Σ₂₄

Manuale del kit ipsogen[®] JAK2 MutaScreen EZ

Versione 1

IVD Diagnostica quantitativa in vitro

Da utilizzare con gli strumenti Rotor-Gene[®] Q, Applied Biosystems[®], ABI PRISM[®] e LightCycler[®]

REF 673223

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, GERMANIA

R3 MAT 1072514IT

Sample & Assay Technologies

QIAGEN Sample and Assay Technologies

QIAGEN è un fornitore leader nel settore delle tecnologie innovative per campioni e analisi che consentono di isolare e rilevare il contenuto di qualunque campione biologico. I nostri prodotti e i nostri servizi di alta qualità sono una garanzia di successo, dall'analisi del campione al risultato.

QIAGEN definisce gli standard:

- nella purificazione del DNA, RNA e delle proteine
- nell'analisi di acidi nucleici e proteine
- nella ricerca sul microRNA e sull'RNAi
- nelle tecnologie automatizzate per campioni e analisi

Il nostro obiettivo è il vostro successo. Per ulteriori informazioni, visitare il sito **www.qiagen.com**.

Indice

	-
Uso previsto	4
Sommario e spiegazione	4
Principio della procedura	6
Materiali in dotazione	8
Contenuto del kit	8
Materiali necessari ma non in dotazione	9
Avvertenze e precauzioni	10
Precauzioni generali	10
Conservazione e manipolazione dei reagenti	11
Procedura	12
Preparazione del DNA dei campioni	12
Conservazione degli acidi nucleici	12
Protocolli	
qPCR su strumenti Rotor-Gene Q MDx 5plex HRM o Rotor-Gene Q 5plex HRM con rotore a 72 provette	12
■ qPCR su strumenti Applied Biosystems 7500 o ABI PRISM 7900HT	23
■ qPCR sullo strumento LightCycler 480	32
Interpretazione dei risultati	41
Rappresentazione grafica e criteri di controllo della qualità	41
Calcolo di rapporto FAM/VIC normalizzato e genotipizzazione	42
Guida alla risoluzione dei problemi	44
Controllo di qualità	46
Limitazioni	46
Caratteristiche delle prestazioni	46
Studi non clinici	46
Studi clinici	49
Bibliografia	50
Simboli	51
Informazioni sui contatti	51
Informazioni per gli ordini	52

Uso previsto

Il kit *ipsogen* JAK2 MutaScreen EZ è stato realizzato per la rilevazione della mutazione JAK2 V617F/G1849T a partire da DNA genomico di pazienti con sospetta neoplasia mieloproliferativa. L'assenza di JAK2 V617F/G1849T non esclude la presenza di altre mutazioni JAK2. Il test può infatti dare risultati di falso negativo qualora siano presenti mutazioni aggiuntive nei codoni da 615 a 619 (1).

Nota: il kit deve essere impiegato seguendo le istruzioni fornite nel presente manuale e utilizzando reagenti e strumenti convalidati. Qualsiasi impiego non previsto del prodotto e/o alterazione dei componenti esenteranno QIAGEN da qualsiasi responsabilità.

Sommario e spiegazione

Una mutazione somatica ricorrente, V617F, del gene della tirosina Janus chinasi 2 (JAK2), è stata identificata nel 2005 (2-5), determinando un importantissimo passo avanti nella comprensione, classificazione e diagnosi delle neoplasie mieloproliferative (MPN). JAK2 è un'importante molecola di segnalazione intracellulare per numerose citochine, tra cui l'eritropoietina.

La mutazione JAK2 V617F è stata individuata in >95% dei pazienti con policitemia vera (PV), nel 50-60% dei pazienti con trombocitemia essenziale (ET) e nel 50% dei pazienti con mielofibrosi primaria (PMF). JAK2 V617F è stata inoltre individuata in alcuni rari casi di leucemia mielomonocitica cronica, nella sindrome mielodisplasica, nella mastocitosi sistemica e nella leucemia neutrofila cronica, ma nello 0% dei pazienti con CML (6).

La mutazione corrisponde alla modifica di un unico nucleotide 1849 di JAK2 nell'esone 14: ciò provoca la sostituzione di una valina (V) con una fenilalanina (F) alla posizione 617 della proteina (dominio JH2). Ciò porta all'attivazione costitutiva di JAK2, alla trasformazione ematopoietica in vitro e alla crescita endogena di colonie eritrocitarie senza aggiunta di eritropoietina (EEC) in tutti i pazienti con PV e un'estesa percentuale di pazienti con ET e PMF (7). JAK2 V617F rappresenta un fattore fondamentale nell'induzione della trasformazione di cellule ematopoietiche nella MPN, ma gli esatti meccanismi patologici che determinano, con la stessa unica mutazione, tali diverse entità cliniche e biologiche devono ancora essere completamente chiariti.

La diagnosi di MPN si basava tradizionalmente su criteri clinici, sull'esame istologico del midollo osseo e su criteri citogenetici. La scoperta di un marker molecolare specifico della malattia ha prodotto sia una semplificazione della procedura sia una maggiore accuratezza diagnostica. Il rilevamento della mutazione JAK2 V617F fa ora parte dei criteri di riferimento OMS 2008 per la diagnosi di casi di MPN negativi per BCR-ABL (Tabella 1) e la presenza di questa mutazione è un importante criterio di conferma diagnostica.

Tabella 1. Criteri diagnostici per MPN secondo OMS (adattati da rif. 8)

Criteri d	iganostici per policitemia vera (PV)				
Maggior	i 1 Emoglobing (Hab) >18.5 g/dl ⁻¹ (uomini) α >16.5 g/dl ⁻¹				
111199101	(donne) oppure				
	Hab o ematocrito (Hct) >99° percentile dell'intervallo di				
	riferimento per età sesso o altitudine di residenza, oppure				
	Hab >17 a/d ¹⁻¹ (uomini) α >15 a/d ¹⁻¹ (donne) se associata a un				
	sostanziale aumento $>2 a/dl^{-1}$ dal basale non attribuibile a				
	correzione di carenza di ferro, oppure				
	Aumento della massa eritrocitaria >25% rispetto al valore medio				
	normale previsto				
	2. Presenza di JAK2V617F o di mutazione simile				
Minori	1. Mieloproliferazione trilineare del midollo osseo				
	2. Livello di eritropoietina sierica inferiore alla norma				
	3. Crescita endogena di colonie eritrocitarie (EEC)				
Criteri d	iagnostici per trombocitemia essenziale (ET)				
Maggior	i 1. Trombociti ≥450 x 10 ⁹ l ⁻¹				
	2. Proliferazione megacariocitaria con forme grandi e mature.				
	Proliferazione granulocitaria o eritrocitaria normale o minima.				
	3. Esclusione dei criteri diagnostici OMS di leucemia mieloide				
	cronica (CML), policitemia vera (PV), mielofibrosi primaria (PMF),				
	sindrome mielodisplasica (MDS) o altre neoplasie mieloidi				
	4. Dimostrazione di JAK2V617F o altri marcatori clonali, oppure				
	Nessuna evidenza di trombocitosi reattiva				
Minori	-				
Criteri d	iagnostici per mielofibrosi primaria (PMF)				
Maggior	i 1. Proliferazione megacariocitaria con atipie, accompagnata da				
	fibrosi reticolinica e/o collagena, oppure				
	In assenza di fibrosi reticolinica, le alterazioni megacariocitarie				
	devono essere accompagnate da un aumento della cellularità				
	midollare, proliferazione granulocitaria e spesso diminuzione				
	dell'eritropoiesi (vale a dire, PMF prefibrotica)				
	2. Esclusione dei criteri diagnostici OMS per (CML), PV, MDS o				
	altre neoplasie mieloidi				
	3. Dimostrazione di JAK2V617F o altri marcatori clonali, oppure				
	Nessuna evidenza di fibrosi midollare reattiva				
Minori	1. Leucoeritroblastosi				
	2. Aumento della lattato-deidrogenasi sierica (LDH)				
	3. Anemia				
	4. Splenomegalia palpabile				

Di recente, alcuni esperti internazionali hanno proposto criteri per la conduzione di sperimentazioni terapeutiche su PV ed ET. In base a dati relativi

ad alloinnesto, interferone alfa o idrossiurea, la quantificazione di JAK2V617F è stata inclusa come strumento potenzialmente utile per il monitoraggio della risposta al trattamento (9). È stata osservata una riduzione del carico di JAK2 V617F in risposta ad alcuni dei nuovi farmaci mirati anti-JAK2 nello sviluppo clinico (10).

Principio della procedura

In un test di discriminazione allelica vengono impiegate due sonde TaqMan[®] (test in multiplex). Una fornisce una appaiamento specifico per la sequenza dell'allele 2 (ad esempio l'allele "wild type"), l'altra un appaiamento specifico per la sequenza dell'allele 1 (ad esempio l'allele con una mutazione). Ogni sonda viene contrassegnata da un fluorocromo specifico alla rispettiva estremità 5' (reporter), come ad esempio FAM[™] o VIC[®], e contiene un quencher non fluorescente all'estremità 3'. Le sonde contengono anche un MGB[™] (minor grove binder) che consente l'impiego di sonde più corte con maggiore stabilità, fornendo quindi una discriminazione allelica più precisa.

