. Yeni bir pencere görüntülenir (Şekil 10). Şekil 10'da gösterildiği gibi her iki panelde "Slope correct" (Eğim düzeltme) seçeneğini tıklatın.

Şekil 10. "Slope correct" (Eğim düzeltme) seçeneğinin ayarlanması.

20. Verileri dışa aktarmak için, Excel[®] veri sayfası olarak kaydedin. "OK" (TAMAM) düğmesini tıklatın, dışa aktarma dosyasına bir ad verin ve metin dosyasını (*.txt) kaydedin. 21. Metin dosyasını Excel'de açın ve sütun A'yı seçin. "Data" (Veriler) seçeneğini ardından "Convert" (Dönüştür) ve "Next" (Sonraki) seçeneklerini tıklatın. "Comma" (Binlik Ayracı) seçimini yapın ve ardından "End" (Sonlandır) düğmesini tıklatın. Sonuçlar Şekil 11'de gösterildiği gibi görüntülenir.

Şekil 11. Excel dosyasında gösterilen sonuçların örneği.

Not: Dosya hem ham verileri hem de Standardize edilmiş verileri içerir. Yalnızca standardize edilmiş veriler değerlendirilmelidir.

Bu veriler tablonun Döngü A Yeşil kanalının kantitatif analizi ve Döngü A Sarı kanalının kantitatif analizi kısımlarında verilmiştir. Yorumlama amaçlı veriler PCR'ın 50. döngüsünde alınanlardır (sağda bulunan döngülerde).

Protokol: Applied Biosystems ve ABI PRISM cihazlarında qPCR

96 kuyulu plakaya sahip qPCR cihazını kullanırken, tüm ölçümleri Tablo 5'de gösterildiği gibi iki tekrarlı gerçekleştirmenizi öneririz.

Tablo 5. Applied Biosystems 7300 ve 7500, ABI PRISM 7000, ABI PRISM 7700 ya da ABI PRISM 7900HT cihazları için reaksiyon sayısı

Örnekler	Reaksiyonlar
JAK2 V617F primer ve prob ka	rışımı (PPM-VF) (56 reaksiyon)
19 DNA örneği	19 x 2 reaksiyon
2 DNA kontrolü	2 x 2 reaksiyon (MP-VF, MN-VF, her biri iki kere test edilmiştir)
Referans ölçeği	6 x 2 reaksiyon (M1 ila M6, her biri iki kere test edilmiştir)
Su kontrolü	2 reaksiyon

Applied Biosystems 7300 ve 7500, ABI PRISM 7000 ve 7700, ya da ABI PRISM 7900HT cihazlarında örnek işleme

Applied Biosystems 7300 ve 7500, ABI PRISM 7000, ABI PRISM 7700 ya da ABI PRISM 7900HT cihazlarında qPCR

Not: Tüm adımları buzda gerçekleştirin.

Prosedür

1. Tüm gerekli bileşenleri çözündürün ve buza yerleştirin.

Bileşenler, prosedürü başlatmadan önce yaklaşık 10 dakika dondurucu dışına alınmalıdır.

- 2. Tüm tüpleri vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- **3.** İşlenecek örnek sayısına göre aşağıdaki qPCR karışımını hazırlayın. Tüm konsantrasyonlar reaksiyonun son hacmi içindir.

Tablo 6, 25 μ l son reaksiyon hacmi elde etmek için hesaplanmış bir reaksiyon karışımının hazırlanması için pipetleme şemasını tanımlar. Ön karışım aynı primer ve prob karışımı kullanılarak reaksiyon sayısına göre hazırlanabilir. Pipetleme hatasını telafi etmek için ilave hacimler eklenir.

Applied Biosystems 7300 ve 7500, ABI PRISM 7000, ABI PRISM 7700 ya da ABI PRISM 7900HT cihazlarında, *ipsogen* JAK2 MutaScreen RS Kiti bir deneyde iki tekrarlı olarak 19 örneğin analizi için kullanılabilir (Şekil 12).

_	Reaksiyon sayısı (µl)		Son
Bileşen	1	56+1*	konsantrasyon
TaqMan Universal PCR Ana karışımı, 2x	12,5	712,5	lx
Primer ve prob karışımı, 10x	2,5	142,5	lx
Nükleaz içermeyen PCR sınıfı su	5	285	-
Örnek (adım 4'te eklenecek)	5	her biri 5	-
Toplam hacim	25	her biri 25	-

Tablo 6. qPCR Karışımının hazırlanması

* 19 örnek; 1 deney/kit.

- qPCR karışımını vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- 5. Her kuyuya qPCR ön karışımından 20 µl dağıtın.

- 6. İlgili kuyuya örnek DNA materyalinden veya kontrollerden 5 μ l ekleyin (toplam hacim 25 μ l).
- 7. Yukarı aşağı pipetleme yaparak yavaşça karıştırın.
- 8. Plakayı kapatın ve kısa süreli santrifüj edin (300 x g'de, yaklaşık 10 saniye).
- 9. Plakayı üreticinin tavsiyelerine göre ısıl döngüleyiciye yerleştirin.
- 10. Isıl döngüleyiciyi ısıl döngüleme programı ile Tablo 7'de gösterildiği gibi programlayın ve çalışmayı başlatın.

Tablo 7. Applied Biosystems ve ABI PRISM cihazları için sıcaklık profili

Tutma	Sıcaklık: 50°C Süre: 2 dakika
Tutma 2	Sıcaklık: 95°C Süre: 10 dakika
Döngü	50 kez 15 saniye için 92°C 1 dakika için 60°C

Applied Biosystems ve ABI PRISM cihazları için okuma sonrası çalışma analizi prosedürü

Applied Biosystems 7300 ve 7500, ABI PRISM 7000, ABI PRISM 7700 ya da ABI PRISM 7900HT cihazlarının programlama ayrıntıları için cihaz kullanım kılavuzuna bakın. Daha iyi bir genel bakış için, yazılım ayarları kalın siyah olarak çerçevelenmiştir.

- Çalışma bittikten sonra, "Start/Program" (Başlat/Program) seçeneğini ve ardından "File/New" (Dosya/Yeni) seçeneğini seçin.
- 12. "New Document Wizard" (Yeni Belge Sihirbazı) iletişim kutusunda,
 "Assay" (Test) aşağı açılır listesini tıklatın ve "Allelic Discrimination" (Allelik Diskriminasyon) seçimini yapın (Şekil 13).

13. "Container" (Kap) ve "Template" (Şablon) alanları için varsayılan ayarları kabul edin ("96-Well Clear" (96 Kuyulu Boş Alan) ve "Blank Document" (Boş Belge), Şekil 13). "Plate Name" (Plaka Adı) alanına AD Post-read (AD Okuma Sonrası) yazın (Şekil 13) ve ardından "Select Markers" (Markırları Seç) iletişim kutusuna erişmek için "Next>" (Sonraki>) düğmesini tıklatın.

Assay :	Allelic Discrimination			
Container :	96-Well Clear	-		
Template :	Blank Document		Browse	
Run Mode :	Standard 7500	•		
Operator :	Administrator			
Comments :				~

Şekil 13. Yeni bir okuma sonrası çalışma oluşturmak için ön ayarlar (Yeni Belge Sihirbazı).

14. "Select Markers" (Markırları Seç) iletişim kutusundaki "Markers in Document" (Belgedeki Markırlar) paneli uygulamanız için uygun markırı içeriyorsa adım 18'e ilerleyin. İçermiyorsa, adım 15 ile devam edin. 15. Dedektörleri ve markırları aşağıdaki şekilde oluşturun. "New Detector" (Yeni Dedektör) düğmesini tıklatın (Şekil 14).

Find:	Aarker Name	A V	Passi	ve Reference: R0X	
			Add >> Remove		
<	110				

Şekil 14. "Markers in Document" (Belgedeki Markırlar) paneli uygulamanız için uygun markır içermiyor.

16. "New Detector" (Yeni Dedektör) iletişim kutusundaki "Name" (Ad) alanına Allele A (Allel A) yazın (Şekil 15). "FAM" olarak ayarlamak için "Reporter Dye" (Haberci Boya) alanına geçin. "Color" (Renk) düğmesini tıklatın, bir renk seçin ve ardından "OK" (TAMAM) düğmesini tıklatın (Şekil 15). "Create Another" (Başka Bir Tane Oluştur) düğmesini tıklatın (Şekil 15).

