2020. gada jūnijs

therascreen[®] EGFR RGQ PCR Kit rokasgrāmata

2. versija

Lietošanai in vitro diagnostikā

Izmantošanai ar Rotor-Gene® Q MDx 5plex HRM instrumentiem

REF

874111

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, VĀCIJA

1121935LV

Sample to Insight

Saturs

Paredzētais lietojums	5
Kopsavilkums un skaidrojums	6
Procedūras princips	9
Nodrošinātie materiāli	13
Komplekta saturs	13
Nepieciešamie materiāli, kas netiek nodrošināti	14
Brīdinājumi un piesardzības pasākumi	16
Vispārējie piesardzības pasākumi	16
Reaģentu glabāšana un lietošana	18
Transportēšanas apstākļi	18
Uzglabāšanas apstākļi	18
Paraugu apstrāde un uzglabāšana	20
Procedūra	21
DNS ekstrahēšana un sagatavošana	21
Protokols: Paraugu izvērtēšana	22
Protokols: EGFR mutācijas noteikšana	35
Rezultātu interpretācija (automatizēta)	48
Rotor-Gene Q therascreen EGFR Assay Package karodziņi	50
Norādījumi par problēmu novēršanu	54
Kvalitātes kontrole	55
lerobežojumi	55
Veiktspējas raksturojums	57

Analītiskā veiktspēja	57
Tukšo paraugu robežvērtība (limit of blank, LOB), darbības diapazons, robežvērtības un ∆C⊤ robežvērtību diapazoni	57
DNS ievades ietekme uz ΔC_T vērtībām	58
Krusteniskā reakcija	59
Pareizība: salīdzinājums ar analītiskās references metodi	59
Kvalitatīvās noteikšanas robežas (LOD) vērtības	60
Interference	62
Reproducējamība	63
Klīniskā veiktspēja	67
Klīnisko rezultātu dati: GIOTRIF [®]	67
Klīnisko rezultātu dati: IRESSA [®]	69
Atsauces	71
Simboli	73
A pielikums: therascreen EGFR RGQ PCR Kit manuālais protokols	74
Vispārīga informācija	74
Protokols: temperatūras profila izveide	74
Procedūra (manuāli)	86
Protokols: paraugu izvērtēšana (manuāli)	86
Protokols: EGFR mutācijas noteikšana (manuāli)	86
Protokols: therascreen EGFR RGQ PCR Kit Rotor-Gene Q iestatīšana	87
Rezultātu interpretācija (manuāli)	92
Programmatūras analīzes iestatījumi	92
Parauga izvērtēšanas datu analīze	94

EGFR mutācijas noteikšanas datu analīze	95
B pielikums: <i>therascreen</i> EGFR CE Assay Package instalēšana	104
Kontaktinformācija	108
Informācija par pasūtīšanu	109
Dokumenta pārskatīšanas vēsture	111

Paredzētais lietojums

therascreen EGFR RGQ PCR Kit ir in vitro diagnostikas tests 29 somatisko mutāciju noteikšanai EGFR gēnā. Tas nodrošina kvalitatīvu mutācijas statusa izvērtēšanu audzēja paraugos, kas iegūti no pacientiem ar nesīkšūnu plaušu vēzi (NSŠPV).

Rezultāti ir paredzēti, lai klīnicistam palīdzētu identificēt pacientus ar NSŠPV, kuriem varētu palīdzēt ārstēšana ar EGFR tirozīnkināzes inhibitoriem.

therascreen EGFR RGQ PCR Kit testēs DNS paraugus, kas ekstrahēti no formalīnā fiksētiem un parafīnā iegremdētiem (formalin-fixed, paraffin embedded, FFPE) audzēja audiem, kas iegūti no NSŠPV pacientiem, un veiks izpildi Rotor-Gene Q MDx 5plex HRM instrumentā. To drīkst izmantot apmācīts personāls profesionālā laboratorijas vidē.

therascreen EGFR RGQ PCR Kit ir paredzēts lietošanai in vitro diagnostikā.

Kopsavilkums un skaidrojums

Cilvēka vēžos ir atrodamas mutācijas EGFR onkogēnā (1, 2). Šo mutāciju esamība ir savstarpēji saistīta ar atbildes reakciju uz ārstēšanu ar zināmiem tirozīnkināzes inhibitoriem (TKI) pacientiem ar NSŠPV (3–8). Šādas mutācijas EGFR onkogēnā ir vispārējā pacientu populācijā, kuriem ir NSŠPV, ar biežumu aptuveni 10% pacientu no ASV, Eiropas vai Austrālijas un līdz 30% pacientu no Japānas un Taivānas (1, 2, 9).

therascreen EGFR RGQ PCR Kit ir lietošanai sagatavots komplekts 29 mutāciju noteikšanai EGFR ar vēzi saistītā gēnā, izmantojot polimerāzes ķēdes reakciju (polymerase chain reaction, PCR) Rotor-Gene Q MDx 5plex HRM instrumentā.

Izmantojot Scorpions[®] (10) un ARMS (Amplification Refractory Mutation System) (11) tehnoloģijas, ar *therascreen* EGFR RGQ PCR Kit var noteikt 29 mutācijas EGFR onkogēna 18., 19., 20. un 21. eksonā ar savvaļas tipa genoma DNS fonu (1. tabula). Tālāk sniegts kopsavilkums:

- 19 delēcijas 19. eksonā (nosaka jebkuras no 19 delēcijām klātbūtni, bet tās neatšķir)
- Trīs insercijas 20. eksonā (nosaka jebkuras no trim insercijām klātbūtni, bet tās neatšķir)
- G719X (nosaka G719S, G719A vai G719C klātbūtni, bet tās neatšķir)
- S768I
- T790M
- L858R
- L861Q

Izmantotās metodes ir ļoti selektīvas un atkarībā no pieejamā kopējā DNS daudzuma nodrošina mutantas DNS nelielas procentuālās daļas noteikšanu savvaļas tipa genoma DNS fonā. Šīs selektivitātes un noteikšanas robežas ir pārākas par tādām tehnoloģijām kā krāsvielas terminatora sekvencēšana.

Eksons	Mutācija	COSMIC* ID	Bāzes izmaiņas
18	G719A	6239	2156G>C
	G719S	6252	2155G>A
	G719C	6253	2155G>T
19	Delēcijas	12384	2237_2255>T
		12387	2239_2258>CA
		12419	2238_2252>GCA
		12422	2238_2248>GC
		13551	2235_2252>AAT
		12678	2237_2251del15
		6218	2239_2247del9
		12728	2236_2253del18
		12367	2237_2254del18
		6210	2240_2251del12
		6220	2238_2255del18
		6223	2235_2249del15
		6225	2236_2250del15
		6254**	2239_2253del15
		6255	2239_2256del18
		12369**	2240_2254del15
		12370	2240_2257del18
		12382	2239_2248TTAAGAGAAG>C
		12383	2239_2251>C

1. tabula. Mutāciju un COSMIC identifikatoru saraksts

* COSMIC: Vēža somatisko mutāciju katalogs: http://cancer.sanger.ac.uk/.