Durante la fase di estensione della PCR, la sonda che si appaia in maniera specifica viene scissa dall'attività dell'esonucleasi 5'→3' della Taq polimerasi del DNA che separa il fluorocromo reporter dal quencher rilasciando la fluorescenza, che può quindi essere rilevata. La sonda che non si appaia in maniera specifica viene rimossa mediante scissione dalla Taq polimerasi del DNA e non viene rilasciato nessun fluorocromo reporter. Il segnale fluorescente (VIC o FAM) che si genera all'ultimo ciclo di PCR (punto finale), viene raccolto ed indica immediatamente la presenza della o delle sequenze bersaglio (allele wild type, allele mutato o entrambi) senza la necessità di passaggi post PCR lunghi e laboriosi che fanno aumentare, tra l'altro, anche il rischio di contaminazione. La quantità effettiva della sequenza bersaglio non viene in realtà determinata.

Il kit ipsogen JAK2 MutaScreen EZ impiega questa tecnologia come mostrato nello schema seguente (Figura 1).

Figura 1. Test in multiplex della sonda TaqMan. Il kit ipsogen JAK2 MutaScreen EZ utilizza questa tecnologia per la discriminazione allelica.

Materiali in dotazione

Contenuto del kit

ipsogen JAK2 MutaScreen EZ Kit Catalogo n° Numero di reazioni		(24) 673223 24
Scatola 1: controlli		
V617F Positive Control (controllo positivo V617F)	PC-VF JAK2	30 <i>µ</i> l
V617F Negative Control (controllo negativo V617F)	NC-VF JAK2	30 <i>µ</i> l
Cut-Off Sample (campione di cut-off)	COS-VF JAK2	30 <i>µ</i> l
Scatola 2: qPCR		
Primers and Probes Mix JAK2 V617F* (miscela di primer e sonde JAK2 V617F)	PPM-JAK2 10x	145 <i>µ</i> l
Master Mix for qPCR, (miscela master per qPCR), 2x	qPCR master mix (miscela master qPCR)	720 µl
Acqua Nuclease-Free (acqua priva di nucleasi)	H ₂ O	1.000 <i>µ</i> l
Service pack		
ipsogen JAK2 MutaScreen EZ Kit Handb	oook (inglese)	1

* Miscela di primer inversi e diretti specifici per il gene JAK2, sonda V617F FAM specifica e sonda wild type VIC.

Nota: centrifugare brevemente le provette prima dell'uso.

Nota: l'analisi di campioni non noti eseguita con il kit *ipsogen* JAK2 MutaScreen EZ richiede l'estrazione di DNA genomico. I reagenti necessari per effettuare l'estrazione del DNA (ad es., QIAGEN[®] QIAamp[®] DNA Blood Maxi Kit, cat. n° 51192 e 51194) non sono forniti in dotazione e devono essere approvati assieme al kit.

Materiali necessari ma non in dotazione

Quando si opera con sostanze chimiche, indossare sempre un camice da laboratorio, guanti monouso e occhiali protettivi. Per maggiori informazioni, consultare le rispettive schede tecniche di sicurezza (SDS), reperibili presso il fornitore.

Reagenti

- Tampone TE privo di nucleasi 1x, pH 8,0
- Reagenti per gel di agarosio allo 0,8-1% in tampone per elettroforesi TBE 0,5x

Materiali di consumo

- Puntali per pipetta per PCR sterili, resistenti alla contaminazione da aerosol, privi di nucleasi, con filtri idrofobici
- Provette per PCR prive di RNasi e DNasi da 0,5 ml o 0,2 ml
- Ghiaccio

Attrezzatura

- Pipette con graduazione in microlitri* specifiche per PCR (1-10 μ l; 10-100 μ l; 100-1.000 μ l)
- Centrifuga da banco* con rotore per provette di reazione da 0,2 ml/0,5 ml (in grado di raggiungere 10.000 giri/min)
- Spettrofotometro* per quantificazione del DNA
- Strumentazione per PCR in tempo reale:* Rotor-Gene Q 5plex HRM o altro strumento Rotor-Gene; LightCycler 480; sistema Applied Biosystems 7500 Real-Time PCR o ABI PRISM 7900HT SDS; e materiale specifico associato

^{*} Assicurarsi che gli strumenti siano stati revisionati e calibrati secondo le raccomandazioni del produttore.

Avvertenze e precauzioni

Per uso diagnostico in vitro

Quando si opera con sostanze chimiche, indossare sempre un camice da laboratorio, guanti monouso e occhiali protettivi. Per ulteriori informazioni, consultare le appropriate schede di sicurezza (SDS). Le schede SDS, nel pratico e compatto formato PDF, sono disponibili online all'indirizzo **www.qiagen.com/safety**. Qui è possibile trovare, visualizzare e stampare la scheda SDS per ciascun kit QIAGEN e i relativi componenti.

Smaltire i campioni e i residui dei test secondo le locali disposizioni in materia di sicurezza.

Precauzioni generali

Per effettuare i test qPCR è necessario attenersi a buone pratiche di laboratorio, come la manutenzione dell'attrezzatura, appositamente dedicate alla biologia molecolare e conformi alle leggi vigenti e ai relativi standard.

Questo kit è destinato all'uso diagnostico in vitro. Le istruzioni e i reagenti forniti nel kit sono stati approvati per consentire prestazioni ottimali. L'ulteriore diluizione dei reagenti o l'alterazione dei tempi di incubazione e delle temperature potrebbe generare dati errati o discordanti. I reagenti PPM-JAK2 potrebbero modificarsi se esposti alla luce. Tutti i reagenti sono stati formulati per essere utilizzati specificamente con il presente test. Per garantire una prestazione ottimale del test si consiglia di non effettuare sostituzioni.

Utilizzare estrema cautela per evitare:

- Contaminazione da DNasi che potrebbe portare a degradazione del DNA stampo.
- Contaminazione crociata del DNA o della PCR con conseguente segnale falso-positivo.

Si consiglia quindi quanto segue:

- Utilizzare materiale da laboratorio privo di nucleasi (ad es. pipette, puntali per pipetta, provette di reazione) e indossare i guanti durante l'esecuzione del test.
- Utilizzare puntali per pipetta nuovi e resistenti alla contaminazione da aerosol durante tutte le fasi di pipettatura per evitare fenomeni di contaminazione crociata dei campioni e dei reagenti.
- Preparare la miscela master per PCR con materiali appositi (pipette, puntali, ecc.) in una zona dedicata, dove non siano presenti matrici di DNA (DNA, prodotti della PCR). Aggiungere il filamento stampo in una zona separata (preferibilmente in una stanza dedicata) utilizzando materiale specifico (pipette, puntali, ecc.).

Conservazione e manipolazione dei reagenti

l kit sono spediti in ghiaccio secco e devono essere conservati a una temperatura compresa tra -30°C e -15°C al momento della ricezione.

- Minimizzare l'esposizione alla luce delle miscele di primer e sonda (provetta PPM-JAK2).
- Miscelare delicatamente e centrifugare le provette prima dell'apertura.
- Conservare tutti i componenti del kit nelle confezioni originali.

Le condizioni di conservazione indicate valgono sia per i componenti aperti sia per quelli non aperti. I componenti conservati in condizioni diverse da quelle indicate sulle etichette potrebbero non funzionare adeguatamente e inficiare i risultati del test.

Le date di scadenza dei reagenti sono indicate sulla rispettiva etichetta del componente. Se conservato correttamente, il prodotto mantiene inalterate le proprie prestazioni fino alla data di scadenza stampata sull'etichetta.

Il prodotto non fornisce segnali evidenti di instabilità. Si consiglia, tuttavia, di eseguire contemporaneamente controlli positivi e negativi con campioni non noti.

Procedura

Preparazione del DNA dei campioni

Il DNA genomico deve essere estratto da sangue intero, linfociti di sangue periferico purificato, cellule polinucleate o granulociti. Per poter confrontare i risultati, si consiglia di adottare il medesimo metodo di estrazione del DNA e della frazione cellulare. Eseguire l'estrazione del DNA con metodi del laboratorio o commerciali (ad es., QIAGEN QIAamp DNA Blood Maxi Kit, cat. n° 51192 e 51194).

La quantità di DNA è determinata misurando l'assorbanza a 260 nm. La qualità del DNA deve essere valutata mediante spettrofotometria o elettroforesi su gel.

Il rapporto A₂₆₀/A₂₈₀ deve essere 1,7-1,9. Rapporti inferiori normalmente indicano una contaminazione con sostanze proteiche o materiali chimici organici. Mediante elettroforesi su gel di agarosio 0,8-1% sarà possibile visualizzare il DNA isolato sotto forma di banda distinta di circa 20 kb. Un leggero effetto smear è accettabile.

Il DNA risultante è diluito a una concentrazione di 5 ng/ μ l in tampone TE. La reazione qPCR è ottimizzata per 25 ng di DNA genomico purificato.

Conservazione degli acidi nucleici

Per la conservazione a breve termine fino ad un massimo di 24 ore, consigliamo di conservare gli acidi nucleici purificati a 2-8°C, mentre per la conservazione a lungo termine per un periodo superiore a 24 ore consigliamo una temperatura di -20°C.