Şekil 15. Dedektörleri oluşturma.

- 17. Bir sonraki "New Detector" (Yeni Dedektör) iletişim kutusundaki "Name" (Ad) alanına Allele B (Allel B) yazın. "Reporter Dye" (Haberci Boya) alanında "VIC" seçeneğini seçin. "Color" (Renk) düğmesini tıklatın, bir renk seçin ve ardından "OK" (TAMAM) düğmesini tıklatın.
- 18. "Select Markers" (Markırları Seç) iletişim kutusunda "New Marker" (Yeni Markır) düğmesini tıklatın (bkz. Şekil 14).
- "New Marker" (Yeni Markır) iletişim kutusundaki "New Marker Name" (Yeni Markır Adı) alanına JAK2 yazın (Şekil 16). "Allele A" (Allel A) ve "Allele B" (Allel B) dedektörlerini adım 16 ve 17'de oluşturulduğu (veya önceden tanımlanmış) şekilde seçin ve "OK" (TAMAM) düğmesini tıklatın (Şekil 16).

Gelect two detectors for this marker :								
Use	Detector Name	Reporter	Quencher					
N N	Allele B	VIC	(none)					
N N	Allele A	FAM	(none)					

Şekil 16. Markırları oluşturma.

20. "Select Markers" (Markırları Seç) iletişim kutusunda, yukarıda oluşturulduğu şekilde "JAK2" seçimi yapın veya önceden tanımlanmış uygun markırı seçin ve ardından "Add>>" (Ekle>>) düğmesini tıklatın (Şekil 17).

Not: Markırı kaldırmak için, seçip ardından "Remove" (Kaldır) düğmesini tıklatın.

Find.		^	Passive Reference	ROX 🔄
Marker Name	Detector 1	Detector 2	Markers in D	ocument
JAK2	Allele B	Allele A		
	-		Add>>	
			Remove	
	1	1		

Şekil 17. Markırları seçme.

- 21. "Next>" (Sonraki>) öğesini tıklatın.
- 22. "Setup Sample Plate" (Örnek Plakasını Ayarla) iletişim kutusunda, örnekleri içeren kuyular için markırı seçmek üzere tıklatıp sürükleyin. "Finish" (Bitti) düğmesini tıklatın.
- 23. "Instrument" (Cihaz) sekmesini seçin ve örnek hacmini 25 μl olarak değiştirin.
- 24. "File/Save" (Dosya/Kaydet) seçeneğini seçin ve ardından plakaları oluştururken atadığınız adı korumak için "Save" (Kaydet) düğmesini tıklatın.
- 25. Reaksiyon plakasını üreticinin tavsiyelerine göre cihaza yükleyin

26. Okuma sonrası çalışmayı başlatın. "Post-Read" (Okuma Sonrası) düğmesini tıklatın.

Cihaz 60°C'de 60 saniye süren 1 döngülük çalışma gerçekleştirir. Bu çalışma sırasında, cihaz her bir kuyudaki FAM ve VIC floresanını toplar (Şekil 18).

p y Instrument y Results \		
rument Control	Temperature	
Pre-Read Estimated Time Remaining (hh:mm):	Sample:	Heat Sink:
Part-Baad	Cover:	Block:
Postriedu	Cycle	
Disconnect Status:	Stage:	Rep:
	Time (mm:ss):	Step:
	State:	
60.0		
60.0 Aud Cycle Aud Hold Add Siep Add Dis Settings	isociation Stage	ete Help
60.0 Add Cyde Add Hold Add Step Add Dis Settings Sample Volume (µL) :	ssouiation Stage	de Help
60.0 Add Cyde Add Hold Add Step Add Dis Settings Sample Volume (µL): Z Run Mode :	isociation Stage Dele	de Help

Şekil 18. Okuma sonrası çalışma.

27. "File/Export" (Dosya/Dışa Aktar) seçimini yapın ve ardından sonuçları Excel dosyası olarak dışa aktarmak için "Results" (Sonuçlar) düğmesini tıklatın. Sonuçlar Şekil 19'de gösterildiği gibi görüntülenir.

12	Comme	ents:				VIC	Örnek	1		FΔΛ	1 Örnek	1
13	SDS v1	.2				10				171		
14												
15	Well	Sample Name	Marker	Task	Passive Ref	Allele X	Allele Y 🎽	Allele X Rn	Allele Y Rn	Gall	Quality Value	Method
16	A1	sample 1	VIC	Unknown	247.897	JAK2-VIC	JAK2-FAM	2.184	6.221 🥌	Undetermined	100.00	Manual Call
17	A2	sample 1	VIC	Unknown	295.565	JAK2-VIC	JAK2-FAM	2.451	6.805	Undetermined	100.00	Manual Call
18	A3	sample 2	VIC	Unknown	351.338	JAK2-VIC	JAK2-FAM	2.595	6.2	Undetermined	100.00	Manual Call
19	A4	sample 2	VIC	Unknown	379.909	JAK2-VIC	JAK2-FAM	2.553	6.01	Undetermined	100.00	Manual Call
20	A5	sample 3	VIC	Unknown	372.895	JAK2-VIC	JAK2-FAM	2.913	5.329	Undetermined	100.00	Manual Call
21	A6	sample 3	VIC	Unknown	359.717	JAK2-VIC	JAK2-FAM	2.806	5.278	Undetermined	100.00	Manual Call
22	A7	sample wt	VIC	Unknown	343.536	JAK2-VIC	JAK2-FAM	2.569	1.948	Undetermined	100.00	Manual Call
23	A8	sample wt	VIC	Unknown	277.677	JAK2-VIC	JAK2-FAM	2.684	2.015	Undetermined	100.00	Manual Call
24	A9	C-	VIC	Unknown	330.943	JAK2-VIC	JAK2-FAM	2.623	1.967	Undetermined	100.00	Manual Call
25	A10	C-	VIC	Unknown	314.623	JAK2-VIC	JAK2-FAM	2.672	2.013	Undetermined	100.00	Manual Call
26	A11	C-	VIC	Unknown	269.500	JAK2-VIC	JAK2-FAM	2.82	1.892	Undetermined	100.00	Manual Call
27	A12	C+	VIC	Unknown	211.520	JAK2-VIC	JAK2-FAM	1.249	6.14	Undetermined	100.00	Manual Call
28	B1	C+	VIC	Unknown	270.623	JAK2-VIC	JAK2-FAM	1.346	6.894	Undetermined	100.00	Manual Call
29	B2	C+	VIC	Unknown	365.112	JAK2-VIC	JAK2-FAM	1.265	6.528	Undetermined	100.00	Manual Call
30	B3	ER	VIC	Unknown	372.150	JAK2-VIC	JAK2-FAM	2.214	2.03	Undetermined	100.00	Manual Call
31	B4	ER	VIC	Unknown	404.145	JAK2-VIC	JAK2-FAM	2.419	2.295	Undetermined	100.00	Manual Call
32	B5	ER	VIC	Unknown	410.977	JAK2-VIC	JAK2-FAM	2.681	2.52	Undetermined	100.00	Manual Call
33	B6	H2O	VIC	Unknown	395.431	JAK2-VIC	JAK2-FAM	0.655	1.346	Undetermined	100.00	Manual Call
34	B7	H2O	VIC	Unknown	415.223	JAK2-VIC	JAK2-FAM	0.727	1.241	Undetermined	100.00	Manual Call
35	B8	H2O	VIC	Unknown	366.885	JAK2-VIC	JAK2-FAM	0.606	1.277	Undetermined	100.00	Manual Call

Şekil 19. Excel dosyasında gösterilen sonuçların örneği.

Protokol: LightCycler 480 cihazında qPCR

96 kuyulu plakaya sahip qPCR cihazını kullanırken, tüm ölçümleri Tablo 8'de gösterildiği gibi çift tekrarlı gerçekleştirmenizi öneririz.

Örnekler	Reaksiyonlar
JAK2 V617F primer ve prob kar	ışımı (PPM-VF) (56 reaksiyon)
19 DNA örneği	19 x 2 reaksiyon
2 DNA kontrolü	2 x 2 reaksiyon (MP-VF, MN-VF, her biri iki kere test edilmiştir)
Referans ölçeği	6 x 2 reaksiyon (M1 ila M6, her biri iki kere test edilmiştir)
Su kontrolü	2 reaksiyon

Tablo 8. LightCycler 480 cihazı için reaksiyon sayısı

LightCycler 480 cihazında örnek işleme

LightCycler 480 cihazında qPCR

Not: Tüm adımları buzda gerçekleştirin.