Tabulas turpinājums nākamajā lappusē

Tabulas turpinājums no iepriekšējās lappuses 1. tabula. Mutāciju un COSMIC identifikatoru saraksts

Eksons	Mutācija	COSMIC* ID	Bāzes izmaiņas
20	S768I	6241	2303G>T
	Insercijas	12376	2307_2308insGCCAGCGTG
		12378	2310_2311insGGT
		12377	2319_2320insCAC
	T790M	6240	2369C>T
21	L858R	6224	2573T>G
	L861Q	6213	2582T>A

* COSMIC: Vēža somatisko mutāciju katalogs: http://cancer.sanger.ac.uk/.

** COSM6254 (2239_2253del15) un COSM12369(2240_2254del15) mutăcijas izraisa 15 bāzes pāru delēcijas no EGFR sekvences. Tādu pašu galīgo sekvenci rada abas mutācijas, un šīs mutācijas nav atšķiramas viena no otras. Tāpēc mutācija COSM6254 (2239_2253del15) ir noņemta no visjaunākās COSMIC (v83) versijas, un abas mutācijas tagad apzīmē ar COSM12369 (2240_2254del15). Tas atbilst HGVS vadlīnijām, lai attēlotu visvairāk 3' delēciju. *therascreen* EGFR tests neatšķir nevienu no 19 delēciju mutācijām, un jebkuru pozitīvu delēciju sauc šādi: "Deletions" (Delēcijas). Šīs izmaiņas ietekmē tikai dokumentāciju un neietekmē komplektu vai tā spēju noteikt jebkuru atsevišķu mutāciju.

Procedūras princips

therascreen EGFR RGQ PCR Kit satur astoņus atsevišķus PCR amplifikācijas reakciju maisījumus: septiņas mutācijām specifiskas reakcijas EGFR onkogēna 18., 19., 20. un 21. eksonā un savvaļas tipa kontroli 2. eksonā. Komplekta galvenie komponenti ir izskaidroti tālāk.

ARMS

Alēlei vai mutācijai specifiska amplifikācija tiek sasniegta, izmantojot ARMS. *Taq* DNA polimerāze (*Taq*) ir efektīva, lai atšķirtu atbilstību un neatbilstību PCR praimera 3' galā. Specifiskas mutētās sekvences tiek selektīvi amplificētas pat tajos paraugos, kur vairākums sekvenču nesatur mutāciju. Kad praimerim tiek noteikta pilna atbilstība, amplificēšana turpinās ar pilnu efektivitāti. Kad 3' bāzei nav atbilstības, var veikt tikai zema līmeņa amplificēšanu fonā.

Scorpions

Amplifikācijas noteikšana tiek izpildīta, izmantojot Scorpions. Scorpions ir bifunkcionālas molekulas, kas satur kovalenti ar zondi saistītu PCR praimeri. Fluorofors šajā zondē ir saistīts ar dzēsēju, kas arī ir ietverts zondē un samazina fluorescenci. PCR laikā, kad zonde saistās ar amplikonu, fluorofors un dzēsējs atdalās, radot nosakāmu fluorescences pieaugumu.

Komplekta formāts

Komplektā therascreen EGFR RGQ PCR Kit ir iekļauti astoņi testi:

- Viens kontroles tests (CTRL)
- Septiņi mutāciju testi

Visi reakciju maisījumi satur reaģentus mērku noteikšanai, kas markēti ar karboksifluoresceīnu (FAM[™]). un iekšēiās kontroles testu. kas markēts ar heksahlorfluoresceīnu (HEX™). Iekšējās kontroles tests var noteikt inhibitoru klātbūtni, kas var izraisīt klūdaini negatīvus rezultātus. FAM amplifikācija var izkonkurēt iekšējās kontroles amplifikāciju, un iekšējās kontroles mērkis ir vienkārši parādīt, kur nav FAM amplifikācijas, šis ir pareizi negatīvs rezultāts, nevis neizdevusies PCR reakcija.

Testi

Komplektā *therascreen* EGFR RGQ PCR Kit tiek izmantota divu darbību procedūra. Pirmajā darbībā tiek izpildīts kontroles tests, lai izvērtētu kopējo amplificējamās EGFR DNS daudzumu paraugā. Otrajā darbībā tiek izpildīti mutācijas un kontroles testi, lai noteiktu mutantas DNS klātbūtni vai neesamību.

Kontroles tests

Kontroles tests, kas marķēts ar FAM, tiek izmantots, lai izvērtētu kopējo amplificējamās EGFR DNS daudzumu paraugā. Kontroles tests amplificē EGFR gēna 2. eksona reģionu. Praimeri un Scorpion zonde ir paredzēta, lai izvairītos no visiem zināmajiem EGFR polimorfismiem.

Mutāciju testi

Katrs mutāciju tests satur ar FAM marķētu Scorpion zondi un ARMS praimeri, lai atšķirtu savvaļas tipa DNS un specifisku mutantu DNS.

Kontroles

Piezīme: Visās eksperimentālajās izpildēs jābūt ietvertām pozitīvajām un negatīvajām kontrolēm.

Pozitīva kontrole

Katrai izpildei jāietver pozitīvā kontrole 1.-8. stobriņā. *therascreen* EGFR RGQ PCR Kit ietver EGFR pozitīvo kontroli (Positive Control, PC), kas jāizmanto kā matrica pozitīvās kontroles reakcijā. Pozitīvās kontroles rezultāti tiks izvērtēti, lai pārliecinātos, ka komplekts darbojas norādīto pieņemšanas kritēriju ietvaros.

Negatīva kontrole

Katrai izpildei jāietver negatīvā kontrole ("kontrole bez matricas": NTC) 9.–16. stobriņā. *therascreen* EGFR RGQ PCR Kit ietver ūdeni kontrolei bez matricas NTC, kas jāizmanto kā "matrica" kontrolei bez matricas. Kontroli bez matricas izmanto, lai izvērtētu potenciālu kontamināciju izpildes iestatīšanas laikā un iekšējās kontroles reakcijas veiktspēju.

lekšējās kontroles reakcijas izvērtēšana

Katrs reakcijas maisījums papildus mērķa reakcijai satur iekšējo kontroli (Internal Control, IC). Kļūme nozīmē, ka, iespējams, bija klātesoši inhibitori, kas varēja izraisīt neprecīzu rezultātu, vai šim stobriņam radās operatora iestatīšanas kļūda. IC izmanto ar EGFR nesaistītu oligonukleotīda mērķa sekvenci, nemarķētu praimeri un Scorpions praimeri, kas marķēts ar HEX, lai to atšķirtu no Scorpions, kas marķēts ar FAM, kontroles un mutāciju reakciju maisījumos. FAM amplifikācija var izkonkurēt IC amplifikāciju, lai ģenerētā IC C_T (HEX) vērtība būtu ārpus norādītā diapazona. Šo paraugu FAM rezultāti aizvien ir derīgi.

Paraugu izvērtēšana

Stingri iesakām izmantot kontroles reakcijas maisījumu (stobriņš Control Reaction Mix, CTRL), kas iekļauts komplektā *therascreen* EGFR RGQ PCR Kit, lai izvērtētu kopējo paraugā esošo amplificējamo EGFR DNS. Kontroles tests amplificē EGFR gēna 2. eksona reģionu. Paraugus ieteicams iestatīt tikai ar kontroles testu, izmantojot EGFR PC kā pozitīvo kontroli un ūdeni "matricai" kā kontroli bez matricas.