Protocollo: qPCR su strumenti Rotor-Gene Q MDx 5plex HRM o Rotor-Gene Q 5plex HRM con rotore a 72 provette

Se si utilizza uno di questi strumenti, si suggerisce di effettuare tutte le misurazioni in duplicato, come indicato nella Tabella 2.

Tabella 2. Numero di reazioni per strumenti Rotor-Gene Q con rotore a 72 provette

Campioni	Reazioni	
Con la miscela di primer e sonde JAK2 V617F (PPM-JAK2)		
n campioni di DNA	n x 2 reazioni	
3 controlli DNA	6 reazioni (PC-VF, NC-VF e COS- VF, ognuno testato in duplicato)	
Acqua come materiale di controllo	2 reazioni	

Processazione dei campioni su strumenti Rotor-Gene Q con rotore a 72 provette

Figura 2. Configurazione consigliata del rotore per l'esperimento con il kit ipsogen JAK2 MutaScreen EZ. PC-VF: controllo positivo; NC-VF: controllo negativo; COS-VF: campione di cut-off; S: campione di DNA; H₂O: acqua come materiale di controllo.

Nota: assicurarsi di posizionare sempre il campione da analizzare nella posizione 1 del rotore. In caso contrario, la fase di calibrazione dello strumento potrebbe non essere ottimale, con la conseguente acquisizione di dati di fluorescenza errati.

Inserire provette vuote nelle posizioni rimanenti.

qPCR su strumenti Rotor-Gene Q con rotore a 72 provette

Nota: eseguire tutte le fasi su ghiaccio.

Procedura

1. Scongelare tutti i componenti necessari e collocarli su ghiaccio.

I componenti devono essere prelevati dal congelatore circa 10 min prima dell'inizio della procedura.

- 2. Agitare mediante vortex e centrifugare brevemente tutte le provette (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 3. Preparare la seguente miscela qPCR a seconda del numero di campioni da analizzare.

Tutte le concentrazioni sono calcolate sul volume finale di reazione.

La Tabella 3 mostra lo schema di pipettatura per la preparazione di una miscela di reagenti, calcolata per ottenere un volume di reazione finale di 25 µl. È possibile preparare una premiscela, a seconda del numero di reazioni, utilizzando la medesima miscela di primer e sonda. Sono inclusi volumi extra per compensare eventuali errori di pipettatura.

Sugli strumenti Rotor-Gene, il kit ipsogen JAK2 MutaScreen EZ può essere utilizzato per l'analisi di 24 campioni in duplicato in un solo esperimento (Figura 2), 20 campioni in duplicato in 2 esperimenti o 15 campioni in duplicato in 3 esperimenti.

	Numero di reazioni (µl)				
Compo- nente	1	56+1*	28 +1 ⁺	18+1 [‡]	Concentra- zione finale
Miscela master qPCR, 2x	12,5	712,5	362,5	237,5	1x
Miscela di primer e sonde, 10x	2,5	142,5	72,5	47,5	1x
Acqua per PCR priva di nucleasi	5	285	145	95	-
Campione (da aggiungere alla fase 6)	5	5 ciascuno	5 ciascuno	5 ciascuno	-
Volume totale	25	25 ciascuno	25 ciascuno	25 ciascuno	-

Tabella 3. Preparazione della miscela qPCR

* 24 campioni; 1 esperimento/kit.

⁺ 10 campioni; 2 esperimenti/kit.

⁺ 5 campioni; 3 esperimenti/kit.

- 4. Agitare su vortex e centrifugare brevemente la miscela qPCR (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 5. Dispensare 20 μ l della premiscela qPCR in ogni provetta.
- 6. Aggiungere 5 μ l di DNA campione o controlli nella provetta corrispondente (volume totale 25 μ l).
- 7. Miscelare delicatamente aspirando e rilasciando con una pipetta.
- 8. Chiudere le provette per PCR. Posizionare le provette nel rotore a 72 provette secondo le istruzioni del produttore. Inserire provette vuote nelle posizioni rimanenti.
- 9. Verificare che l'anello di bloccaggio (accessorio dello strumento Rotor-Gene) sia presente sopra il rotore per evitare l'apertura accidentale delle provette durante l'analisi. Posizionare il rotore nello strumento Rotor-Gene Q secondo le istruzioni del produttore.

10. Per l'individuazione del DNA di JAK2, creare un profilo termico con le seguenti operazioni.

Impostazione dei parametri generali del test	Figure 3, 4
Amplificazione del DNA	Figura 5
Regolazione della sensibilità del canale di fluorescenza	Figura 6

Per ulteriori informazioni sulla programmazione degli strumenti Rotor-Gene consultare il relativo manuale utente. Nelle illustrazioni le impostazioni del software sono evidenziate da una cornice nera spessa. Le illustrazioni incluse riguardano anche gli strumenti Rotor-Gene Q.

11. Avviare il software Rotor-Gene. Nella finestra di dialogo "New Run" (nuovo processo), cliccare su "New" (nuovo) (Figura 3).

Figura 3. Finestra di dialogo "New Run".

12. Aprire la finestra di dialogo "New Run Wizard" (procedura guidata nuovo processo). Selezionare 25 per il volume di reazione PCR e cliccare su "Next" (avanti) (Figura 4).

	This screen displa clicking Next whe Operator :	ays miscellaneous options for the run. Complete the fields, an you are ready to move to the next page.	This box displays help on elements in the wizard. For help on an item, hover your mouse over the
00000000000000000000000000000000000000	Notes :	Programme PCR allelic discrimination	 tem for help. You can also click on a combo box to display help about its: available settings.
	Reaction Volume (µL): Sample Layout :	25 • 1, 2, 3 •	
	Skip Wizard	<< Back Next>>	

Figura 4. Impostazione dei parametri generali del test.

 Cliccare sul pulsante "Edit Profile" (modifica profilo) nella successiva finestra di dialogo "New Run Wizard" e programmare il profilo di temperatura come mostrato nella Tabella 4 e nella Figura 5. Assicurarsi di aggiungere l'ultima fase di acquisizione a 60°C, per ogni ciclo, per entrambi i canali Green (FAM) [verde (FAM)] e Yellow (VIC) [giallo (VIC)].

17

	Temperatura: 50°C		
Durata: 2 r	nin		
o 2 Temperatu	Temperatura: 95°C		
Durata: 10	Durata: 10 min		
50 volte	50 volte		
92°C per 1	5 s		
60°C per 1	60°C per 1 min; singola		
Acquisizion Cycling A (Acquisizione della fluorescenza FAM nel canale Cycling A Green		
Acquisizion Cycling A Y	Acquisizione della fluorescenza VIC nel canale Cycling A Yellow		
he graph below represents the rur to be performed.			
he graph below represents the run to be performed:			
he graph below represents the rur to be performed:			

Tabella 4. Profilo termico

Figura 5. Amplificazione del DNA.

14. L'intervallo di rilevazione dei canali di fluorescenza deve essere determinato in base all'intensità della fluorescenza nelle provette PCR. Cliccare su "Gain Optimisation" (ottimizzazione gain) nella finestra di dialogo "New Run Wizard" per aprire la finestra di dialogo "Auto-Gain Optimisation Setup" (setup ottimizzazione autogain). Cliccare su "Optimise Acquiring" (ottimizza acquisizione) (Figura 6), poi cliccare su "OK" nelle finestre di dialogo "Auto-Gain Optimisation Channel Settings" (impostazioni canali di ottimizzazione auto-gain) per ogni canale (Green e Yellow, Figura 6). Controllare che la finestra di dialogo "Perform Optimization before 1st Acquisition" (esegui ottimizzazione prima della 1° acquisizione) sia stata selezionata per tutti i canali (Figura 6).

Auto-Gain Optimisation Setup	Auto-Gain Optimisation Channel Settings 🛛 🛛 🔀
Optimisation: Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing. Set temperature to Optimise All Optimise Acquiring Perform Optimisation Before 1st Acquisition Perform Optimisation Defore 1st Acquisition	Channel Settings : Channel : Green Tube Position : 1 * Target Sample Range : 5 * Flup to 10 * Flu Acceptable Gain Range: 10 * to 10 *
Channel Settings :	OK Cancel Help
Audu Name Tube Position Min Reading Max Reading Min Gain Max Gain Green 1 SFI 10FI -10 10 Yellow 1 SFI 10FI -10 10 Remove All Remove All Remove All Remove All	Auto-Gain Optimisation Channel Settings
	Target Sample Bange: 5 * Flup to 10 * Fl Acceptable Gain Range: 10 * to 10 *

Figura 6. Regolazione della sensibilità del canale di fluorescenza.

- 15. I valori del gain determinati con la calibrazione del canale sono salvati automaticamente e sono elencati nell'ultima finestra del menu della procedura di programmazione. Cliccare su "Start Run" (avvia esecuzione) per eseguire il programma.
- 16. Inserire la configurazione del rotore nel software Rotor-Gene (Figura 7).