Prosedür

1. Tüm gerekli bileşenleri çözündürün ve buza yerleştirin.

Bileşenler, prosedürü başlatmadan önce yaklaşık 10 dakika dondurucu dışına alınmalıdır.

- 2. Tüm tüpleri vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- **3.** İşlenecek örnek sayısına göre aşağıdaki qPCR karışımını hazırlayın. Tüm konsantrasyonlar reaksiyonun son hacmi içindir.

Tablo 9, 25 μ l son reaksiyon hacmi elde etmek için hesaplanmış bir reaksiyon karışımının hazırlanması için pipetleme şemasını tanımlar. Ön karışım aynı primer ve prob karışımı kullanılarak reaksiyon sayısına göre hazırlanabilir. Pipetleme hatasını telafi etmek için ilave hacimler eklenir.

Applied Biosystems 7300 ve 7500, ABI PRISM 7000, ABI PRISM 7700 ya da ABI PRISM 7900HT cihazlarında, *ipsogen* JAK2 MutaScreen RS Kiti bir deneyde iki tekrarlı olarak 19 örneğin analizi için kullanılabilir (Şekil 20).

	Reaksiyo	n sayısı (µl)	Son
Bileşen	1	56+1*	konsantrasyon
TaqMan Universal PCR Ana karışımı, 2x	12,5	712,5	1x
Primer ve prob karışımı, 10x	2,5	142,5	1x
Nükleaz içermeyen PCR sınıfı su	5	285	-
Örnek (adım 4'te eklenecek)	5	her biri 5	-
Toplam hacim	25	her biri 25	-

Tablo 9. qPCR Karışımının hazırlanması

* 19 örnek; 1 deney/kit.

- qPCR karışımını vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- 5. Her kuyuya qPCR ön karışımından 20 μ l dağıtın.

- 6. İlgili kuyuya örnek DNA materyalinden veya kontrollerden 5 μ l ekleyin (toplam hacim 25 μ l).
- 7. Yukarı aşağı pipetleme yaparak yavaşça karıştırın.
- 8. Plakayı kapatın ve kısa süreli santrifüj edin (300 x g'de, yaklaşık 10 saniye).
- 9. Plakayı üreticinin tavsiyelerine göre ısıl döngüleyiciye yerleştirin.
- 10. Ana sayfada, "New Experiment" (Yeni Deney) seçeneğini seçin.
- 11. LightCycler 480 I için adım 11a'yı uygulayın. LightCycler 480 II için adım 11b'yi uygulayın.

LightCycler 480 cihazının programlama ayrıntıları için cihaz kullanım kılavuzuna bakın. Daha iyi bir genel bakış için, yazılım ayarları kalın siyah olarak çerçevelenmiştir.

11a. LightCycler 480 I: "Multi Color Hydrolysis Probe" (Çok Renkli Hidroliz Probu) seçeneğini seçin, "Customize" (Özelleştir) düğmesini tıklatın ve ardından "FAM (483-533)" ve "Hex (533-568)" (örn., VIC) kanallarının seçili olup olmadığını kontrol edin (Şekil 21). Reaksiyon hacmini "25" μl olarak ayarlayın (Şekil 21) ve adım 12 ile devam edin.

Şekil 21. LightCycler 480 I: Tespit biçimini ayarlama.

11b. LightCycler 480 II: "Dual Color Hydrolysis Probe" (İki Renkli Hidroliz Probu) seçeneğini seçin, "Customize" (Özelleştir) düğmesini tıklatın ve ardından FAM (465-510)" ve "VIC / HEX / (533-580)" kanallarının seçili olup olmadığını kontrol edin (Şekil 22). Reaksiyon hacmini "25" μl olarak ayarlayın (Şekil 22) ve adım 12 ile devam edin.

	New Experiment	-1	System	Admin	_
Experi-	Run Protocol	Data	Ku	n notes	÷
Subset Editor	Detection Forma Dual Color Hydrolysis Prob Color Comp ID	e / UPL Probe Customize E	Block Size 96 Plate ID Test ID	Reaction Volume 25	6
Sample Editor	Program Name Program	Programs		Cycles Analysis Mode	88
Anatysis	Detection Format	s 1 - Dual Calar Hydralysis Proha / 1191 - Proha			*
Report Sum.	Target (°C) Ar 95 2 None Active F	Manual Manual		Step Size (°C) Step Delay (cycles)	
		IC / HEX / Yellow555 (533-580)			\otimes
	100				Ľ
	90 (2) 80 70 70 70 70 70 70 70 70	~	Ø	0	
	2 001				

Şekil 22. LightCycler 480 II: Tespit biçimini ayarlama.

12. Isıl döngüleyiciyi ısıl döngüleme programı ile Tablo 10'da gösterildiği gibi programlayın ve çalışmayı başlatın.

Not: Cihazda plaka ayarlarını belirlerken, "Adım 1: iş akışını seç" kısmında "Endpt Geno" seçimini yapın.

Tutma	Sıcaklık: 50°C Süre: 2 dakika
Tutma 2	Sıcaklık: 95°C
	Süre: 10 dakika
Döngü	50 kez
	15 saniye için 92°C; tek
	1 dakika için 60°C; tek
Tutma 3	1 dakika için 60°C; tek

Tablo 10. LightCycler 480 cihazı için sıcaklık profili

LightCycler 480 cihazı için son nokta analizi prosedürü

- 13. Çalışma bittikten sonra, "Analysis" (Analiz) düğmesini tıklatın.
- 14. "Create New Analysis" (Yeni Analiz Oluştur) iletişim kutusunda, "Endpoint Genotyping" (Son Nokta Genotipleme) seçimini yapın ve ardından analiz etmek için "Subset" (Alt Küme) menüsündeki alt kümeyi seçin (Şekil 23).

Şekil 23. Analiz için analiz tipini ve alt kümeyi seçme.

15. Bir sonraki pencerede, "Allele X" (Allel X) için "Hex" (örn., VIC) floresanını "Allele Y" (Allel Y) "FAM" floresanını seçin (Şekil 24).

Şekil 24. "Allele X" (Allel X) ve "Allele Y" (Allel Y) için floresan seçme.

16. Bir sonraki pencere (Şekil 25) her bir örnek için plaka ayarlarını (1, sol üst), floresan sonuçlarını (2, sol alt) ve allelik diskriminasyon ile saçılım grafiğini (3, sol; 50. PCR döngüsünde ölçülmüş FAM ve VIC floresan) görüntüler.

Şekil 25. Veri özeti.

17. Verileri dışa aktarmak için, örnek sonuçları şablonuna sağ tıklatıp ardından "Export Table" (Tabloyu Dışa Aktar) seçeneğini seçin. Dosya metin (.txt) dosyası biçiminde kaydedilir.

18. Sonuçları görüntülemek ve analiz etmek için, dosyayı Excel kullanarak açın. Sonuçlar Şekil 26'de gösterildiği gibi görüntülenir.

X	Microsof	t Excel - test						
8	Eichier	Edition Affichage	Insertion	Forma <u>t</u> Outils	Données Fe	nêtre ?		
D	2	3 B. X P. (8.0	10 + CH + Σ	- 18 24 Z	10. 1ta	ta ta 🖾 🛛	a » Cal
	A1	✓ f _x Ex	periment: (OB 08-12-16 Acti	ive filters: FAM	1 (483-533), He	ex (523-568)	
	A	В	С	D	E	F	G	
1	Experime	nt:0808-12-16 Ac	tive filters:	FAM (483-533), I	Hex (523-568)			
2	Include	Color	Pos	Name	523-568	483-533	Call	Score
3	True	10789024	A5	100%-20	10,971	46,335		0,00
ŧ	True	10789024	A6	100%-20	0,302	0,392		0,00
5	True	10789024	A7	100%-20	0,369	0,425		0,00
6	True	10789024	A10	H20	0,207	0,290		0,00
7	True	10789024	A11	H20	0,233	0,319		0,00
8	True	10789024	A12	H20	0,203	0,261		0,00
9	True	10789024	B5	78%-20	26,731	48,396		0,00
0	True	10789024	B6	78%-20	27,125	48,262		0,00
.1	True	10789024	B7	78%-20	26,803	47,383		0,00
.2	True	10789024	C5	50%-20	32,035	42,495		0,00
3	True	10789024	C6	50%-20	33,278	44,086		0,00
4	True	10789024	C7	50%-20	33,261	44,760		0,00
5	True	10789024	D5	31%-20	34,584	38,536		0,00
6	True	10789024	D6	31%-20	32,549	35,766		0,00
7	True	10789024	D7	31%-20	33,262	37,780		0,00
8	True	10789024	E5	12.5%-20	32,794	25,028		0,00
9	True	10789024	E6	12.5%-20	34,932	27,788		0,00
20	True	10789024	E7	12.5%-20	35,089	27,848		0,00
1	True	10789024	F5	5%-20	35,838	20,289		0,00
22	True	10789024	F6	5%-20	36,786	21,487		0,00
3	True	10789024	F7	5%-20	36,546	21,319		0,00
4	True	10789024	G5	2%-20	35,082	17,334		0,00
5	True	10789024	G6	2%-20	35,834	17,589		0,00
6	True	10789024	G7	2%-20	34,299	17,124		0,00
27	True	10789024	HS	0%-20	34,449	14,315		0,00
28	True	10789024	H6	0%-20	33,520	14,012		0,00
29	True	10789024	H7	0%-20	34,125	14,335		0,00
30							-	