Piezīme: DNS izvērtēšanai jābūt balstītai uz PCR procedūru, un tā var atšķirties no kvantitatīvās noteikšanas, pamatojoties uz absorbcijas rādītājiem. Papildu kontroles reakcijas maisījums (stobriņš CTRL) ir iekļauts komplektā, lai būtu iespējama DNS kvalitātes un daudzuma izvērtēšana paraugos pirms analizēšanas ar *therascreen* EGFR RGQ PCR Kit.

Platforma un programmatūra

therascreen EGFR RGQ PCR Kit ir īpaši izstrādāts izmantošanai ar Rotor-Gene Q MDx 5plex HRM instrumentiem. Rotor-Gene Q MDx 5plex HRM instrumentu dažādu ciklu parametriem jeb "izpildēm" programmē ar *therascreen* EGFR CE Assay Package.

therascreen EGFR CE Assay Package sastāv no divām matricām: "therascreen EGFR CE Control Run Locked Template" (paraugu izvērtēšanai) un "therascreen EGFR CE Locked Template" (EGFR mutāciju noteikšanai). Šīs matricas satur PCR izpildes parametrus un aprēķina rezultātus.

therascreen EGFR RGQ PCR Kit var arī izmantot ar Rotor-Gene Q programmatūras versiju 2.3 atvērtajā režīmā (t.i., neizmantojot Rotor-Gene Q *therascreen* EGFR CE Assay Package). Plašāku informāciju skatiet šeit: A pielikums: therascreen *EGFR* RGQ PCR Kit manuālais protokols.

Nodrošinātie materiāli

Komplekta saturs

therascreen EGFF	R RGQ PCR Kit			(24)
Kataloga Nr.				874111
Reakciju skaits				24
Krāsa	Nosaukums	Sto	briņa ID	Tilpums
Sarkanā krāsā	Control Reaction Mix (Kontroles reakcijas maisījums)	1	CTRL	2 x 600 µl
Violetā krāsā	T790M Reaction Mix (T790M reakcijas maisījums)	2	T790M	600 µl
Oranžā krāsā	Deletions Reaction Mix (Delēciju reakcijas maisījums)	3	Del	600 µl
Sārtā krāsā	L858R Reaction Mix (L858R reakcijas maisījums)	4	L858R	600 µl
Zaļā krāsā	L861Q Reaction Mix (L861Q reakcijas maisījums)	5	L861Q	600 µl
Dzeltenā krāsā	G719X Reaction Mix (G719X reakcijas maisījums)	6	G719X	600 µl
Pelēkā krāsā	S768I Reaction Mix (S768I reakcijas maisījums)	7	S768I	600 µl
Zilā krāsā	Insertions Reaction Mix (Inserciju reakcijas maisījums)	8	Ins	600 µl
Bēšā krāsā	EGFR Positive Control (EGFR pozitīva kontrole)	9	PC	300 µl
Piparmētru krāsā	<i>Taq</i> DNA Polymerase (<i>Taq</i> DNS polimerāze)	Taq	2 x 80 µl	2 x 80 µl
Baltā krāsā	Nuclease-free water for No Template Control (Ūdens, kas nesatur nukleāzi, kontrolei bez matricas)	NTC	1,9 ml	1,9 ml
Baltā krāsā	Nuclease-free water for Dilution (Ūdens, kas nesatur nukleāzi, atšķaidīšanai)	Dil.	1,9 ml	1,9 ml
therascreen EGFR	RGQ PCR Kit rokasgrāmata			1

Nepieciešamie materiāli, kas netiek nodrošināti

Strādājot ar ķīmiskām vielām, vienmēr valkājiet piemērotu laboratorijas halātu, vienreizējas lietošanas cimdus un aizsargbrilles. Lai saņemtu papildinformāciju, iepazīstieties ar attiecīgajām drošības datu lapām (DDL), kas ir pieejamas pie produkta piegādātāja.

Reaģenti

DNS ekstrahēšanas komplekts (skatiet šeit: DNS ekstrahēšana un sagatavošana)

Palīgmateriāli un vispārīgs laboratorijas aprīkojums

- Īpašas pipetes* (pielāgojamas) paraugu sagatavošanai
- Īpašas pipetes* (pielāgojamas) PCR Master maisījuma sagatavošanai
- Īpašas pipetes* (pielāgojamas) matricas DNS dozēšanai
- DNāzi, RNāzi un DNS nesaturoši pipešu uzgaļi ar filtriem (lai izvairītos no krusteniskās kontaminācijas, ieteicams izmantot pipešu uzgaļus ar aerosola barjerām)
- Strip Tubes and Caps, 0.1 ml izmantošanai ar 72-Well Rotor (kat. Nr. 981103 vai 981106)
- DNāzi, RNāzi un DNS nesaturoši mikrocentrifugēšanas stobriņi Master maisījumu sagatavošanai
- Loading Block 72 x 0.1 ml Tubes, alumīnija bloks manuālai reakcijas iestatīšanai ar viena kanāla pipeti (kat. Nr. 9018901)
- lerīce Thermomixer*, orbitāls inkubators*, sildīšanas bloks* vai ūdens vanna*, kurā var inkubēt 90 °C temperatūrā
- Galda centrifūga* ar rotoru 2 ml reakcijas stobriņu ievietošanai
- Maisītājs*

* Pārliecinieties, vai instrumenti un aprīkojums ir pārbaudīti un kalibrēti saskaņā ar ražotāja ieteikumiem.

Aprīkojums PCR izpildei

- Rotor-Gene Q MDx 5plex HRM instruments ar fluorescences kanāliem Cycling Green un Cycling Yellow (attiecīgi FAM un HEX noteikšana)*†
- Rotor-Gene Q programmatūras versija 2.3.5 vai jaunāka
- Rotor-Gene Q *therascreen* EGFR CE Assay Package, versija 3.0.6 (pieejama lejupielādēšanai no *therascreen* EGFR RGQ PCR Kit 2. versijas produkta vietnes www.qiagen.com; lai lejupielādētu testu pakotni, pārejiet uz Product Resources (Produktu resursi) > Supplementary Protocols (Papildu protokoli))

Piezīme: Rotor-Gene Q *therascreen* EGFR CE Assay Package programmatūrai nepieciešama Rotor-Gene Q programmatūras versija 2.3.5 vai jaunāka.

- * Pārliecinieties, vai instrumenti un aprīkojums ir pārbaudīti un kalibrēti saskaņā ar ražotāja ieteikumiem.
- † Ja piemērojams, dažās valstīs var izmantot Rotor-Gene Q 5plex HRM instrumentu, kas izgatavots 2011. gada maijā vai vēlāk. Izgatavošanas datumu var uzzināt no sērijas numura instrumenta aizmugurē. Sērijas numura formāts ir "mmyynnn" (mmggnnn), kur "mm" norāda izgatavošanas mēnesi ar ciparu, "yy" (gg) norāda izgatavošanas gadu ar diviem cipariem, bet "nnn" ir unikālais instrumenta identifikators.