•					
👫 Edit Samples 📃 🗖 🗙					
File Edit Format Security					
[Standard] Rotor Style]					
					1
Settings :					
Given Conc. Format : 123456,789123467 Unit : copies/reactio More Options					
Samples :					
					3 6 9
CID	Name	Туре	Groups	Given Cor	nc. 🔺
1	PC	Positive Control			
2	PC	Positive Control			
3	H20	NTC			
4		None			
5	NC	Negative Control			
6	NC	Negative Control			
7	H20	NTC			
8		None			
9	RS	Unknown			
10	RS	Unknown			
11		None			
12		None			
13	S1	Unknown			
14	S1	Unknown			
15	\$2	Unknown			
16	\$2	Unknown			
17	53	Unknown			
18	53	Unknown			
19	S4	Unknown			
20	54	Unknown			-1
4	04	Ondional	1		•
Page :	Page :				
Name : JAK2 Ipsogen < New Delete Synchronize pages					
	Undo	<u></u> K	Ca	ancel	<u>H</u> elp

Figura 7. Configurazione Rotor-Gene: "Edit Samples" (modifica campioni).

Procedura di analisi endpoint per l'impostazione dello strumento Rotor-Gene Q 5plex HRM

17. Al termine del programma PCR, cliccare su "Analysis" (analisi) nella barra degli strumenti (Figura 8).

Figura 8. Analisi.

 Nella finestra di dialogo "Analysis", cliccare due volte su "Cycling A. Green" (ciclo A. canale verde), quindi su "OK" (Figura 9). Ripetere per "Cycling A. Yellow" (ciclo A. canale giallo).

Cycling A.Green Cycling A.Yellow	At Least Two Standards Required
	The auto-find threshold feature requires that you have defined at least 2 selected standards. To set this up, right-click on the sample list and select Edit Samples

Figura 9. Quantificazione: "Cycling A. Green".

19. Si apre una nuova finestra (Figura 10). Cliccare su "Slope Correct" (correggi pendenza) in entrambe le sezioni, come indicato nella Figura 10.

Figura 10. Impostazione di "Slope Correct".

- 20. Per esportare i dati, salvare come foglio dati di Excel[®]. Selezionare "File/Save As/Excel data sheet" (file/salva con nome/foglio dati Excel) e cliccare su "OK". Assegnare un nome al file di esportazione e salvarlo in formato testo (*.txt).
- 21. Aprire il file di testo in Excel e selezionare la colonna A. Selezionare "Data/Convert and Next" (dati/converti e avanti). Selezionare "Comma" (virgola) e poi fare clic su "End" (fine). I risultati compariranno come mostrato nella Figura 11.

Figura 11. Esempio di risultati, mostrati nel file Excel.

Nota: il file contiene dati sia non elaborati che standardizzati. Solo_i dati standardizzati devono essere presi in considerazione.

Questi dati vengono forniti nelle sezioni della tabella dal nome Quantitative analysis of channel Cycling A Green (analisi quantitativa del ciclo A del canale verde) e Quantitative analysis of channel Cycling A Yellow (analisi quantitativa del ciclo A del canale giallo). I dati da interpretare sono quelli acquisiti al 50° ciclo di PCR (sulla destra, cerchiati).

Protocollo: qPCR su strumenti Applied Biosystems 7500 o ABI PRISM 7900HT

In caso di utilizzo di un dispositivo qPCR a 96 pozzetti, si suggerisce di effettuare tutte le misurazioni in duplicato, come indicato nella Tabella 5.

Tabella 5. Numero di reazioni per strumenti Applied Biosystems 7500 o ABI PRISM 7900HT

Campioni	Reazioni	
Con la miscela di primer e sonde JAK2 V617F (PPM-JAK2)		
n campioni di DNA	n x 2 reazioni	
3 controlli DNA	6 reazioni (PC-VF, NC-VF e COS-VF, ognuno testato in duplicato)	
Acqua come materiale di controllo	2 reazioni	

Processazione dei campioni su strumenti Applied Biosystems 7500 o ABI PRISM 7900HT

qPCR su strumenti Applied Biosystems 7500 o ABI PRISM 7900HT

Nota: eseguire tutte le fasi su ghiaccio.

Procedura

- Scongelare tutti i componenti necessari e collocarli su ghiaccio.
 I componenti devono essere prelevati dal congelatore circa 10 min prima dell'inizio della procedura.
- 2. Agitare su vortex e centrifugare brevemente tutte le provette (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 3. Preparare la seguente miscela qPCR a seconda del numero di campioni da analizzare.

Tutte le concentrazioni sono calcolate sul volume finale di reazione.

La Tabella 6 mostra lo schema di pipettatura per la preparazione di una miscela di reagenti, calcolata per ottenere un volume di reazione finale di 25 µl. È possibile preparare una premiscela, a seconda del numero di reazioni, utilizzando la medesima miscela di primer e sonda. Sono inclusi volumi extra per compensare eventuali errori di pipettatura.

Sugli strumenti Applied Biosystems 7500 o ABI PRISM 7900HT, il kit ipsogen JAK2 MutaScreen EZ può essere utilizzato per l'analisi di 24 campioni in duplicato in un solo esperimento (Figura 12), 20 campioni in duplicato in 2 esperimenti o 15 campioni in duplicato in 3 esperimenti.

	٦	Numero di	reazioni (µl)	
Compo- nente	1	56+1*	28 +1 ⁺	18+1 [‡]	Concentra- zione finale
TaqMan Universal PCR Master Mix, 2x	12,5	712,5	362,5	237,5	1x
Miscela di primer e sonde, 10x	2,5	142,5	72,5	47,5	1x
Acqua per PCR priva di nucleasi	5	285	145	95	_
Campione (da aggiungere alla fase 6)	5	5 ciascuno	5 ciascuno	5 ciascuno	-
Volume totale	25	25 ciascuno	25 ciascuno	25 ciascuno	_

Tabella 6. Preparazione della miscela qPCR

* 24 campioni; 1 esperimento/kit.

⁺ 10 campioni; 2 esperimenti/kit.

⁺ 5 campioni; 3 esperimenti/kit.

- 4. Agitare su vortex e centrifugare brevemente la miscela qPCR (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 5. Dispensare 20 μ l della premiscela qPCR in ogni pozzetto.
- 6. Aggiungere 5 μ l di DNA campione o controlli nel pozzetto corrispondente (volume totale 25 μ l).
- 7. Miscelare delicatamente aspirando e rilasciando con una pipetta.
- 8. Chiudere la piastra e centrifugare brevemente (300 x g, circa 10 s).
- 9. Posizionare la piastra nel termociclatore secondo le istruzioni del produttore.
- 10. Programmare il termociclatore con il programma di ciclizzazione termica indicato nella Tabella 7 e avviare il processo.

Mantenimento	Temperatura: 50°C Durata: 2 min
Mantenimento 2	Temperatura: 95°C Durata: 10 min
Ciclizzazione	50 volte 92°C per 15 s 60°C per 1 min; singola

Tabella 7. Profilo termico per strumenti Applied Biosystems 7500 e ABI PRISM 7900 HT

Procedura di analisi della fase di post-lettura per gli strumenti Applied Biosystems e ABI PRISM

Per i dettagli di programmazione degli strumenti Applied Biosystems 7500 e ABI PRISM 7900HT, consultare il relativo manuale utente. Per una migliore visualizzazione, le impostazioni del software sono evidenziate da una cornice nera spessa.

- 11. Terminata l'analisi, selezionare "Start/Program" (avvio/programma) e poi selezionare "File/New" (file/nuovo).
- Nella finestra di dialogo "New Document Wizard" (procedura guidata nuovo documento), cliccare sull'elenco a tendina "Assay" (test) e selezionare "Allelic Discrimination" (discriminazione allelica) (Figura 13).
- 13. Accettare le impostazioni predefinite per i campi "Container" (contenitore) e "Template" (stampo) ("96-Well Clear" [96 pozzetti, vuoto] e "Blank document" [documento vuoto], (Figura 13)). Nel campo "Plate Name" (nome piastra), digitare AD Post-read (AD post-lettura) (Figura 13), quindi cliccare su "Next>" per accedere alla finestra di dialogo "Select Markers" (selezione marker).

Assay	Allelic Discrimination	
Container	S6-Well Clear	
Template	Blank Document Browse	
Run Mode	Standard 7500	
Operator	Administrator	
Comments		
	×	

Figura 13. Preimpostazioni per la creazione di una nuova fase di post-lettura (New Document Wizard).

- 14. Se il riquadro "Markers in Document" (marker nel documento) della finestra di dialogo "Select Markers" contiene un marker adatto all'applicazione richiesta, passare al punto 18. In caso contrario, proseguire dal punto 15.
- 15. Per creare i rilevatori e i marcatori, procedere come segue. Cliccare su "New Detector" (nuovo rilevatore) (Figura 14).

Find:	<u> </u>	Passive Reference: R0X
		Add >> Remove

Figura 14. Il riquadro "Markers in Document" non contiene nessun marker adatto all'applicazione richiesta.

16. Nella finestra di dialogo "New Detector", digitare Allele A nel campo "Name" (nome) (Figura 15). Lasciare "Reporter Dye" (fluorocromo reporter) impostato su "FAM". Cliccare sul pulsante "Color" (colore), selezionare un colore e cliccare su "OK" (Figura 15). Cliccare su "Create Another" (crea un altro) (Figura 15).

Figura 15. Creazione dei rilevatori.