Şekil 26. Excel dosyasında gösterilen sonuçların örneği.

Protokol: LightCycler 2.0 cihazında qPCR

Not: Özel teknolojik gereksinimler nedeniyle, LightCycler 2.0 deneyleri spesifik reaktifler kullanılarak gerçekleştirilmelidir. LightCycler TaqMan Master kullanımını öneririz. 5x Ana Karışımını hazırlamak için üreticinin talimatlarını uygulayın.

32 kapillerli rotoru kullanırken, tüm ölçümleri Tablo 11'de gösterildiği gibi iki tekrarlı gerçekleştirmenizi öneririz.

Örnekler	Reaksiyonlar
JAK2 V617F primer ve prob karışı	mı (PPM-VF) (32 reaksiyon)
7 DNA örneği	7 x 2 reaksiyon
2 DNA kontrolü	2 x 2 reaksiyon (MP-VF, MN-VF, her biri iki kere test edilmiştir)
Referans ölçeği	6 x 2 reaksiyon (M1 ila M6, her biri iki kere test edilmiştir)
Su kontrolü	2 reaksiyon

Tablo 11. LightCycler 2.0 cihazı için reaksiyon sayısı

LightCycler 2.0 cihazında örnek işleme

Şekil 27. ipsogen JAK2 MutaScreen RS Kiti ile deney için önerilen rotor ayarları. MP: pozitif kontrol; MN: negatif kontrol; M1 ila M6: referans ölçeği; S: DNA örneği; H₂O: su kontrolü.

LightCycler 2.0 cihazında qPCR

Not: Tüm adımları buzda gerçekleştirin.

Prosedür

1. Tüm gerekli bileşenleri çözündürün ve buza yerleştirin.

Bileşenler, prosedürü başlatmadan önce yaklaşık 10 dakika dondurucu dışına alınmalıdır.

- 2. Tüm tüpleri vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- **3.** İşlenecek örnek sayısına göre aşağıdaki qPCR karışımını hazırlayın. Tüm konsantrasyonlar reaksiyonun son hacmi içindir.

Tablo 12, 20 μ l son reaksiyon hacmi elde etmek için hesaplanmış bir reaksiyon karışımının hazırlanması için pipetleme şemasını tanımlar. Ön karışım aynı primer ve prob karışımı kullanılarak reaksiyon sayısına göre hazırlanabilir. Pipetleme hatasını telafi etmek için ilave hacimler eklenir.

LightCycler 2.0 cihazında, *ipsogen* JAK2 MutaScreen RS Kiti bir deneyde iki tekrarlı olarak 7 örneğin analizi için kullanılabilir (Şekil 27).

	Reaksiya	on sayısı (µl)	Son		
Bileşen	1	32+1*	konsantrasyon		
LightCycler TaqMan Ana Karışımı, 5x	4	132	1x		
Primer ve prob karışımı, 10x	2	66	١x		
Nükleaz içermeyen PCR sınıfı su	9	297	-		
Örnek (adım 4'te eklenecek)	5	her biri 5	-		
Toplam hacim	20	her biri 20	-		

Tablo 12. LightCycler 2.0 cihazı için qPCR karışımının hazırlanması

* 14 örnek; 2 deney/kit.

- qPCR karışımını vorteksle karıştırın ve kısa süreli santrifüj edin (tüpün altındaki sıvıyı toplamak için yaklaşık 10 saniye, 10.000 rpm'de).
- 5. Her kapillere qPCR ön karışımından 15 μ l dağıtın.

- 6. İlgili kapillere örnek DNA materyalinden veya kontrolden 5 μ l ekleyin (toplam hacim 20 μ l).
- 7. Yukarı aşağı pipetleme yaparak yavaşça karıştırın.
- 8. Kapillerleri cihazla sağlanan adaptöre yerleştirin ve kısa süreli santrifüj edin (700 x g'de, yaklaşık 10 saniye).
- 9. Örnekleri ısıl döngüleyiciye üreticinin tavsiyelerine göre yükleyin.
- 10. Isıl döngüleyiciyi (Şekil 28) programı kullanarak Tablo 13'de gösterildiği gibi programlayın.

LightCycler 2.0 cihazının programlama ayrıntıları için cihaz kullanım kılavuzuna bakın. Daha iyi bir genel bakış için, yazılım ayarları kalın siyah olarak çerçevelenmiştir.

Not: Ayarın, FAM floresanın ölçümü, tekli taraması ve VIC floresanın tekli taraması için hem amplifikasyon/döngüleme adımında hem de 60°C'de son beklemede olduğundan emin olun.

Şekil 28. LightCycler 2.0 için programlama ekranı.

Tutma	Sıcaklık: 55°C Süre: 2 dakika Eğim: 20
Tutma 2	Sıcaklık: 95°C Süre: 10 dakika Eğim: 20
Döngü	50 kez 15 saniye için 92°C; artış: 20 1 dakika için 60°C; artış: 20
Tutma 3	1 dakika için 60°C; artış: 20

Tablo 13. LightCycler 2.0 cihazı için sıcaklık profili

LightCycler 2.0 cihazı için son nokta analizi prosedürü

11. Amplifikasyon çalışmasının sonunda, "Online Data Display" (Çevrimiçi Veri Ekranı) için sekmeyi tıklatın (Şekil 29). "Current Fluorescence" (Geçerli Floresan) penceresinin sol üstündeki görüntüleme menüsünü açın, "Acquisition no." (Tarama no) alanına 51 yazın.

Şekil 29. Çevrimiçi Veri Ekranındaki sonuçlar ve geçmiş.

- 12. "Current Fluorescence" (Geçerli Floresan) grafiğinin yanına sağ tıklatın ve "Export" (Dışa Aktar) seçeneğini seçin.
- 13. "Export chart" (Grafiği Dışa Aktar) iletişim kutusundaki "Excel" kutusunu tıklatın (Şekil 30). "Filename" (Dosya adı) iletişim alanında bir ad girin. Sonuç dosyası için düğmesi ile dışa aktarma hedefini belirleyin. "Export" (Dışa Aktar) düğmesini tıklatın.

Şekil 30. Dışa aktarma biçimini ve veri dosyası hedefini seçme.

14. Sonuçları görüntülemek ve analiz etmek için, dosyayı Excel'de açın. LightCycler 2.0 için sonuçlar gösterildiği şekilde görüntülenir.