Brīdinājumi un piesardzības pasākumi

Lietošanai in vitro diagnostikā

Strādājot ar ķīmiskām vielām, vienmēr valkājiet piemērotu laboratorijas halātu, vienreizējas lietošanas cimdus un aizsargbrilles. Lai iegūtu papildinformāciju, skatiet attiecīgās drošības datu lapas (DDL). Tās ērtā un kompaktā PDF formātā ir pieejamas vietnē **www.qiagen.com/safety**, kur DDL skatīšanai un izdrukāšanai ir pieejamas katram QIAGEN komplektam un tā komponentiem.

Drošības informāciju par Rotor-Gene Q instrumentu skatiet ar instrumentu piegādātajā lietotāja rokasgrāmatā.

Izmetiet paraugu un testu atkritumus atbilstoši vietējiem drošības noteikumiem.

Vispārējie piesardzības pasākumi

Vienmēr pievērsiet uzmanību tālāk norādītajiem nosacījumiem.

- Tests paredzēts izmantošanai ar FFPE NSŠPV audu paraugiem.
- Uzglabājiet un izdaliet pozitīvus materiālus (paraugus un pozitīvās kontroles) atsevišķi no visiem citiem reaģentiem un pievienojiet tos reakcijas maisījumam telpiski atdalītā vietā.
- levērojiet īpašu piesardzību, lai novērstu PCR kontamināciju ar sintētisku kontroles materiālu. leteicams izmantot atsevišķas, īpašas pipetes, lai sajauktu reakcijas maisījumus un pievienotu DNS matricu. Reakcijas maisījumu sagatavošana un dozēšana jāveic atsevišķā vietā, kur netiek pievienota matrica. Rotor-Gene Q stobriņus nedrīkst atvērt pēc PCR izpildes beigām. Tas nepieciešams, lai novērstu laboratorijas kontamināciju ar PCR procesā radītajiem produktiem.

- Visas ķīmiskās vielas un bioloģiskie materiāli ir potenciāli bīstami. Paraugi ir potenciāli infekciozi un jāapstrādā kā bioloģiski bīstami materiāli.
- therascreen EGFR RGQ PCR Kit reaģenti ir optimāli atšķaidīti. Neatšķaidiet reaģentus vairāk, jo tas var izraisīt veiktspējas zudumu. Neizmantojiet reakciju tilpumus (reakcijas maisījums plus paraugs), kas ir mazāki par 25 µl, pretējā gadījumā pieaug kļūdaini negatīva rezultāta risks.
- Visus komplektā *therascreen* EGFR RGQ PCR Kit iekļautos reaģentus ir paredzēts lietot tikai ar pārējiem tajā pašā komplektā *therascreen* EGFR RGQ PCR Kit iekļautajiem reaģentiem. Neaizstājiet reaģentus komplektā *therascreen* EGFR RGQ PCR Kit vai starp komplektiem *therascreen* EGFR RGQ PCR Kit, jo tas var ietekmēt veiktspēju.
- Izmantojiet tikai *Taq* DNS polimerāzi (stobriņš *Taq*), kas piegādāta komplektā therascreen EGFR RGQ PCR Kit. Neaizstājiet ar *Taq* DNS polimerāzi no citiem tā paša vai jebkura cita tipa komplektiem vai ar *Taq* DNS polimerāzi no cita piegādātāja.
- Neizmantojiet nederīgus vai nepareizi uzglabātus komponentus.

Piezīme: Jāievēro piesardzība, lai nodrošinātu pareizu paraugu testēšanu, īpašu uzmanību pievēršot tam, lai izvairītos no nepareizas paraugu ievadīšanas, ielādes kļūdām un pipetēšanas kļūdām.

Piezīme: Reaģenti ir apstiprināti manuālai iestatīšanai. Ja izmanto automatizētu metodi, var samazināties iespējamo reakciju skaits, jo šajos instrumentos ar reaģentu ir jāaizpilda "neizmantojamie tilpumi".

Reaģentu glabāšana un lietošana

Transportēšanas apstākļi

therascreen EGFR RGQ PCR Kit tiek piegādāts uz sausā ledus, un piegādes brīdī tam jābūt sasalušam. Ja therascreen EGFR RGQ PCR Kit piegādes brīdī nav sasalis, ja ārējais iepakojums ir ticis atvērts transportēšanas laikā vai sūtījumā nav ietverta piezīme par iepakošanu, rokasgrāmata vai reaģenti, lūdzu, sazinieties ar QIAGEN tehniskā atbalsta dienestu vai vietējiem izplatītājiem (skatiet aizmugurējo vāku vai apmeklējiet vietni **www.qiagen.com**).

Uzglabāšanas apstākļi

therascreen EGFR RGQ PCR Kit tūlīt pēc saņemšanas jāuzglabā no -30 līdz -15 °C temperatūrā saldētavā, kas uztur nemainīgu temperatūru, un jāsargā no gaismas. Scorpions (tāpat kā visas fluorescenti marķētas molekulas) ir jāsargā no gaismas iedarbības, lai novērstu izbalēšanu un veiktspējas zudumu. Uzglabājot ieteicamajos glabāšanas apstākļos oriģinālajā iepakojumā, komplekts ir stabils līdz etiķetē norādītajam derīguma termiņam.

Pēc atvēršanas reaģentus var uzglabāt to sākotnējā iepakojumā no -30 līdz -15 °C temperatūrā 12 mēnešus vai līdz norādītajam derīguma termiņam — atkarībā no tā, kas iestājas ātrāk. Jāizvairās no atkārtotas sasaldēšanas un atkausēšanas. Ieteicamais maksimālais sasaldēšanas-atkausēšanas ciklu daudzums ir astoņi.

Reaģenti jāatkausē apkārtējās vides temperatūrā (15–25 °C) vismaz 1 stundu un maksimāli 4,5 stundas. Kad reaģenti ir gatavi lietošanai, var iestatīt PCR reakcijas, un Rotor-Gene Q stobriņi, kuros ir Master maisījumi un DNS paraugs, tūlīt jāievieto Rotor-Gene Q MDx 5plex HRM instrumentā. Kopējais laiks no PCR iestatīšanas sākuma līdz izpildes sākumam nedrīkst pārsniegt: • 6 stundas, glabājot apkārtējās vides temperatūrā

Piezīme: Šis laiks ietver PCR iestatīšanu un uzglabāšanu.

• 18 stundas, glabājot ledusskapī (2–8 °C)

Piezīme: Šis laiks ietver PCR iestatīšanu un uzglabāšanu.

Piezīme: Lai nodrošinātu optimālu darbību un veiktspēju, Scorpions (tāpat kā visas fluorescenti marķētas molekulas) ir jāsargā no gaismas, lai novērstu izbalēšanu.

Piezīme: Lai panāktu *therascreen* EGFR RGQ PCR Kit reaģentu optimālu lietošanu, paraugi jāizmanto kopā. Ja paraugus testēs atsevišķi, tiks izmantots vairāk reaģentu, un paraugu, ko var testēt ar *therascreen* EGFR RGQ PCR Kit, skaits būs mazāks.