- 17. Nella finestra di dialogo successiva "New Detector", digitare Allele B nel campo "Name". Selezionare "VIC" nel campo "Reporter Dye". Cliccare sul pulsante "Color", selezionare un colore e cliccare su "OK".
- Cliccare su "New marker" (nuovo marker) nella finestra di dialogo "Select Markers" (v. Figura 14).
- Nella finestra di dialogo "New Marker", digitare JAK2 nel campo "New Marker Name" (nuovo nome marker) (Figura 16). Selezionare i rilevatori "Allele A" e "Allele B" creati ai punti 16 e 17 (o già definiti), quindi cliccare su "OK" (Figura 16).

Figura 16. Creazione dei marker.

20. Nella finestra di dialogo "Select Markers", selezionare "JAK2" creato come indicato sopra oppure un marker adatto predefinito, quindi cliccare su "Add >>" (aggiungi) (Figura 17).

Nota: per eliminare un marker, selezionarlo e quindi cliccare su "Remove" (elimina).

Figura 17. Selezione dei marker.

- 21. Cliccare su "Next>".
- 22. Nella finestra di dialogo "Setup Sample Plate" (configurazione piastra campione), cliccare e trascinare per selezionare il marker dei pozzetti che contengono campioni. Cliccare su "Finish" (fine).
- 23. Selezionare la scheda "Instrument" (strumento) e modificare il volume del campione in 25 μ l.
- 24. Selezionare "File/Save" (file/salva), quindi cliccare su "Save" (salva) per mantenere il nome assegnato al momento della creazione della piastra.
- 25. Caricare la piastra di reazione nello strumento secondo le istruzioni del produttore.

26. Avviare la fase di post-lettura. Cliccare su "Post-Read" (post-lettura).

Lo strumento esegue una fase di 1 ciclo per 60 s a 60°C, durante la quale lo strumento raccoglie i dati della fluorescenza FAM e VIC in ciascun pozzetto (Figura 18).

6 6 6 6	🗟 🖸 🖬 🕨 🖬 🗛 ใ		
tup y Instrum e	nt Y Rosults \		
istrument Control	I	Temperature	
Pre-Read	Estimated Time Remaining (h):mm):	Sample:	Heat Sink:
]	Cover:	Block
Pust-Read]		
Disconnect	Status	Stage:	Rep:
		Time (mm:ss):	Step:
		State:	
ownel Oveler D	mbarral		
60.0			
60.0 Auto Cyule	Autu Horid Autu Step Autu Dis	ssuciation Stage.	ic Helb
Adda Cycle	Add Hold Add Step Add Dis	ssuciațien Stage, Dele	ie Help
Adda Cycle Settings Sampla Vo	Add Hold Add Dis oume (JLL) : 25	seuciation Stage	ate Help
60.0 Aut: Cyste Settings Sampla Vo Bun Mode	Add Huld Add Siep Add Dis sume (JL): 25 : Standard 7500	ssociation Stage. Dele	ge Help
Auto Cycle Settings Sampla Vo Run Mode	Add Huld Add Siep Add Dis sume (JL): 25 : Standard 7500	seociation Stage Dela	ate Help

Figura 18. Fase post-lettura.

27. Selezionare "File/Export" (file/esporta) e cliccare su "Results" (risultati) per esportare i risultati in un file Excel. I risultati compariranno come mostrato nella Figura 19.

11												
12	Comme	ents:				Cam	pione 1				Campione 1	
13	SDS v1	2										
14												
15	Well	Sample Name	Marker	Task	Passive Ref	Alele X	Allele Y 🍾	Allele X Fn	Allele Y Rn	للم الم	Quality Value	Method
16	A1	sample 1	VIC	Unknown	247 897	JAK2-VIC	JAK2-FAM	2.184	6.221	Undetermined	100.00	Marual Cal
17	A2	sample 1	VIC	Unknown	295 565	JAK2 VIC	JAK2 FAM	2.451	6.805	Undetermined	100.00	Manual Cal
18	A3	sample 2	VIC	Unknown	351 338	JAK2-VIC	JAK2-FAM	2.595	6.2	Undetermined	100.00	Marual Cal
19	A4	sample 2	VIC	Unknown	379 909	JAK2-VIC	JAK2-FAM	2.553	6.01	Undetermined	100.00	Marual Cal
20	A5	sample 3	VIC	Unknown	372 895	JAK2-VIC	JAK2-FAM	2.913	5.329	Undetermined	100.00	Marual Cal
21	AG	sample 3	VIC	Unknown	359.717	JAK2-VIC	JAK2-FAM	2.006	5.270	Undetermined	100.00	Manual Cal
22	A7	semple wit	VIC	Unknown	343 536	JAK2-VIC	JAK2-FAM	2.569	1.948	Undetermined	100.00	Manual Cal
23	AB	sample wt	VIC	Unknown	277 677	JAK2-VIC	JAK2-FAM	2.584	2.015	Undetermined	100.00	Marual Cal
24	A9	Ç-	VIC	Unknown	330 943	JAK2-VIC	JAK2-FAM	2.523	1.967	Undetermined	100.00	Marual Cal
25	A10	Ç-	VIC	Unknown	314 623	JAK2-VIC	JAK2-FAM	2.572	2.013	Undetermined	100.00	Marual Cal
26	A11	C-	VIC	Unknown	269 500	JVK2 VIC	JAK2 FAM	2.82	1.892	Undetermined	100.00	Manual Cal
27	A12	Ċ+	VIC	Unknown	211 520	JAK2-VIC	JAK2-FAM	1.249	6.14	Undetermined	100.00	Marual Cal
28	B1	C+	VIC	Unknown	270 623	JAK2-VIC	JAK2-FAM	1.346	6.894	Undetermined	100.00	Marual Cal
29	82	Ç+	VIC	Unknown	365.112	JAK2-VIC	JAK2-FAM	1.265	6.528	Undetermined	100.00	Marual Cal
30	63	ER	VIC	Unknown	372.150	JAK2-VIC	JAK2-FAM	2.214	2.03	Undetermined	100.00	Manual Cal
31	84	ER	VIC	Unknown	404.145	JAK2-VIC	JAK2-FAM	2.419	2.295	Undetermined	100.00	Marual Cal
32	85	ER	VIC	Unknown	410.977	JAK2-VIC	JAK2-FAM	2.581	2.52	Undetermined	100.00	Marual Cal
33	B6	H2O	VIC	Unknown	395.431	JAK2-VIC	JAK2-FAM	0.855	1.346	Undetermined	100.00	Marual Cal
34	67	H2O	VIC	Unknown	415 223	JAK2-VIC	JAK2-FAM	0.727	1.241	Undetermined	100.00	Marual Cal
35	B8	H2O	VIC	Unknown	366 885	JAK2-VIC	JAI-Q-FAM	0.506	1.277	Undetermined	100.00	Marual Cal

Figura 19. Esempio di risultati, mostrati in un file Excel.

Protocollo: qPCR sullo strumento LightCycler 480

In caso di utilizzo di un dispositivo qPCR a 96 pozzetti, si suggerisce di effettuare tutte le misurazioni in duplicato, come indicato nella Tabella 8.

Campioni	Reazioni
Con la miscela di primer e sond	le JAK2 V617F (PPM-JAK2)
n campioni di DNA	n x 2 reazioni
3 controlli DNA	6 reazioni (PC-VF, NC-VF e COS-VF, ognuno testato in duplicato)
Acqua come materiale di controllo	2 reazioni

Tabella 8. Numero di reazioni per lo strumento LightCycler 480

Processazione dei campioni sullo strumento LightCycler 480

Figura 20. Configurazione consigliata del rotore per l'esperimento con il kit ipsogen JAK2 MutaScreen EZ. PC: controllo positivo; **NC**: controllo negativo; **COS**: campione di cutoff; **S**: campione di DNA; **H**₂**O**: acqua come materiale di controllo.

qPCR sullo strumento LightCycler 480

Nota: eseguire tutte le fasi su ghiaccio.

Procedura

- Scongelare tutti i componenti necessari e collocarli su ghiaccio.
 I componenti devono essere prelevati dal congelatore circa 10 min prima dell'inizio della procedura.
- 2. Agitare su vortex e centrifugare brevemente tutte le provette (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 3. Preparare la seguente miscela qPCR a seconda del numero di campioni da analizzare.

Tutte le concentrazioni sono calcolate sul volume finale di reazione.

La Tabella 9 mostra lo schema di pipettatura per la preparazione di una miscela di reagenti, calcolata per ottenere un volume di reazione finale di 25 µl. È possibile preparare una premiscela, a seconda del numero di reazioni, utilizzando la medesima miscela di primer e sonda. Sono inclusi volumi extra per compensare eventuali errori di pipettatura.

Sullo strumento LightCycler 480, il kit *ipsogen* JAK2 MutaScreen EZ può essere utilizzato per l'analisi di 24 campioni in duplicato in un solo esperimento (Figura 20), 20 campioni in duplicato in 2 esperimenti o 15 campioni in duplicato in 3 esperimenti.

		Numero d	i reazioni	(μl)	
Componente	1	56+1*	28 +1 [†]	18+1 [‡]	Concentra- zione finale
TaqMan Universal PCR Master Mix, 2x	12,5	712,5	362,5	237,5	lx
Miscela di primer e sonde, 10x	2,5	142,5	72,5	47,5	lx
Acqua per PCR priva di nucleasi	5	285	145	95	-
Campione (da aggiungere alla fase 6)	5	5 ciascuno	5 ciascuno	5 ciascuno	-
Volume totale	25	25 ciascuno	25 ciascuno	25 ciascuno	-

Tabella 9. Preparazione della miscela qPCR

* 24 campioni; 1 esperimento/kit.