								Kor	าบเ	m			
1	J	К	L	M	N	0	Р	Q	R	S	T	U	1
X	Bar	Text	Х	Bar	Text	Х	Bar	Text	ŧ.	Bar			
1	2,9709	1: Sample 1 (610)	1	8,2734	1: Sample 1 (560)	1	6,6361	1: Sample 1 (530)	1	4,9943			
2	3,0182	2: Sample 2 (610)	2	8,4428	2: Sample 2 (560)	2	6,7659	2: Sample 2 (530)	2	5,0767			
3	2,9496	3: Sample 3 (610)			3: Sample 3 (560)	3	6,5568	3: Sample 3 (530)	3	4,9699			
4	2,9526	4: Sample 4 (610)	4	8,2887	4: Sample 4 (560)	4	6,6163	4: Sample 4 (530)	4	4,9119			
5	2,9450	5: Sample 5 (610)	5	8,2689	5: Sample 5 (560)	5	6,6209	5: Sample 5 (530)	5	4,9638			
6	2,9969	6: Sample 6 (610)	6	8,4184	6: Sample 6 (560)	6	6,7674	6: Sample 6 (530)	6	5,1209			
7	3,0045	7: Sample 7 (610)	7	8,4520	7: Sample 7 (560)	7	6,7506	7: Sample 7 (530)	7	5,0507			
8	3,2822	8: Sample 8 (610)	8	9,1936	8: Sample 8 (560)	8	7,3960	8: Sample 8 (530)	8	5,5314			
9	3,0274	9: Sample 9 (610)	9	8,5557	9: Sample 9 (560)	9	6,8437	9: Sample 9 (530)	9	5,0843			
10	2,8336	10: Sample 10 (610)	10	7,9713	10: Sample 10 (560)	10	6,3905	10: Sample 10 (530)	10	4,7883			
11	2,8275	11: Sample 11 (610)	11	7,9774	11: Sample 11 (560)	11	6,3874	11: Sample 11 (530)	11	4,7669			
12	2,8351	12: Sample 12 (610)	12	8,0171	12: Sample 12 (560)	12	6,4118	12: Sample 12 (530)	12	4,7944			
13	2,9511	13: Sample 13 (610)	13	8,3726	13: Sample 13 (560)	13	6,6957	13: Sample 13 (530)	13	4,9699			
14	2,8367	14: Sample 14 (610)	14	8,0217	14: Sample 14 (560)	14	6,4439	14: Sample 14 (530)	14	4,7654			
15	2,9908	15: Sample 15 (610)	15	8,4337	15: Sample 15 (560)	15	6,7445	15: Sample 15 (530)	15	5,0523			
16	2,8885	16: Sample 16 (610)	16	8,1498	16: Sample 16 (560)	16	6,5568	16: Sample 16 (530)	16	4,9577			
17	3,0152	17: Sample 17 (610)	17	8,4901	17: Sample 17 (560)	17	6,8193	17: Sample 17 (530)	17	5,1225			
							VIC			FAM			

Şekil 31. Excel dosyasında gösterilen LightCycler 2.0 sonuçlarının örneği.

Sonuçların Yorumlanması

Tüm cihazlar için dışa aktarılmış verileri çıkarmak üzere uygun bir dosya sağlayın: Rotor-Gene Q MDx 5plex HRM ya da diğer Rotor-Gene cihazları, LightCycler 2.0 ya da 480; Applied Biosystems 7300 ya da 7500 Real-Time PCR Sistemi, ABI PRISM 7000 SDS, 7700 SDS ya da 7900HT SDS ve floresan seviyelerini kontrol edin (bunlar ikili tekrarlar arasında uyumlu olmalıdır).

Floresan verilerinin grafik gösterimini (saçılım grafiği) hazırlayın. X ekseni VIC floresanı, y ekseni FAM floresanıdır.

Grafik gösterimi ve kalite kontrol kriterleri

Saçılım grafiği örneği Şekil 32'de gösterilmiştir.

Şekil 32. Temsili allelik diskriminasyon deneyinin saçılım grafiği. Cihazlar: Rotor-Gene Q, Applied Biosystems, ABI PRISM ve LightCycler 480.

Örnekler negatif kontrolleri (MN) pozitif kontrollere (MP) bağlayan yay üzerinde yer almalıdır.

Herhangi bir kontrolün hatalı konumlanması deneysel hata göstergesi olabilir.

- Pozitif kontroller sol üstte olmalıdır.
- Negatif kontroller sağ altta olmalıdır.
 - Negatif kontrolün yetersiz konumlanması kontaminasyon göstergesi olabilir.
- Eşik örnekleri (M1 referans ölçeği) negatif kontrollerin üzerinde görüntülenmelidir.
- Su kontrolleri sol altta olmalıdır.

Su kontrollerinin yetersiz konumlanması (FAM ölçümü için MN'den daha yüksek ya da VIC için MP'den daha yüksek) kontaminasyon göstergesi olabilir.

Not: Kontrollerin konumlanması LightCycler 2.0 cihaz verilerinin analizinde farklı olabilir (bkz. Şekil 33). Su kontrolleri yine de sol altta olmalıdır.

Normalize FAM/VIC oranını ve genotiplemeyi hesaplama

Tüm örnekler için FAM/VIC oranlarını hesaplayın. Pozitif kontrol (MP), eşik örneği (M1), negatif kontrol (MN) ve referans ölçeği (M2 ila M6) için FAM/VIC oranlarını hesaplayın. Oranlar çift tekrarlar arasında uyumlu olmalıdır. Tüm çift tekrarların ortalama oranını hesaplayın.

Eşik örneği (M1) ve tüm örnekler için normalize oranı (NOran) hesaplayın:

 $NOran_{\ddot{O}rnek} = \frac{Oran_{\ddot{O}rnek}}{Oran_{MN}}$

Not: Testin gri bölgesi (GB) ayırıcı performansın yetersiz doğrulukta olduğu değerin bölgesi olarak tanımlanır. Gri bölgedeki değer hedef markırın mevcut veya mevcut değil olarak değerlendirilemediğini gösterir. Gri bölge her bir deney için hesaplanmalıdır.

Gri bölgeyi ya da normalize eşik örneği (M1) oranının (NOran_{M1}) etrafındaki kararsız alanı hesaplayın:

GB: [(NOran_{M1} x 0,94); (NOran_{M1} x 1,06)]

Her bir örneğin Normalize Oranını NOran_{M1} GB ile karşılaştırın. Sonuçların yorumlanması Tablo 14'te özetlenmiştir.

Tablo 14. Normalize oranların kullanılmasıyla genotipleme sonuçlarının yorumlanması

Sonuçlar	Yorum
NOran _{Örnek} > NOran _{M1} x 1,06	JAK2 V617F tespit edildi
NOran _{Örnek} < NOran _{M1} x 0,94	JAK2 V617F tespit edilmedi
NOran _{Örnek} , NOran _{M1} GZ içerisinde	Belirsiz sonuç

Mutasyon yükü için yarı kantitatif sonuç her bir bilinmeyen örnek oranı değerinin (Oran_{Örnek}) referans ölçeğinin ortalama oran değerleriyle (Oran_{M1-6}) karşılaştırılmasıyla elde edilebilir (bkz. Tablo 15).

Tablo 15. Referans ölçeğinin	kullanılmasıyla JAK2	V617F mutasyon yükü
için yarı kantitatif değerler		

Sonuçlar	Mutasyon yükü
$Oran_{M1} < Oran_{Örnek} < Oran_{M2}$	%2-5 JAK2 V617F
$Oran_{M2} < Oran_{\ddot{O}rnek} < Oran_{M3}$	%5-12,5 JAK2 V617F
Oran _{M3} < Oran _{Örnek} < Oran _{M4}	%12,5-31 JAK2 V617F
$Oran_{M4} < Oran_{Ornek} < Oran_{M5}$	%31-50 JAK2 V617F
Oran _{M5} < Oran _{Örnek} < Oran _{M6}	%50-78 JAK2 V617F
Oran _{M6} < Oran _{Örnek}	%78-100 JAK2 V617F

Veri hesaplama ve yorumlama örneği Tablo 16'da verilmiştir.