Paraugu apstrāde un uzglabāšana

Piezīme: Visi paraugi ir jāuzskata par potenciāli infekcioziem materiāliem.

Parauga materiālam jābūt cilvēka genoma DNS, kas ekstrahēts no FFPE audiem. Paraugi ir jātransportē saskaņā ar standarta patoloģijas metodoloģiju, lai nodrošinātu paraugu kvalitāti.

Audzēja paraugi ir nehomogēni, un dati no audzēja parauga, iespējams, nebūs atbilstoši citām tā paša audzēja sekcijām. Audzēja paraugi var saturēt arī cita veida audus. DNS no cita veida audiem, kas nav audzēja audi, visdrīzāk, nesaturēs mutācijas, ko var noteikt ar *therascreen* EGFR RGQ PCR Kit.

Lai sagatavotu audu paraugus DNS ekstrahēšanai, izpildiet tālāk norādītās darbības:

- Izmantojot standarta materiālus un metodes, fiksējiet audu paraugu 10% neitrālā formalīna buferšķīdumā (neutral buffered formalin, NBF) un iegremdējiet audu paraugu parafīnā. Izmantojot mikrotomu, izgrieziet 5 µm seriālās sekcijas no parafīna bloka un uzlieciet uz stikla priekšmetstikliņiem.
- Piesaistiet apmācītu speciālistu (piemēram, patologu), lai izvērtētu ar hematoksilīnu un eozīnu (H&E) iekrāsoto sekciju, lai pārliecinātos, vai tajā ir audzēja audi.
- Iekrāsotās sekcijas nedrīkst izmantot DNS ekstrahēšanai.
- Uzglabājiet visus FFPE blokus un priekšmetstikliņus istabas temperatūrā (15–25 °C).
 Priekšmetstikliņus var uzglabāt apkārtējās vides temperatūrā līdz 1 mēnesim pirms
 DNS ekstrahēšanas.

Procedūra

DNS ekstrahēšana un sagatavošana

Šī komplekta veiktspējas raksturojums ir ģenerēts, izmantojot DNS, kas ekstrahēta, izmantojot QIAamp DSP DNA FFPE Tissue Kit (kat. Nr. 60404). Šis komplekts jāizmanto DNS sagatavošanai, ja tas ir pieejams konkrētajā valstī. Ja izmantojat funkcionāli līdzvērtīgo QIAamp DNA FFPE Tissue Kit (kat. Nr. 56404), DNS ekstrahējiet saskaņā ar rokasgrāmatā sniegtajām instrukcijām, ievērojot tālāk pieejamos norādījumus:

- Neizmantojiet QIAGEN Deparaffinization Solution. Deparafinizācijai izmantojiet tikai ksilola/etanola metodi, kas aprakstīta QIAamp DNA FFPE Tissue Kit rokasgrāmatā.
- Visās nepieciešamajās darbībās noteikti izmantojiet molekulārās bioloģijas lietojumam paredzētu etanolu*.
- Nokasiet visu audu apgabalu no divām sekcijām marķētā mikrocentrifūgas stobriņā, katram paraugam izmantojot tīru skalpeli.
- Proteināzes K noārdīšanai (11. darbība QIAamp DNA FFPE Tissue Kit rokasgrāmatā) jānotiek 1 stundu ± 5 minūtes 56 °C ± 3 °C temperatūrā.
- Proteināzes K noārdīšanai (12. darbība QIAamp DNA FFPE Tissue Kit rokasgrāmatā) jānotiek 1 stundu ± 5 minūtes 90 °C ± 3 °C temperatūrā.
- Neizpildiet RNāzes darbību, kas aprakstīta QIAamp DNA FFPE Tissue Kit rokasgrāmatā.
- Paraugi jāeluē ar 120 µl eluēšanas bufera (ATE) no QIAamp DNA FFPE Tissue Kit (20. darbība QIAamp DNA FFPE Tissue Kit rokasgrāmatā).
- Pirms lietošanas genoma DNS var uzglabāt 2–8 °C temperatūrā 1 nedēļu pēc ekstrahēšanas vai no –30 līdz –15 °C temperatūrā līdz 8 nedēļām.

Piezīme: Visi testi komplektā *therascreen* EGFR RGQ PCR Kit ģenerē īsus PCR produktus. Taču *therascreen* EGFR RGQ PCR Kit nedarbojas ar būtiski fragmentētu DNS.

* Neizmantojiet denaturētu spirtu, kas satur papildvielas, piemēram, metanolu vai metiletilketonu.

Protokols: Paraugu izvērtēšana

Šo protokolu izmanto, lai izvērtētu kopējo amplificējamās DNS daudzumu paraugos, izmantojot Rotor-Gene Q *therascreen* EGFR CE Assay Package "*therascreen* EGFR CE Control Run Locked Template", lai automatizēti izvērtētu paraugus.

Piezīme: Informāciju par manuālu DNS paraugu izvērtēšanu skatiet šeit: A pielikums: therascreen *EGFR* RGQ PCR Kit manuālais protokols.

Svarīga informācija pirms darba sākšanas

- Lai iegūtu pareizus rezultātus, testa iestatīšanas procesa katras samaisīšanas darbības laikā noteikti jāizpilda aprakstītā samaisīšanas procedūra.
- Izmantojot pieejamo kontroles reakcijas maisījumu, var izvērtēt ne vairāk kā 24 paraugus.
- Pirms procedūras sākšanas izlasiet sadaļu Vispārējie piesardzības pasākumi.
- Pirms protokola izpildes sākšanas rūpīgi iepazīstieties ar Rotor-Gene Q MDx 5plex HRM instrumentu. Skatiet instrumenta lietotāja rokasgrāmatu.
- Nemaisiet *Taq* DNS polimerāzi (stobriņš Taq) vai citu maisījumu, kas satur *Taq* DNS polimerāzi, jo tas var inaktivēt enzīmu.
- Pipetējiet *Taq*, novietojot pipetes galu tieši zem šķidrās virsmas, lai gals nepārklātos ar lieku enzīmu.
- Izmantojiet kontroles reakcijas maisījumu (stobriņš CTRL), lai pirms testēšanas izvērtētu DNS.

Piezīme: Šai izvērtēšanai kontroles reakcijas maisījumu ir svarīgi izmantot, kā aprakstīts tālāk, nevis izmantot spektrofotometriju vai citas alternatīvas metodes. Būtiski noārdījusies DNS var neamplificēties, lai gan praimeri ģenerē īsus DNS fragmentus.

 Lai efektīvi izmantotu reaģentus no komplekta *therascreen* EGFR RGQ PCR Kit, DNS paraugus, cik vien iespējams, apstrādājiet kopā, izveidojot pilnas izpildes. Ja paraugus testē atsevišķi vai mazākā daudzumā, tiek izmantots vairāk reaģentu, un paraugu, ko var testēt ar vienu *therascreen* EGFR RGQ PCR Kit, kopējais skaits ir mazāks.