⁺ 10 campioni; 2 esperimenti/kit.

⁺ 5 campioni; 3 esperimenti/kit.

- 4. Agitare su vortex e centrifugare brevemente la miscela qPCR (circa 10 s, 10.000 giri/min, per raccogliere il liquido sul fondo della provetta).
- 5. Dispensare 20 μ l della premiscela qPCR in ogni pozzetto.
- 6. Aggiungere 5 μ l di DNA campione o controlli nel pozzetto corrispondente (volume totale 25 μ l).
- 7. Miscelare delicatamente aspirando e rilasciando con una pipetta.
- 8. Chiudere la piastra e centrifugare brevemente (300 x g, circa 10 s).
- 9. Posizionare la piastra nel termociclatore secondo le istruzioni del produttore.
- 10. Dalla home page selezionare "New Experiment" (nuovo esperimento).

11. Per LightCycler 480 I, seguire il punto 11a. Per LightCycler 480 II, seguire il punto 11b.

Per i dettagli di programmazione dello strumento LightCycler 480, consultare il relativo manuale utente. Per una migliore visualizzazione, le impostazioni del software sono evidenziate da una cornice nera spessa.

11a. LightCycler 480 I: selezionare "Multi Color Hydrolysis Probe" (sonda Multi Color Hydrolysis), cliccare su "Customize" (personalizza) e poi controllare che i canali "FAM (483–533)" e "Hex (533–568)" (ad es., VIC) siano stati selezionati (Figura 21). Impostare il volume di reazione a "25" μl (Figura 21) e procedere dal punto 12.

Figura 21. LightCycler 480 I: impostazione del formato di rilevazione.

11b. LightCycler 480 II: selezionare "Dual Color Hydrolysis Probe" (sonda Dual Color Hydrolysis), cliccare su "Customize" e poi controllare che i canali "FAM (465-510)" e "VIC / HEX (533-580)" siano stati selezionati (Figura 22). Impostare il volume di reazione a "25" μl (Figura 22) e procedere dal punto 12.

window:	New Experiment			• Oser:	System Admin		
Experi-	Rur	Protocol	Data		Run Notes		÷
	Detection Format Dua	l Color Hydrolysis Probe /	UPL Probe	mize Block Size 96 Pl	late ID	Reaction Volume 25 📑	
Subset Editor	Color Comp ID		Lot No	Test ID			67
Sample			Prog	rams			
Editor	Program Name				1	None V	물목
Analysis							
		Detection Formats		•			W
Report		Integration Time N	Dual Color Hydrolysis Probe / UPL Pr Node	obe			
	Target CO	At Oynamic	C M	lanual	Ster	Size (°C) Step Delay (cycles)	l
Sum.	() , 95	* None Active Filter	r Combination			÷0 ÷	$\langle \rangle$
	0	FAH VIC	(465-510) / HEX / Yellow555 (533-580)				Č
							\otimes
							也
	100	_					14
	90						ন্থ
	(j 80 2 70				\odot		
	60						
	E 50						
	30						
	0			14		24 25	

Figura 22. LightCycler 480 II: impostazione del formato di rilevazione.

12. Programmare il termociclatore con il programma di ciclizzazione termica indicato nella Tabella 10 e avviare il processo.

Nota: nella descrizione della configurazione della piastra nello strumento, selezionare "Endpt Geno" (genotipizzazione con analisi endpoint) nella sezione "Step 1: select workflow" (fase 1: selezione del flusso di lavoro).

Mantenimento	Temperatura: 50°C Durata: 2 min
Mantenimento 2	Temperatura: 95°C Durata: 10 min
Ciclizzazione	50 volte 92°C per 15 s; singola 60°C per 1 min; singola
Mantenimento 3	60°C per 1 min; singola

Tabella 10. Profilo termico per lo strumento LightCycler 480

Procedura di analisi endpoint per lo strumento LightCycler 480

- 13. Terminato il processo, cliccare su "Analysis".
- 14. Nella sezione "Create New Analysis" (crea nuova analisi), selezionare "Endpoint Genotyping" (genotipizzazione endpoint) e quindi selezionare il sottoinsieme da analizzare nel menu "Subset" (sottoinsieme) (Figura 23).

Figura 23. Selezione del tipo di analisi e del sottoinsieme da analizzare.

 Nella finestra successiva, selezionare la fluorescenza "Hex" (ad es., VIC) per "Allele X" e la fluorescenza "FAM" per "Allele Y" (Figura 24).

Create new analysis		
Allele X	Allele Y	
EAM (403.533)	[FAM [483-533]	
Hex (523-568)	Hex [523-558]	

Figura 24. Selezione della fluorescenza per "Allele X" e "Allele Y".

16. Nella finestra successiva (Figura 25) compaiono la configurazione della piastra (1, in alto a sinistra), i risultati della fluorescenza per ogni campione (2, in basso a sinistra) e il diagramma a dispersione con la discriminazione allelica (3, a destra; fluorescenza FAM e VIC misurate nel 50° ciclo di PCR).

Figura 25. Riepilogo dei dati.

17. Per esportare i dati, cliccare col tasto destro sul modulo dei risultati dei campioni e quindi selezionare "Export Table" (esporta tabella). Il file viene salvato in formato testo (.txt).

2	Microsoft Exe	cel - test						
Ì	Eichier Editio	n <u>A</u> ffichage	Insertion Fo	rma <u>t O</u> utils	Données Fe	enêtre <u>?</u>		
7		TA X BA	8.000	- CH - 2	- 18 AL Z.	1 40 1 253	ta ta 121 2	a » Cal
			parimant: OR	09-12-16 Acti	GE ZV A		v (E22-E62)	
-	AI	/x Ex	perment. Ob	08-12-16 ACU	ve finters. FAI	/ (485-555), He	x (525-508)	
4	A	B	C C	D	E	F	G	
1 2	Experiment: 0	Color	Doc	Name	522-560	402.522	Call	Score
2	True	10799024	P05	100% - 20	10.971	463-555	Call	0.00
4	True	10789024	46	100%-20	0.302	0 392		0,00
5	True	10789024	A7	100%-20	0.369	0.425		0.00
6	True	10789024	A10	H20	0.207	0,290		0.00
7	True	10789024	A11	H20	0.233	0.319		0.00
8	True	10789024	A12	H20	0.203	0.261		0.00
9	True	10789024	B5	78%-20	26,731	48,396		0.00
0	True	10789024	B6	78%-20	27,125	48,262		0,00
1	True	10789024	B7	78%-20	26,803	47,383		0.00
2	True	10789024	C5	50%-20	32,035	42,495		0,00
3	True	10789024	C6	50%-20	33,278	44,086		0,00
4	True	10789024	C7	50%-20	33,261	44,760		0,00
5	True	10789024	D5	31%-20	34,584	38,536		0,00
6	True	10789024	D6	31%-20	32,549	35,766		0,00
7	True	10789024	D7	31%-20	33,262	37,780		0,00
8	True	10789024	E5	12.5%-20	32,794	25,028		0,00
9	True	10789024	E6	12.5%-20	34,932	27,788		0,00
20	True	10789024	E7	12.5%-20	35,089	27,848		0,00
21	True	10789024	F5	5%-20	35,838	20,289		0,00
22	True	10789024	F6	5%-20	36,786	21,487		0,00
3	True	10789024	F7	5%-20	36,546	21,319		0,00
4	True	10789024	G5	2%-20	35,082	17,334		0,00
5	True	10789024	G6	2%-20	35,834	17,589		0,00
26	True	10789024	G7	2%-20	34,299	17,124		0,00
27	True	10789024	H5	0%-20	34,449	14,315		0,00
28	True	10789024	H6	0%-20	33,520	14,012		0,00
29	True	10789024	H7	0%-20	34,125	14,335		0,00
30								

18. Per visualizzare e analizzare i risultati aprire il file con Excel: i risultati compariranno come mostrato nella Figura 26.

Figura 26. Esempio di risultati, mostrati in un file Excel.

Interpretazione dei risultati

Estrarre i dati esportati dal file di esportazione e analisi generato dal sistema e controllare i livelli di fluorescenza (devono essere consistenti tra i duplicati).

Preparare una rappresentazione grafica (diagramma a dispersione) dei dati di fluorescenza. Sull'asse x è riportata la fluorescenza VIC; sull'asse y è riportata la fluorescenza FAM.

Rappresentazione grafica e criteri di controllo della qualità

Nella Figura 27 è riportato un esempio di diagramma a dispersione.

Figura 27. Diagramma a dispersione di un esperimento rappresentativo di discriminazione allelica. Strumenti: Rotor-Gene Q, Applied Biosystems, ABI PRISM e LightCycler 480.

I campioni dovrebbero trovarsi nell'arco che unisce i controlli negativi (NC) ai controlli positivi (PC).

La posizione scorretta di uno dei controlli può indicare un errore sperimentale.

- I controlli positivi dovrebbero trovarsi nella parte superiore sinistra.
- I controlli negativi dovrebbero trovarsi nella parte inferiore destra.