ä	\//C		•	Ortalama		X
Ornek	VIC	FAM	Oran	Oran	NOran	Yorum
MN	49,613	3,8	0,077	0.078	1.000	Mutasyon _.
MN	49,797	3,976	0,08	-,	.,	saptanmadı
MP	12,516	37,037	2,959	2 951	37 722	Mutasyon
MP	12,958	38,121	2,942	2,751	07,722	saptandı
M1	54,394	6,39	0,117	0 1 1 0	1 5 1 6	Foil: Schooli
M1	58,266	6,973	0,12	0,117	1,510	Eşik ömeği
M2	61,798	10,882	0,176	0.170	0.000	Mutasyon
M2	54,814	9,231	0,168	0,172	2,202	saptandı
M3	57,364	16,604	0,289	0.007	0 707	Mutasyon
M3	59,742	18,192	0,305	0,297	3,/9/	saptandı
M4	56,965	28,99	0,509	0.505	4.440	Mutasyon
M4	58,077	29,158	0,502	0,505	6,462	saptandı
M5	54,251	37,221	0,686	0 (70	0.50/	Mutasyon
M5	54,979	36,125	0,657	0,6/2	8,586	saptandı
M6	46,185	44,498	0,963	0.054		Mutasyon
M6	45,077	42,598	0,945	0,954	12,2	saptandı
S 1	13,47	37,409	2,777			Mutasvon
S 1	14,559	42,616	2,927	2,852	36,464	(%78-100)
S 2	50,432	24,958	0,495			Mutasyon
S 2	53,797	27,746	0,516	0,505	6,46	(%12,5-31)
S 3	52,038	5,995	0,115			Belirsiz
S 3	54,01	6,364	0,118	0,117	1,49	sonuç
S 4	50,811	4,842	0,095		_	Belirsiz
S 4	0,01	-	0	0,048	0,609	sonuç
GB	1,425	1,607				

Tablo 16. Referans ölçeğin kullanılmasıyla floresan verisinin hesaplanması ve yorumlaması örneği

Sorun giderme kılavuzu

Sorun giderme kılavuzu ortaya çıkabilecek sorunların çözümünde yardımcı olabilir. Daha fazla bilgi için ayrıca Teknik Destek Merkezimizdeki Sık Sorulan Sorular sayfasına da bakın: **www.qiagen.com/FAQ/FAQList.aspx**. QIAGEN Teknik Servislerindeki uzmanlar her zaman bu el kitabındaki bilgiler ve protokol ya da örnek ve test teknolojileriyle ilgili tüm sorularınızı yanıtlamaktan mutluluk duyar (iletişim bilgileri için, bkz. "İletişim Bilgileri", sayfa 56).

Po	Pozitif kontrol sinyali negatif					
a)	Pipetleme hatası	Pipetleme şemasını ve reaksiyon kurulumunu kontrol edin.				
		PCR çalışmasını tekrarlayın.				
b)	Kit bileşenlerinin uygun olmayan şekilde saklanması	ipsogen JAK2 MutaScreen RS Kitini -15 ila - 30°C'de saklayın ve primer ve prob karışımını (PPM) ışıktan koruyun. Bkz. "Reaktifi Saklama ve Kullanma", sayfa 11.				
		Tekrarlanan dondurma ve çözdürme işlemlerinden kaçının.				
		Saklama için reaktifleri ayrı şişelere bölün.				
Negatif kontroller pozitif						
	Çapraz kontaminasyon	Tüm kritik reaktifleri değiştirin.				
		Deneyi tüm reaktifler için yeni şişe kullanarak tekrarlayın.				
		Taşınma kontaminasyonunu önlemek için her zaman örnekleri, kit bileşenlerini ve sarf malzemelerini yaygın olarak kabul edilen uygulamalar çerçevesinde kullanın.				
Po	zitif kontrollerde bile siny	al yok				
a)	Pipetleme hatası ya da unutulmuş reaktifler	Pipetleme şemasını ve reaksiyon kurulumunu kontrol edin.				
		PCR çalışmasını tekrarlayın.				
b)	Yetersiz saflaştırmadan kaynaklanan örnek materyalinin inhibitör	DNA hazırlığını tekrarlayın.				

Yorum ve öneriler

etkileri

Yorum ve öneriler

c)	LightCycler: Seçilen saptama kanalı yanlış	Kanal ayarını F1/F2 veya 530 nm/640 nm olarak ayarlayın.
d)	LightCycler: Programlanmış veri taraması yok	Döngü programlarını kontrol edin. PCR programının her bir bağlanma segmentinin sonunda "tekli" tarama modunu seçin.

Örneklerde sinyal yok veya düşük fakat pozitif kontroller düzgün

Yetersiz DNA kalitesi veya	Başlatmadan önce her zaman DNA kalitesini
düşük konsantrasyon	ve konsantrasyonunu kontrol edin.

LightCycler: Floresan yoğunluğu çok düşük

a)	Kit bileşenlerinin uygun olmayan şekilde saklanması	ipsogen JAK2 MutaScreen RS Kitini -15 ila -30°C'de saklayın ve primer ve prob karışımını (PPM) ışıktan koruyun. Bkz. "Reaktifi Saklama ve Kullanma", sayfa 11.
		Tekrarlanan dondurma ve çözdürme işlemlerinden kaçının.
		Saklama için reaktifleri ayrı şişelere bölün.
b)	Hedef DNA'nın başlangıç	Örnek DNA miktarını artırın.
	miktarı çok düşük	Not : Seçilen DNA hazırlama yöntemine bağlı olarak, inhibitör etkiler oluşabilir.

LightCycler: Floresan yoğunluğu değişiyor

a)	Pipetleme hatası	"Pipetleme hatası" isimli nedenden kaynaklanan değişiklik verilerin F1/F2 veya 530 nm/640 nm modunda analiz edilmesiyle azaltılabilir.
b)	Kapillerlerin yetersiz santrifüjlenmesi	Hazırlanan PCR karışımı hala kapillerin üst kanalında olabilir veya kapiller ucunda bir hava kabarcığı sıkışmış olabilir.
		Her zaman reaksiyon karışımıyla yüklenmiş kapillerleri cihazın spesifik çalıştırma kitabında açıklandığı gibi santrifüj edin.
c)	Kapiller ucunun dış yüzeyi kirli	Kapillerleri kullanırken her zaman eldiven takın.

Kalite Kontrol

QIAGEN ISO sertifikalı Kalite Yönetim Sistemi uyarınca, ipsogen JAK2 MutaScreen RS Kitinin her bir lotu tutarlı ürün kalitesi sağlamak için önceden belirlenmiş özelliklere göre test edilir. Analiz sertifikaları talep üzerine **www.qiagen.com/support/** adresinde mevcuttur.

Sınırlamalar

Bu cihazı kullanmadan önce kullanıcılar eğitim almış ve bu teknoloji hakkında bilgi edinmiş olmalıdır. Bu kit, "Gerekli Olan Ancak Sağlanmayan Malzemeler", sayfa 9'da belirtilen onaylanmış bir cihazla birlikte bu kılavuzda verilen aşağıdaki talimatlarla kullanılmalıdır.

Elde edilmiş herhangi bir tanı amaçlı sonucun diğer klinik ve laboratuvar bulguları ile birlikte yorumlanması gerekir. QIAGEN performans çalışmaları kapsamında olmayan laboratuvarlarında kullanılan herhangi bir prosedür için sistem performansının doğrulanması kullanıcıların sorumluluğundadır.

Tüm bileşenlerin kutusunda ve etiketlerinin üstünde yazılı olan son kullanma tarihlerine dikkat edilmelidir. Son kullanma tarihleri geçmiş bileşenleri kullanmayın.

Performans Özellikleri

Klinik dışı çalışmalar

ipsogen JAK2 MutaScreen Kitinin analitik performansını saptamak için klinik dışı çalışmalar gerçekleştirilmiştir.

Hassasiyet

Yabanı tip DNA'da JAK2 V617F mutasyonunu içeren hücre hatlarından elde edilen genomik DNA'nın üç dilüsyon seviyesi test edildi. Dilüsyonlar %1, %2 ve %3 mutasyon yüklerine karşılık geldi. Her bir seviye için bağımsız dilüsyon grupları elde edildi ve bu dilüsyonların tekrarları 3 bağımsız deneyde test edildi. Her bir DNA örneği için elde edilen oranlar (Oran_{Örnek}) negatif kontrol oranı ile karşılaştırıldı (JAK2 %100 yabani tip DNA, Oran_{NK}). Sonuçlar Tablo 17'de özetlenmiştir.

Mutasyon seviyesi	Oran _{örnek} >Oran _{NK}	%CV (oran)
%1 V617F DNA	%100 (n = 183)	6,8
%2 V617F DNA	%100 (n = 72)	4,5
%3 V617F DNA	%100 (n = 135)	5,1

Tablo 17. Klinik dışı çalışmalar için hassasiyet verileri.