Pirms darba sākšanas veicamās darbības

- Pirms sākat lietot Rotor-Gene Q MDx 5plex HRM instrumentu, pārliecinieties, vai ir instalēta *therascreen* EGFR CE Assay Package programmatūra (skatiet šeit: B pielikums: therascreen EGFR CE Assay *Package* instalēšana).
- Pirms katras lietošanas reizes visi reaģenti ir pilnībā jāatkausē vismaz 1 stundu un maksimāli 4,5 stundas istabas temperatūrā (15–25 °C), jāsajauc, apvēršot stobriņus 10 reizes, un īslaicīgi jācentrifugē, lai saturs sakrātos stobriņa apakšā.
- Pirms katras lietošanas reizes pārliecinieties, vai *Taq* ir istabas temperatūrā (15– 25 °C). Īslaicīgi centrifugējiet stobriņu, lai enzīms sakrātos stobriņa apakšā.
- Sajauciet visus paraugus, apvēršot stobriņus 10 reizes, un īslaicīgi centrifugējiet, lai saturs sakrātos stobriņa apakšā.

Procedūra

 Atkausējiet kontroles reakcijas maisījumu (CTRL), ūdeni, kas nesatur nukleāzi, kontrolei bez matricas (NTC) un EGFR pozitīvo kontroli (PC) apkārtējās vides temperatūrā (15–25 °C) vismaz 1 stundu un maksimāli 4,5 stundas.

Reaģentu atkausēšanas, PCR iestatīšanas un uzglabāšanas ilgums pirms izpildes sākšanas ir norādīts 2. tabulā.

2. tabula. Atkausēšanas ilgums, PCR iestatīšanas ilgums un uzglabāšanas temperatūra

Minimālais atkausēšanas ilgums	Maksimālais atkausēšanas ilgums	Uzglabāšanas temperatūra pēc PCR iestatīšanas	Maksimālais PCR iestatīšanas un uzglabāšanas ilgums
1 h	4,5 h	Apkārtējās vides temperatūra (15– 25 °C)	6 h
1 h	4,5 h	2–8 °C	18 h

Piezīme: PCR iestata apkārtējās vides temperatūrā (15–25 °C). Termins "uzglabāšana" attiecas uz laiku no PCR iestatīšanas pabeigšanas līdz PCR izpildes sākumam Rotor-Gene Q MDx 5plex HRM instrumentā.

Piezīme: Noturiet *Taq* apkārtējās vides temperatūrā (15–25 °C) vienlaikus ar pārējiem reaģentiem (skatiet šeit: Reaģentu glabāšana un lietošana). Īslaicīgi centrifugējiet stobriņu, lai enzīms sakrātos stobriņa apakšā.

- Kad reaģenti ir atkusuši, sajauciet tos, apgriežot katru stobriņu 10 reizes, lai novērstu lokālas sāļu koncentrācijas, pēc tam īslaicīgi centrifugējiet, lai saturs sakrātos stobriņa apakšā.
- 3. Sagatavojiet pietiekamu daudzumu kontroles Master maisījuma (kontroles reakcijas maisījums [CTRL] plus *Taq*) DNS paraugiem, EGFR PC reakciju un NTC reakciju atbilstoši tilpumiem, kas norādīti 3. tabulā. Ietveriet reaģentus vienam papildu paraugam, lai nodrošinātu pietiekamu papildu daudzumu PCR iestatīšanai.

Piezīme: Master maisījums satur visus PCR analīzei nepieciešamos komponentus, izņemot paraugu.

Komponents	Tilpums
Control Reaction Mix (Kontroles reakcijas maisījums) (CTRL)	19,5 µl x (n + 1)*
<i>Taq</i> DNS polimerāze (<i>Taq</i>)	0,5 μl x (n + 1)
Kopējais tilpums	20 μl/reakcija

3. tabula. Kontroles testa Master maisījuma sagatavošana

* n = reakciju skaits (paraugi plus kontroles). Sagatavojiet pietiekamu daudzumu Master maisījuma vienam papildu paraugam (n + 1), lai nodrošinātu pietiekamu papildu daudzumu PCR iestatīšanai. Vērtība n nedrīkst pārsniegt 26 (24 paraugi plus 2 kontroles).

Piezīme: Sagatavojot Master maisījumu, vispirms attiecīgajā stobriņā pievieno nepieciešamo kontroles reakcijas maisījuma tilpumu, beigās pievieno *Taq*.

4. Rūpīgi sajauciet Master maisījumu, 10 reizes saudzīgi pipetējot uz augšu un uz leju. levietojiet atbilstošu teststrēmeļu stobriņu skaitu ielādes blokā atbilstoši izkārtojumam, kas norādīts 4. tabulā. Nekavējoties pievienojiet 20 µl Master maisījuma katrā PCR teststrēmeļu stobriņā. Neizņemiet vāciņus no plastmasas iepakojuma, kamēr tie nav nepieciešami. Lai izvērtētu DNS paraugus, kontroles testa Master maisījums jāpievieno vienā PC stobriņā, vienā NTC stobriņā un vienā stobriņā katram paraugam.

Tests	Pozīcija								
Kontrole	1[PC]	9	17	25	-	-	-	-	-
Kontrole	2[NTC]	10	18	26	-	-	-	-	-
Kontrole	3	11	19	_	-	-	-	-	-
Kontrole	4	12	20	-	-	-	-	-	-
Kontrole	5	13	21	_	-	-	-	-	-
Kontrole	6	14	22	_	-	_	-	-	-
Kontrole	7	15	23	_	_	-	-	-	_
Kontrole	8	16	24	_	-	_	-	-	-

4. tabula. DNS paraugu izvērtēšanas testu izkārtojums ielādes blokā. Cipari norāda pozīcijas ielādes blokā un rotora beigu pozīciju.

- Nekavējoties pievienojiet 5 µl ūdens kontrolei NTC stobriņā 2. pozīcijā un aizkorķējiet stobriņu.
- Paraugu stobriņos pievienojiet 5 μl katra parauga (stobriņu pozīcijas 3.–26.) un aizkorķējiet stobriņus.
- 7. Pievienojiet 5 µl EGFR PC stobriņā 1. pozīcijā un aizkorķējiet stobriņu.

Piezīme: Uzmanieties, lai nepieļautu ielādes vai pipetēšanas kļūdu un nodrošinātu pareizu NTC, paraugu un PC pievienošanu atbilstošajos stobriņos. Marķējiet stobriņu vāciņus, lai norādītu stobriņu ievietošanas virzienu Rotor Gene Q MDx 5plex HRM instrumentā.

- Kad visi PCR stobriņi ir aizkorķēti, vizuāli pārbaudiet paraugu stobriņu uzpildes līmeni, lai nodrošinātu, ka paraugs ir pievienots visiem stobriņiem.
- 9. Apgrieziet visus PCR stobriņus 4 reizes, lai sajauktu paraugus un reakciju maisījumus.
- levietojiet PCR teststrēmeļu stobriņus attiecīgajās pozīcijās 72-Well Rotor ierīcē atbilstoši izkārtojumam, kas norādīts 4. tabulā.

Ja rotors nav pilnībā aizpildīts, visas tukšās rotora pozīcijas aizpildiet ar aizkorķētiem, tukšiem stobriņiem.

 72-Well Rotor nekavējoties ievietojiet Rotor-Gene Q MDx 5plex HRM instrumentā.
 Pārbaudiet, vai rotora augšpusē ir novietots slēdzējgredzens (Rotor-Gene Q MDx 5plex HRM instrumenta piederums), lai fiksētu stobriņus izpildes laikā.