- La posizione errata di un controllo negativo può indicare contaminazione.
- Il campione di cut-off (COS) dovrebbe essere posizionato sopra ai controlli negativi.
- I controlli con H₂O dovrebbero trovarsi nella parte inferiore sinistra.
 - La posizione errata di un controllo con acqua (sopra a NC per le misurazioni FAM o sopra a PC per le misurazioni VIC) può indicare una contaminazione.

Nota: scartare tutti i controlli o i campioni posizionati erroneamente sul diagramma e ripetere l'esperimento con una nuova aliquota DNA.

Calcolo di rapporto FAM/VIC normalizzato e genotipizzazione

Calcolare i rapporti FAM/VIC per tutti i campioni. Calcolare i rapporti FAM/VIC per il controllo positivo (PC), il campione di cut-off (COS) e il controllo negativo (NC). I valori dei rapporti devono essere consistenti tra i duplicati. Calcolare la media dei rapporti di tutti i duplicati.

Calcolare il rapporto normalizzato (RapportoNorm) per il campione di cut-off (COS) e per tutti i campioni:

 $\begin{array}{r} \text{RapportoNorm}_{\text{campione}} \\ = \\ \hline \\ \text{Rapporto}_{\text{NC}} \end{array}$

Nota: si definisce zona grigia (GZ) di un test quell'area di valori in cui la performance discriminatoria non è sufficientemente precisa. Un valore appartenente alla zona grigia non permette di stabilire se il marcatore bersaglio è presente o assente. La zona grigia deve essere calcolata per ciascun esperimento.

Calcolare l'intervallo di zona grigia, o zona di incertezza, attorno al rapporto normalizzato di COS (RapportoNorm_{COS}):

GZ: [(RapportoNorm_{COS} x 0,94); (RapportoNorm_{COS} x1,06)]

Confrontare il rapporto normalizzato di ciascun campione con GZ di RapportoNorm_{COS}. L'interpretazione dei risultati è riportata nella Tabella 11.

Tabella 11. Interpretazione dei risultati di genotipizzazione utilizzando rapporti normalizzati

Risultati	Interpretazione
RapportoNorm _{campione} > RapportoNorm _{COS} x 1,06	Mutazione JAK2 V617F rilevata
RapportoNorm _{campione} < RapportoNorm _{COS} x 0,94	Mutazione JAK2 V617F non rilevata
RapportoNorm _{campione} entro GZ RapportoNorm _{COS}	Risultato non conclusivo

Guida alla risoluzione dei problemi

Questa guida alla risoluzione dei problemi può essere utile per chiarire eventuali dubbi che possano presentarsi. Per maggiori informazioni, consultare anche la pagina relativa alle domande frequenti (FAQ) nel nostro servizio di assistenza tecnica: **www.qiagen.com/FAQ/FAQList.aspx**. Gli esperti addetti al servizio di assistenza tecnica QIAGEN sono sempre lieti di rispondere a qualsiasi domanda possiate avere, per quanto riguarda le informazioni ed i protocolli presenti in questo manuale, oppure le tecnologie per campioni e test (per le informazioni sui contatti, consultare "Informazioni sui contatti", pag. 51).

Commenti e suggerimenti Segnale negativo dei controlli positivi Controllare lo schema di pipettatura e la a) Errore di pipettatura configurazione della reazione. Ripetere la sequenza PCR. b) Conservazione Conservare il contenuto del kit ipsogen JAK2 inadeguata dei MutaScreen EZ a una temperatura compresa tra -30°C e -15°C e mantenere la miscela di componenti del kit primer e sonde (PPM) lontana dalla luce. Vedere "Conservazione e manipolazione dei reagenti", pag. 11. Evitare congelamenti e scongelamenti ripetuti. Conservare i reagenti in aliquote.

I controlli negativi sono positivi

Contaminazione crociata	Sostituire tutti i reagenti interessati.		
	Ripetere l'esperimento con nuove aliquote di tutti i reagenti.		
	Manipolare sempre i campioni, i componenti del kit e i materiali di consumo secondo le pratiche comunemente accettate per evitare contaminazione crociata.		

Nessun segnale, anche nei controlli positivi

a)	Errore di pipettatura o	Controllare lo schema di pipettatura e la
	reagenti mancanti	configurazione della reazione.

Ripetere la sequenza PCR.

b)	Effetti inibitori del materiale campione causati da insufficiente purificazione	Ripetere la preparazione del DNA.
c)	LightCycler: selezionato canale di rilevazione errato	Impostare il canale a F1/F2 o 530 nm/640 nm.
d)	LightCycler: nessuna	Controllare i programmi del ciclo.
	acquisizione dati programmata	Selezionare la modalità di acquisizione "single" (singola) al termine di ogni segmento di ibridazione del programma PCR.
Se	gnale assente o basso ne	i campioni ma controlli positivi corretti
	Scarsa qualità del DNA o bassa concentrazione	Controllare sempre la qualità e la concentrazione del DNA prima di iniziare il test.
Lię	ghtCycler: intensità di fluc	orescenza troppo bassa
a)	Conservazione inadeguata dei componenti del kit	Conservare il contenuto del kit <i>ipsogen</i> JAK2 MutaScreen EZ a una temperatura compresa tra-30 e -15°C e mantenere la miscela di primer e sonde (PPM) lontana dalla luce. Vedere "Conservazione e manipolazione dei reagenti", pag. 11.
		Evitare congelamenti e scongelamenti ripetuti.
		Conservare i reagenti in aliquote.
b)	Quantità iniziale di DNA	Aumentare la quantità di DNA campione.
target molto bassa		Nota : possono verificarsi effetti inibitori a seconda del metodo di preparazione del DNA selezionato.
Lię	ghtCycler: variazioni dell'i	intensità di fluorescenza
a)	Errore di pipettatura	La variabilità causata dal cosiddetto "errore di pipettatura" può essere ridotta analizzando i

dati in modalità F1/F2 o 530 nm/640 nm.

Controllo di qualità

In conformità con il Sistema di Gestione della Qualità di QIAGEN, dotato di certificazione ISO, ogni lotto di *ipsogen* JAK2 MutaScreen EZ è stato sottoposto a test sulla base di specifiche tecniche predefinite, in modo da garantire la costante qualità del prodotto. I certificati di analisi sono disponibili a richiesta sul sito **www.qiagen.com/support/**.

Limitazioni

L'uso di tutti i reagenti è riservato esclusivamente alla diagnostica in vitro. L'utilizzo è consentito soltanto a personale dotato delle necessarie conoscenze e competenze in merito alle procedure della diagnostica in vitro.

Per ottenere risultati PCR ottimali è assolutamente necessario attenersi al protocollo.

Rispettare le date di scadenza dei singoli componenti, riportate sulla confezione e sulle etichette. Non utilizzare reagenti scaduti.

Gli eventuali risultati diagnostici generati dal sistema devono essere interpretati in combinazione con gli esiti di altri esami clinici o di laboratorio. È responsabilità dell'utente convalidare le prestazioni del sistema per qualunque procedura utilizzata in laboratorio che non sia coperta dagli studi di valutazione delle prestazioni QIAGEN.

Caratteristiche delle prestazioni

Sono stati condotti studi sulle prestazioni di un sistema Applied Biosystems 7500 Real-Time PCR.

Studi non clinici

Sono stati condotti studi non clinici per stabilire le prestazioni analitiche del kit *ipsogen JAK2 MutaScreen EZ.*

Precisione in prossimità del limite di cut-off

Cinque campioni, corrispondenti a valori bassi di mutazioni sono stati misurati 40 volte usando 3 lotti di kit *ipsogen* JAK2 MutaScreen EZ. I risultati sono riassunti nella Tabella 12.

Campione	Replicati	Mutazione rilevata	Risultato non conclusivo	Mutazione non rilevata
0%	40	0	0	40
0,5%	40	0	0	40
1%	40	0	5	35
4%	40	40	0	0
8%	40	40	0	0

Tabella 12. Dati di precisione relativi a studi non clinici

Limiti di quantità di materiale da utilizzare

La quantità raccomandata di DNA genomico da utilizzare nel test è di 25 ng. Sono state testate quantità diverse di DNA immesso per determinare se la quantità di DNA genomico possa influire sul rapporto normalizzato, portando a risultati non conclusivi. I risultati sono riassunti nella Tabella 13.

Campione	Quantità immessa (ng)	Replicati	Mutazione rilevata	Risultato non conclusivo	Mutazione non rilevata
	2,5	3	0	0	3
	10	3	0	0	3
0%	25	3	0	0	3
	100	3	0	0	3
	250	3	0	0	3
Totale 0%		15	0	0	15
	2,5	3	0	0	3
	10	3	0	0	3
1%	25	3	0	0	3
	100	3	0	1	2
	250	3	0	2	1
Totale 1%		15	0	3	12
	2,5	3	2	1	0
4%	10	3	3	0	0
	25	3	3	0	0
	100	3	3	0	0
	250	3	3	0	0
Totale 4%		15	14	1	0

Tabella 13. Effetto della quantità di DNA genomico immesso

La tabella continua alla pagina seguente.