Laboratuvarlar arası analitik veriler

13 laboratuvarı kapsayan çok merkezli bir çalışma gerçekleştirildi. Yabanı tip DNA'da JAK2 V617F mutasyonunu içeren genomik DNA'nın dilüsyonları ile ilgili analitik veriler toplandı. Her bir laboratuvarda üç deney gerçekleştirildi. Her bir deney için, aşağıdaki DNA örnekleri hücre hatlarından test edildi:

- 1 negatif kontrol (NK) %0 V617F
- 1 pozitif kontrol (PK) %100 V617F
- 📕 1 eşik örneği (EÖ) %2 V617F
- Orta seviyede mutasyon yüklerine sahip 3 örnek (%20, %50, ve %80)

Deneyler 7 farklı cihaz modelinde gerçekleştirildi:

- ABI PRISM 7000 SDS
- Applied Biosystems 7300 Real-Time PCR System
- Applied Biosystems 7500 Real-Time PCR System
- ABI PRISM 7700 SDS
- ABI PRISM 7900 SDS
- LightCycler 2.0
- iCycler[®]

Sonuçlar Tablo 18'de özetlenmiştir.

Tablo 18. Yabanı tip DNA'da JAK2 V617F mutasyonunu içeren hücre hatlarından elde edilen genomik DNA dilüsyonlarından sağlanan laboratuvarlar arası analitik veriler

Örnek tespiti	Pozitif örnekler	Negatif örnekler
JAK2 V617F	177*	0
JAK2 yabanı tip	0	36

* 36 pozitif kontrol (PK), 36 eşik örneği (EÖ; %2 V617F), 34 %20 JAK2 V617F taşıyan örnek, 35 %50 JAK2 V617F taşıyan örnek ve 36 %80 JAK2 V617F taşıyan örnek.

Klinik çalışmalar

ipsogen JAK2 MutaScreen Kiti ve ARMS® yönteminin karşılaştırılması

MPN şüphesi olan 141 hastadan elde edilen DNA örnekleri *ipsogen* JAK2 MutaScreen Kiti ve amplifikasyon refrakter mutasyon sistemi (ARMS) prensibine dayalı qPCR testi ile paralel olarak test edildi (11). Karşılaştırma sonuçları Tablo 19 (2 x 3 ihtimal tablosu) ve Tablo 20'de (yüzdeli uyum) gösterilmiştir.

		ARMS test yöntemi sonuçları		
		JAK2 V617F >%2	JAK2 V617F <%2	Toplam
ipsogen	JAK2 V617F Mutasyon saptandı	91	0	91
JAK2 MutaScreen test vöntemi	Belirsiz sonuç	1	2	3
sonuçları	JAK2 WT Mutasyon saptanmadı	1	46	47
Toplam		93	48	n = 141

Tablo 19. Yöntemlerin karşılaştırılması: *ipsogen* JAK2 MutaScreen Kiti ve ARMS

Tablo 20. Yöntemlerin karşılaştırılması: *ipsogen JAK2 MutaScreen Kiti* ve ARMS

	Uyum (%)	%95 GA* (%)
Pozitif veri ipsogen JAK2 MutaScreen Kiti ve ARMS arasındaki uyum	98,9	94,1-99,8
Negatif veri ipsogen JAK2 MutaScreen Kiti ve ARMS arasındaki uyum	100	92,3-100
Toplam uyum	99,3	96,0-99,9

* Güven aralığı, "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" (Kalitatif Test Performansının Değerlendirilmesi için Kullanıcı Protokolü; Onaylanmış Kılavuz) CLSI EP12-A'ya göre hesaplanmıştır.

ipsogen JAK2 MutaScreen Kiti ve dizileme karşılaştırılması

MPN şüphesi olan 51 hastadan elde edilen DNA örnekleri *ipsogen* JAK2 MutaScreen Kiti ve referans teknik ("altın standart") olan doğrudan dizileme ile paralel olarak test edildi. Bir örnek dizileme hatası nedeniyle yorumlanamadı. 50 yorumlanabilir örnekten elde edilen karşılaştırma sonuçları Tablo 21 (2 x 3 ihtimal tablosu) ve Tablo 22'de (yüzdeli uyum) özetlenmiştir.

Tablo 21. Yöntemlerin karşılaştırılması	: ipsogen JAK	2 MutaScreen Kiti
ve dizileme		

		Doğrudan dizileme sonuçları		
		JAK2 V617F >%2	JAK2 V617F <%2	Toplam
ipsogen	JAK2 V617F Mutasyon saptandı	26	1	27
JAK2 MutaScreen tost väntomi	Belirsiz sonuç	0	1	1
sonuçları	JAK2 WT Mutasyon saptanmadı	2	20	22
Toplam		28	22	n = 50

	Uyum (%)	%95 GA* (%)
Pozitif veri ipsogen JAK2 MutaScreen Kiti ve dizileme arasındaki uyum	92,9	77,4-98,0
Negatif veri ipsogen JAK2 MutaScreen Kiti ve dizileme arasındaki uyum	95,2	77,3-99,2
Toplam uyum	93,9	83,5-97,9

Tablo 22. Yöntemlerin karşılaştırılması: *ipsogen* JAK2 MutaScreen Kiti ve dizileme

* Güven aralığı, "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" (Kalitatif Test Performansının Değerlendirilmesi için Kullanıcı Protokolü; Onaylanmış Kılavuz) CLSI EP12-A'ya göre hesaplanmıştır.

228 hasta örneğinde çok merkezli çalışma

Hastalardan elde edilen DNA örnekleri laboratuvarlar arası çalışmaya katılan 13 laboratuvarda, laboratuvarda oluşturulmuş tekniklerle analiz edildi. Her bir laboratuvar klinik dışı hassasiyet verileri için tanımlandığı şekilde (bkz. üst) hücre hatlarından elde edilen DNA'yı kullanarak ve laboratuvarda mevcut 10 hastadan elde edilen DNA ile 3 deney gerçekleştirdi.

Bilinen JAK2 genotipini taşıyan 228 örnek *ipsogen* JAK2 MutaScreen Kiti ve kantitatif PCR, allel spesifik PCR, Floresans rezonans enerji transferi (FRET), dizileme, allel spesifik oligonükleotid PCR, RFLP ve allelik diskriminasyon dahil olmak üzere laboratuvarda kullanılan yöntemlerle paralel olarak test edildi. Karşılaştırmaların sonuçları Tablo 23 (2 x 3 ihtimal tablosu) ve Tablo 24'de (yüzdeli uyum) gösterilmiştir.

Tablo 23. Yöntemlerin karşılaştırılması: *ipsogen JAK2 MutaScreen Kiti* ve diğer laboratuvar yöntemleri

		Laboratuvar testlerinin sonuçları		
		JAK2 V617F >%2	JAK2 V617F <%2	Toplam
ipsogen	JAK2 V617F Mutasyon saptandı	139	3	142
JAK2 MutaScreen test vöntemi	Belirsiz sonuç	5	17	22
sonuçları	JAK2 WT Mutasyon saptanmadı	3	61	64
Toplam		147	81	n = 228

Tablo 24. Yöntemlerin karşılaştırılması: JAK2 MutaScreen Kiti ve diğer laboratuvar yöntemleri

	Uyum (%)	%95 GA* (%)
Pozitif veri ipsogen JAK2 MutaScreen Kiti ve diğer laboratuvar yöntemleri arasındaki uyum	97,9	94,0-99,3
Negatif veri ipsogen JAK2 MutaScreen Kiti ve diğer laboratuvar yöntemleri arasındaki uyum	95,3	87,1-98,4
Toplam uyum	97,1	93,8-98,7

* Güven aralığı, "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" (Kalitatif Test Performansının Değerlendirilmesi için Kullanıcı Protokolü; Onaylanmış Kılavuz) CLSI EP12-A'ya göre hesaplanmıştır.

Sağlamlık: Sağlıklı donörlerden alınan örneklerin analizi

Kan veren 103 sağlıklı bireyden elde edilen DNA örnekleri *ipsogen* JAK2 MutaScreen RS Kiti ile analiz edildi. Örneklerin tümü JAK2 yabani tip olarak tespit edildi. LightCycler 480 cihazıyla gerçekleştirilen 38 örneğin analizi Şekilde 34'de gösterilmiştir.

Şekil 34. Sağlıklı donörlerin analizi. *ipsogen* JAK2 MutaScreen RS Kit (kat. no. 673123) ile 38 sağlıklı donörün LightCycler 480 analizi (\blacklozenge). İki tekrarlı pozitif sonuçlar (\blacklozenge) kit ile sağlanan referans ölçeği ile uyumludur. VIC floresan değerleri x ekseni üzerinde ve FAM değerleri y ekseni üzerinde çizilmiştir.