Piezīme: Ja paraugus izvērtējat manuāli, informāciju par to skatiet šeit: A pielikums: therascreen *EGFR* RGQ PCR Kit manuālais protokols.

 Divreiz noklikšķiniet uz *therascreen* EGFR CE Control Run Locked Template ikonas ar Rotor-Gene Q MDx instrumentu savienotā datora darbvirsmā, lai startētu Rotor-Gene Q programmatūru (1. attēls).

1. attēls. EGFR CE Locked Template ikona kontroles izpildei (paraugu izvērtēšana).

 Pēc noklusējuma tiek atvērta cilne "Setup" (lestatīšana) (2. attēls). Pārliecinieties, vai slēdzējgredzens ir pareizi piestiprināts, un pēc tam atzīmējiet izvēles rūtiņu Locking Ring Attached (Slēdzējgredzens piestiprināts). Aizveriet Rotor-Gene Q MDx 5plex HRM instrumenta vāku.

View									
<u>S</u> etup		<u>B</u> un P	ogress		Ĩ			énalysis	
This screen digitary microfeneous using options for the sur. Complete the lields and click CR Name: the concrete EGFR CE Relate: Resolution: 30.4	Start Run when you are ready to beg	in the run.							
Run ID:	Layout of the	pipetting adapter:							
Import Samples - Samples	Position:1 PC Control	Position:3 Not used		Position:25 Not used			Position: 49 Not used		
Sample ID Sample Hane	Positiov2 NTC Control			Position 26 Not used	Position 34 Not used			Position:58 Not used	Position 66 Not used
	Position: 3 Not used				Position 35 Not used				
	Position 4 Not used			Pesition 28 Not used	Position 36 Not used	Peolion:44 Not used			
	Position 5 Not used					Pesition: 45 Not used			
	Position 6 Not used	Position:14 Not used		Ponition 30 Not used	Position 38 Not used	Pesition: 46 Not used	Position:54 Not used		
	Position:7 Not used				Position: 39 Not used		Pasition:55 Not used		
	Pasher/8								

2. attēls. Cilne "Setup" (lestatīšana) (1) un izvēles rūtiņa "Locking Ring Attached" (Slēdzējgredzens piestiprināts) (2).

 Atbilstoši vietējai nosaukumdošanas metodei laukā Run ID (Izpildes ID) ievadiet izpildes ID. Atbilstoši vietējai nosaukumdošanas metodei laukā Sample Name (Parauga nosaukums) ievadiet parauga nosaukumu un nospiediet taustiņu Return (Atgriezties).

Tādējādi parauga nosaukums tiek pievienots paraugu sarakstam un paraugam tiek piešķirts "Sample ID" (Parauga ID) (1, 2, 3 utt.). Turklāt tiek atjaunināts panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums) labajā pusē, ietverot parauga nosaukumu (3. attēls).

Piezīme: Paraugu nosaukumus, kas saglabāti *.smp (Rotor-Gene Q parauga fails) vai *.csv (komatatdalītās vērtības) formātā, arī var importēt, izmantojot funkciju Import Samples (Importēt paraugus). Izmantojot šo metodi, paraugu nosaukumi tiek aizpildīti automātiski.

Piezīme: Panelī "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums) pārbaudiet, vai parauga nosaukuma pievienošana ir izcelta ar krāsas maiņu un vai parauga nosaukums ir parauga pozīcijā (3. attēls). **Piezīme**: Paraugu nosaukumi ar vairāk nekā 8 rakstzīmēm, iespējams, netiks pilnībā attēloti panelī "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums).

Patra) Y		Die D						Assiste		ONCE
Teach	L			051010					Southern		
The screen deplays mecalioneous setup options for the	e run. Complete the helds and click Start Hu	Notes :	n the iun.								
Kit Name: therascreen EGFR RGQ PCR Kit	CE Roter: V Locking Ring Attach	ed .									
Template Version: 3.0.4											
Bun ID: Control Run	U	- Layout of the	pipetting adapter.								
Import Samples		Doubler 1									
Samples.		PC Control	Position 9	Position 17	Pasition: 25	Position 33	Positise 41	Position 49	Pasition:57	Postion 65	
Contris II Sancia Nano			Notures							Notused	
1 Sample 1		Postor(2 NTC									
		Control	Position:10 Not used	Position:18 Not used		Position: 34 Not used			Position:58 Not used	Position/66 Not used	
		Position 3									
		Sample 1 Control	Position 11		Position: 27	Position 35	Positise 43		Pasition:59	Postion 67	
										1101 0100	
		Positional				Portion 35				Portion 68	
		Nat used	Notured	Not used	Not used	Notweed	Not used		Not used	Notused	
		Position:5 Nat used	Position 13 Not used		Position:29 Not used		Positisn 45 Not used		Position:61 Not used	Position/69 Not used	
		Position:6	Postion:14	Postion:22	Position:30	Position 38	Positism:46	Position:54	Position:62	Position 70	
		Netwood								Not used	
		Position? Nat used	Position 15 Not used	Position/23 Not used	Position: 31 Not used	Position 39 Nat used	Positisn 47 Not used		Pasiton:63 Not used	Position 71 Not used	
		-									
		Parifor 8								Posting 72	

3. attēls. "Run ID" (Izpildes ID) un "Sample Name" (Parauga nosaukums) ievadīšana. 1 = dialoga lauks "Run ID" (Izpildes ID), 2 = panelis "Sample Import" (Paraugu importēšana), 3 = dialoga lauks "Sample Name" (Parauga nosaukums), 4 = "Paraugu saraksts", 5 = panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums).

- 15. Atkārtojiet 14. darbību, lai ievadītu visu papildu paraugu nosaukumus (4. attēls).
 - Piezīme: Lai rediģētu parauga nosaukumu, paraugu sarakstā noklikšķiniet uz Sample Name (Parauga nosaukums), un atlasītais paraugs tiks parādīts augšā laukā Sample Name (Parauga nosaukums). Rediģējiet parauga nosaukumu atbilstoši vietējai nosaukumdošanas metodei un nospiediet taustiņu Return (Atgriezties), lai atjauninātu nosaukumu.

4. attēls. Papildu paraugu nosaukumu ievadīšana laukā "Sample Name" (Parauga nosaukums). 1 = dialoga lauks "Sample Name" (Parauga nosaukums), 2 = "Paraugu saraksts", 3 = panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums).

16. Kad visu paraugu nosaukumi ir ievadīti, pārbaudiet, vai tie ir pareizi. Ja nepieciešams, laukā Notes (Piezīmes) pievienojiet papildinformāciju un pēc tam noklikšķiniet uz Start Run (Sākt izpildi) (5. attēls).

Piezīme: Ja kāda rotora pozīcija nav izmantota, tiek parādīts paziņojums "Warning" (Brīdinājums) (5. attēls), lai lietotājam atgādinātu, ka visas neizmantotās rotora pozīcijas ir jāaizpilda ar aizkorķētiem, tukšiem stobriņiem. Pārbaudiet, vai visas neizmantotās rotora pozīcijas ir aizpildītas ar aizkorķētiem, tukšiem stobriņiem, un noklikšķiniet uz **OK** (Labi), lai turpinātu. Tiek atvērts logs "Save As" (Saglabāt kā).