Tabella 13. Continua

Campione	Quantità immessa (ng)	Replicati	Mutazione rilevata	Risultato non conclusivo	Mutazione non rilevata
	2,5	3	3	0	0
	10	3	3	0	0
100%	25	3	3	0	0
	100	3	3	0	0
	250	3	3	0	0
Totale 100%		15	15	0	0

Studi clinici

Sono stati analizzati campioni di DNA di 98 pazienti, precedentemente caratterizzati con un metodo indipendente, assieme a 9 campioni di DNA provenienti da donatori sani, utilizzando il kit *ipsogen* JAK2 MutaScreen EZ. I risultati sono riassunti nella Tabella 14.

Tabella 14. Risultati relativi a campi	oni già caratterizzati utilizzando il kit
ipsogen JAK2 MutaScreen EZ	

Campione	Replicati	Mutazione rilevata	Risultato non conclusivo	Mutazione non rilevata	Fallimento del test
JAK2 wild type	50	0	1	49	0
0% JAK2 V617F <cam- pione≤2% JAK2 V617F</cam- 	9	2	1	6	0
>5% JAK2 V617F	48	47	0	0	1

Nel 98% dei campioni a presunto risultato negativo la mutazione non è stata rilevata.

Nel 100% dei campioni a presunto risultato positivo la mutazione è stata individuata.

Quando i risultati equivoci (ovvero i campioni al di sotto del 2% o i risultati non conclusivi) vengono esclusi, la concordanza complessiva è del 100%.

Bibliografia

- 1. Ma, W. et al. (2009) Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J. Mol. Diagn. **11**, 49.
- 2. James, C. et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature **434**, 1144.
- 3. Levine, R.L. et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell **7**, 387.
- 4. Kralovics, R. et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. **352**, 1779.
- 5. Baxter, E.J. et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet **36**, 1054.
- 6. Tefferi, A. et al. (2009) Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat. Rev. Clin. Oncol. **6**, 627.
- 7. Prchal, J.F. and Axelrad, A.A. (1974) Bone marrow responses in polycythemia vera. N. Engl. J. Med. **290**, 1382.
- 8. Tefferi, A. and Vardiman, J.W. (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia **22**, 14.
- 9. Barosi, G. et al. (2009) Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood **113**, 4829.
- 10. Pardanani, A. et al. (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J. Clin. Oncol. **29**, 789.

Simboli

Sulla confezione o sull'etichettatura possono comparire i seguenti simboli:

Σ <n></n>	Il kit contiene reagenti sufficienti per <n> reazioni</n>
\sum	Data di scadenza
IVD	Dispositivo medico per diagnostica in vitro
REF	Numero di catalogo
LOT	Numero di lotto
MAT	Numero di materiale
GTIN	Global Trade Item Number
	Limite di temperatura
	Produttore
i	Fare riferimento alle informazioni riportate nel manuale

Informazioni sui contatti

Per ricevere assistenza tecnica e ulteriori informazioni, consultate il nostro sito **www.qiagen.com/Support**, chiamate il numero 00800-22-44-6000 oppure contattate il servizio di assistenza tecnica QIAGEN o il distributore locale (consultate il retro della copertina o il sito **www.qiagen.com**).

Informazioni per gli ordini

Prodotto	Contenuto	Cat. n°
ipsogen JAK2 MutaScreen EZ Kit (24)	Per 24 reazioni: controllo positivo V617F, controllo negativo V617F, campione di cut-off V617F, miscela di primer e sonde JAK2 V617F, miscela master per qPCR, acqua priva di nucleasi	673223
Rotor-Gene Q MDx — convalidata per IVD in	per analisi della PCR in tempo reale applicazioni cliniche	
Rotor-Gene Q MDx 5plex HRM Platform	Termociclatore per PCR in tempo reale e analizzatore per fusione ad alta risoluzione a 5 canali (verde, giallo, arancio, rosso, cremisi) più canale HRM, notebook, software, accessori, 1 anno di garanzia su parti e materiali, installazione e addestramento non inclusi	9002032
Rotor-Gene Q MDx 5plex HRM System	Termociclatore per PCR in tempo reale e analizzatore per fusione ad alta risoluzione a 5 canali (verde, giallo, arancio, rosso, cremisi) più canale HRM, notebook, software, accessori, 1 anno di garanzia su parti e materiali, installazione e addestramento	9002033
Kit QIAamp DNA Blood genomico dal sangue	d Maxi — per purificare il DNA	
QIAamp DNA Blood Maxi Kit (10)	Per 10 maxi-preparazioni di DNA: 10 colonne QlAamp Maxi Spin, proteasi QlAGEN, tamponi, provette di raccolta (50 ml)	51192
QIAamp DNA Blood Maxi Kit (50)	Per 50 maxi-preparazioni di DNA: 50 colonne QIAamp Maxi Spin, proteasi QIAGEN, tamponi, provette di raccolta (50 ml)	51194

Per informazioni aggiornate sulla licenza e per i disclaimer specifici dei prodotti consultare il rispettivo manuale del kit o il manuale utente QIAGEN. I manuali dei kit e i manuali utente QIAGEN sono disponibili nel sito **www.qiagen.com**, oppure possono essere richiesti al servizio di assistenza tecnica QIAGEN o al proprio distributore locale.

Questo prodotto è destinato all'uso diagnostico in vitro. I prodotti ipsogen non possono essere rivenduti, modificati per la rivendita o impiegati per la realizzazione di prodotti commerciali senza il consenso scritto di QIAGEN.

Le informazioni contenute in questo documento sono soggette a modifiche senza preavviso. QIAGEN non si assume responsabilità per errori eventualmente riscontrati in questo documento. Questo documento è considerato completo e accurato al momento della pubblicazione. In nessun caso QIAGEN potrà essere ritenuta responsabile di danni accidentali, particolari, multipli o secondari in relazione all'impiego di questo documento o derivanti da quest'ultimo.

I prodotti ipsogen sono garantiti conformi alle specifiche indicate. L'unico obbligo di QIAGEN, e l'unico rimedio a cui ha diritto il cliente, è la sostituzione gratuita dei prodotti in caso gli stessi non offrano le prestazioni richieste.

Questo prodotto è venduto ai sensi del contratto di licenza stipulato con Epoch Biosciences per l'uso esclusivo nel settore IVD, e non può essere utilizzato per qualsiasi altra finalità di ricerca, commerciale, ricerca clinica o di altra natura che non rientri in tale settore.

La mutazione JAK2 V617F e i suoi utilizzi sono protetti da brevetto, tra cui il brevetto europeo EP1692281, i brevetti USA 7.429.456 e 7.781.199, le domande di brevetto US20090162849 e US20120066776 e le controparti straniere.

L'acquisto del presente prodotto non conferisce alcun diritto all'uso in applicazioni cliniche per farmaci mirati a JAK2 V617F. QIAGEN sviluppa programmi in licenza specifici per tali usi. Contattare l'ufficio legale di QIAGEN all'indirizzo **jak2licenses@qiagen.com**.

Marchi: QIAGEN[®], Sample to Insight[®], QIAamp[®], ipsogen[®], Rotor-Gene[®] (Gruppo QIAGEN); ABI PRISM[®], Applied Biosystems[®], FAM[™], VIC[®] (Thermo Fisher Scientific Inc.); Excel[®] (Microsoft Corporation Corporation); LightCycler[®], TaqMan[®] (Gruppo Roche); MGB[™] (Epoch Biosciences).

Contratto di Licenza Limitato

L'uso di questo prodotto implica l'accettazione da parte dell'acquirente o dell'utente del kit ipsogen JAK2 MutaScreen EZ alle seguenti condizioni:

- II kit ipsogenJAK2 MutaScreen EZ deve essere usato unicamente secondo le istruzioni contenute nel Manuale del kit ipsogen JAK2 MutaScreen EZ e in combinazione con i componenti contenuti nel kit. QIAGEN non concede alcuna licenza, in relazione a qualunque proprietà intellettuale, per l'uso o l'aggiunta dei componenti di questo kit ad altri componenti non contenuti nel kit stesso, ad eccezione di quanto descritto nel Manuale del kit ipsogen JAK2 MutaScreen EZ e nei protocolli aggiuntivi disponibili sul sito www.qiagen.com.
- 2. Se non espressamente dichiarato nelle licenze, QIAGEN non garantisce in alcun modo che questi kit e/o il relativo impiego non violino i diritti di terze parti.
- 3. Il presente kit ed i relativi componenti sono concessi in licenza per l'impiego monouso e non possono essere riutilizzati, ripristinati o rivenduti.
- 4. QIAGEN esclude specificamente qualunque altra licenza, espressa o implicita, che non rientri tra quelle espressamente dichiarate.
- 5. L'acquirente e l'utente del kit concordano nel non compiere e nel non consentire ad altri di compiere o contribuire a compiere azioni illecite. QIAGEN può imporre presso qualunque tribunale i divieti del presente Contratto di Licenza Limitato, e recupererà tutte le spese di indagine e spese legali, comprese le parcelle degli avvocati, in qualunque azione per imporre il presente Contratto di Licenza Limitato o qualsiasi diritto di proprietà intellettuale correlato al kit e/o ai suoi componenti.

Per le condizioni di licenza aggiornate, consultare il sito **www.qiagen.com**.

HB-1359-003 © 2013–2016 QIAGEN, tutti i diritti riservati.

www.qiagen.com