Referanslar

- 1. Ma, W. et al. (2009) Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J. Mol. Diagn. **11**, 49.
- 2. James, C. et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature **434**, 1144.
- 3. Levine, R.L. et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell **7**, 387.
- 4. Kralovics, R. et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. **352**, 1779.
- 5. Baxter, E.J. et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet **36**, 1054.
- 6. Tefferi, A. et al. (2009) Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat. Rev. Clin. Oncol. **6**, 627.
- 7. Prchal, J.F. and Axelrad, A.A. (1974) Bone marrow responses in polycythemia vera. N. Engl. J. Med. **290**, 1382.
- 8. Tefferi, A. and Vardiman, J.W. (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia **22**, 14.
- 9. Barosi, G. et al. (2009) Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood **113**, 4829.
- 10. Pardanani, A. et al. (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J. Clin. Oncol. **29**, 789.
- 11. Lippert, E. et al. (2006) The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood **108**, 1865.

Semboller

Aşağıdaki semboller ambalaj ve etiket üzerinde görülebilir:

Σ <n></n>	<n> reaksiyonları için yeterli reaktifleri içerir</n>
	Son kullanma
IVD	İn vitro tanı amaçlı tıbbi cihaz
REF	Katalog numarası
LOT	Lot numarası
MAT	Materyal numarası
GTIN	Küresel Ticaret Parça Numarası
	Sıcaklık sınırlaması
	Üretici
i	Kullanım talimatlarına bakın

İletişim Bilgileri

Teknik destek ve daha fazla bilgi için lütfen **www.qiagen.com/Support** adresindeki Teknik Destek Merkezi'ne bakın, 00800-22-44-6000 numarasını arayın ya da QIAGEN Teknik Servis Bölümlerinden birine veya yerel dağıtıcılara başvurun (arka kapağa bakın veya **www.qiagen.com** adresini ziyaret edin).

Sipariş Bilgileri

Ürün	İçindekiler	Kat. no.
ipsogen JAK2 MutaScreen RS Kit (19)	19 reaksiyon için: V617F Pozitif Kontrol, V617F Negatif Kontrol, V617F Referans Ölçeği, Primer ve Prob Karışımı, JAK2 yabani tip ve JAK2 V617F	673123
Rotor-Gene Q MDx — f analysis in clinical appl	or IVD-validated real-time PCR lications	
Rotor-Gene Q MDx 5plex HRM Platform	Real-time PCR döngüleyici ve 5 kanal (yeşil, sarı, turuncu, kırmızı, kızıl) artı HRM kanallı Yüksek Çözünürlüklü Erime analizörü, dizüstü bilgisayar, yazılım, aksesuarlar, 1 yıl parça ve işçilik garantisi, kurulum ve eğitim dahil değildir	9002032
Rotor-Gene Q MDx 5plex HRM System	Real-time PCR döngüleyici ve 5 kanal (yeşil, sarı, turuncu, kırmızı, kızıl) artı HRM kanallı Yüksek Çözünürlüklü Erime analizörü, dizüstü bilgisayar, yazılım, aksesuarlar, 1 yıl parça ve işçilik garantisi, kurulum ve eğitim	9002033

Güncel lisans bilgileri ve ürüne özgü yasal uyarılar için ilgili QIAGEN kiti el kitabına veya kullanıcı kılavuzuna bakın. QIAGEN kiti el kitapları ve kullanıcı kılavuzları **www.qiagen.com** adresinde bulunabilir veya QIAGEN Teknik Servisleri ve yerel dağıtıcınızdan istenebilir. Bu sayfa bilerek boş bırakılmıştır

Bu sayfa bilerek boş bırakılmıştır

Bu ürün in vitro tanı amaçlı kullanım içindir. ipsogen ürünleri tekrar satılamaz, yeniden satış için değiştirilemez veya QIAGEN'nin yazılı izni olmadan ticari ürünler üretmek üzere kullanılamaz.

Bu belgedeki bilgiler önceden bildirilmeksizin değiştirilebilir. QIAGEN bu belgede görülebilecek herhangi bir hata için hiçbir sorumluluk kabul etmez. Bu belgenin yayınlanma sırasında tam ve doğru olduğuna inanılmaktadır. Hiçbir durumunda QIAGEN size karşı bu belgenin kullanımıyla ilgili veya bundan doğan rastlantısal, özel, çoklu veya dolaylı zarar için yükümlü olmaz.

ipsogen ürünleri belirtilen özellikleri karşılamak üzere garanti edilmiştir. QIAGEN'nin yegane yükümlülüğü ve müşterinin yegane telafi hakkı ürünlerin garanti edildiği şekilde uygulanamaması durumda ürünlerin ücretsiz olarak değiştirilmesi ile sınırlıdır.

Bu ürün yalnızca in vitro tanısal amaçlı kullanım için Epoch Biosciences ile lisans anlaşması çerçevesinde satılır ve herhangi bir araştırma, ticari amaç, klinik araştırma veya in vitro tanı amaçlı kullanım dışındaki diğer alanlar için kullanılamaz.

JAK2 V617F mutasyonu ve ilgili kullanımları Avrupa patenti EP1692281, ABD patentleri 7.429.456 ve 7.781.199, ABD patent başvuruları US20090162849 ve US20120066776 ve yabancı eşlenikleri dahil olmak üzere patent hakları ile korunmaktadır.

Bu ürünün satın alınması JAK2 V617F hedefli ilaçlar için klinik çalışmalarda kullanımına ait her hangi bir hakkı devretmez. QIAGEN bu tip kullanımlar için özel lisans programları geliştirir. Lütfen **jak2licenses@qiagen.com** adresinden hukuk departmanımıza başvurun.

Ticari markalar: QIAGEN[®], QIAamp[®], *ipsogen[®]*, Rotor-Gene[®] (QIAGEN Group); ABI PRISM[®], Applied Biosystems[®], FAM[™], VIC[®] (Thermo Fisher Scientific Inc.); ARMS[®] (AstraZeneca Ltd.); Excel[®] (Microsoft Corporation); iCycler[®] (Bio-Rad Laboratories, Inc.); LightCycler[®], TaqMan[®] (Roche Group); MGB[™] (Epoch Biosciences).

Sınırlı Lisans Sözleşmesi

Bu ürünün kullanımı herhangi bir alıcının veya ipsogen JAK2 MutaScreen RS Kiti kullanıcısının aşağıdaki koşulları kabul ettiği anlamına gelir:

- ipsogen JAK2 MutaScreen RS Kiti, ipsogen JAK2 MutaScreen RS Kiti El Kitabı'na uygun olarak tek başına kullanılabilir ve yalnızca Kitin içinde bulunan bileşenlerle kullanım içindir. QIAGEN bu Kit'in kapalı bileşenlerinin ipsogen JAK2 MutaScreen RS Kiti El Kitabında ve www.qiagen.com adresinden ulaşılabilen protokollerde belirtilenlerin dışında bu kitin içinde yer almayan herhangi bir bileşenle kullanımı veya birleştirilmesi için kendi fikri mülkiyet haklarının herhangi biri altında lisans hakkı vermez.
- 2. Açıkça belirtilen lisanslar dışında, QIAGEN Bu Kit ve/veya kullanımlarının üçüncü tarafların haklarını ihlal etmeyeceğini garanti etmez.
- 3. Bu kit ve bileşenleri bir kez kullanım için lisanslıdır ve tekrar kullanılamaz, yenilenemez ve tekrar satılamaz.
- 4. QIAGEN açıkça ifade edilenlerin dışında açık veya zımni diğer tüm lisansları açıkça reddeder.
- 5. Bu Kitin alıcısı veya kullanıcısı yukarıda yasaklanan eylemlere neden olabilecek veya kolaylaştırabilecek herhangi bir girişimde bulunmayacağını ve başka birisine izin vermeyeceğini kabul eder. QIAGEN herhangi bir Mahkemede bu Sınırlı Lisans Anlaşması yasaklamalarını uygulayabilir ve bu sınırlı lisans anlaşmasının veya kit ve/veya bileşenleriyle ilgili fikri mülkiyet haklarının herhangi birinin uygulanmasına yol açan tüm durumlarda avukat ücreti dahil tüm soruşturma ve mahkeme masraflarını geri alabilir.

Güncellenmiş lisans koşulları için bkz. www.qiagen.com.

HB-1372-003 © 2013–2016 QIAGEN, tüm hakları saklıdır.

www.qiagen.com