5. attēls. Lauks "Notes" (Piezīmes) (1), poga "Start Run" (Sākt izpildi) (2) un "Warning" (Brīdinājums) par neizmantotām rotora pozīcijām (3).

2

17. Atlasiet atbilstošu faila nosaukumu un saglabājiet PCR izpildi kā *.rex izpildes failu atlasītajā atrašanās vietā. Noklikšķiniet uz **Save** (Saglabāt) (6. attēls).

Organize 👻		85 -	•
	4 Hard Disk Drives (1)		
A Pavonites	Windows (C)		
🥽 Libraries			
	145 GB free of 232 GB		
📜 Computer	Devices with Removable Storage (8)		
A	Network Location (11)		
V INEtwork			
File name:	therascreen EGER CE		Ŧ
Severant mark	Due Elle (* eeu)		_
Save as type:	Kun File (Trex)		•

6. attēls. Logs "Save As" (Saglabāt kā) (1). 2 = Lauki "File Name" (Faila nosaukums) un "Save as type" (Saglabāt kā tipu); 3 = "Save" (Saglabāt).

Sākas PCR izpilde.

Piezīme: Kad sākas izpilde, tiek atvērta cilne "Run Progress" (Izpildes norise), rādot temperatūras pierakstu un atlikušo izpildes laiku (7. attēls).

7. attēls. Cilne "Run Progress" (Izpildes norise) (1).

Piezīme: Pēc izpildes pabeigšanas tiek atvērta cilne "Analysis" (Analīze). Ja cilne
Analysis (Analīze) netiek atvērta, noklikšķiniet uz cilnes Analysis (Analīze) (8. attēls).
Piezīme: Aprēķināšanas metodes izskaidrojums ir sniegts sadaļā "Rezultātu interpretācija (automatizēta)".

Vec Bit Proces Gradyse	6 ×
SHU Die Proprin Ordpoint Band	CLAGEN
After Saugh Road Tale: Image Trans Construction Sector 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><th></th></t<>	
Alex Stage Read Table Construct (ProvVerue Struct 1<	
Has Supple Sheet Part Central Actor G Supple Sheet Part State AT Draft E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note Note MAI SUPPLE Conf. Line, 2004 State Part E.M. Note <td></td>	
Implies Optimize (Implies)	
L LURA 1000 5 m C, Lin, DUB 20, MP 278 . V4 WH 1000 5 m C, Lin, DUB 20, MP 278 . V4 WH 1000 5 m C, Lin, DUB 20, MP 278 . V4 WH 1000 5 m C, Lin, DUB 20, MP 278 . V4 WH 1000 5 m C, Lin, DUB 20, MP 278 . V4 WH 1000 5 m C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin C, Lin, DUB 20, MP 277 . V4 WH 1000 5 m C, Lin	
Hart Tool Tool Val Hart Tool State	
Her Bord C. C., C. Hu, 2002 (2019) 3.31. Vel Her Bord C. C., C. Hu, 2002 (2019) 3.31. Vel Her Bord C. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord C. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.32. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel Her Bord T. G. C. Hu, 2002 (2019) 3.31. Vel </td <td></td>	
UND 00071141 UND 00071401 UND 000071401 UND 00071401 UND 00071401	
Non-Control and Control and Con	
Non-Contract_Conttact_Contented_Contract_Contract_Contract_Contract_Contract_Co	
NAH-BORT FLIG (14, 2000) (24P) 139 - VAB WAH-BORT FLIG (14, 2000) (24P) 277 - VAB WAH-BORT FLIG (14, 2000) (24P) 234 - VAB WAH-BORT FLIG (14, 2000) (24P) 234 - VAB WAH-BORT FLIG (14, 2000) (24P) 234 - VAB WAH-BORT FLIG (14, 2000) (24P) 334 - VAB WAH-BORT FLIG (14, 2000) (24P) 339 - VAB WAH-BORT FLIG (14, 2000) (24P) 340 - VAB WAH-BORT FLIG (14, 2000) (24P)	
VM-000351-02_04 VM-000351-02_04 VM-000351-02_04 VM-000352-01_02_04 VM-000351-02_04 VM-000351-02_04 VM-000352-01_02_04 VM-000351-02_04 VM-000351-02_04 VM-0000351-01_02_04 VM-000351-02_04 VM-000000001-02_04 VM-0	
Mail-Soutz, Call, Z., Mail, 2002, 2007 2071 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2021 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2023 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2023 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2023 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2031 Val. Mail-Soutz, Call, Z., Mail, 2002, 2007 2017 Val. Mail-Soutz, Call, Z., Mail, 2007, 2007 2017 Val.	
NUM 100211 I I III I III I III I III I III I III I	
Nath-Boottig 201 Valid	
Math 2004 (Exit C, Mar, 2004) 2007 33 8 1. Val Math 2004 (Exit C, Mar, 2004) 2007 33 8 1. Val Math 2004 (Exit C, Mar, 2004) 2007 33 8 1. Val Math 2004 (Exit C, Mar, 2004) 2007 33 9. Val Math 2004 (Exit C, Mar, 2004) 2007 33 9. Val Math 2004 (Exit C, Mar, 2004) 2007 33 9. Val Math 2004 (Exit C, Mar, 2004) 2007 33 9. Val Math 2005 (Exit C, Mar, 2004) 2007 33 9. Val Math 2005 (Exit C, Mar, 2004) 2007 33 9. Val	
2011日前日1日1日1日1日1日1日日 1月1日日前日1日日日 1月1日日日日日 1月1日日日日日日 1月1日日日日日日日 1月1日日日日日日日日	
Милондия S-11, С. III, Дийс С. Дере В. 19 1: Vol Wennowski K. B. 19 1: Vol Wennowski K. B. 2000 (S. 19 2) S 56 1: Vol Wennowski K. B. 2000 (S. 19 2) S 56 1: Vol Wennowski K. 2000 (S. 19 2) S 56 1: Vol Wennowski K. 2000 (S. 19 2) S 56 1: Vol Vol S 56 1: Vol	
Men Googe Sel (Colla, Sel Solder) Si No. Van Men Googe Sel (Colla, Sel Solder) Si No. Van Men Googe Sel (Colla, Sel Solder) Si Solder Van Googe Sel (Colla, Sel Solder) Si Solder Si Solder Sel (Collar) Sel Solder Sel Solder Sel Solder Sel Solder Solder Sel (Collar) Sel Solder	
Der Hann verstelligten, Laans zuer Men Hann verstel	

 attēls. Cilne "Analysis" (Analīze) (1) un rezultātu uzrādīšana (2 = "Sample QC Result Table" (Paraugu kvalitātes kontroles rezultātu tabula)).

Kontroles rezultāti tabulā "Sample QC Result Table" (Paraugu kvalitātes kontroles rezultātu tabula) tiek uzrādīti, kā aprakstīts tālāk (8. attēls).

Izpilžu kontroles (PC un NTC, attiecīgi 1. un 2. stobriņa pozīcija). Ja rezultāti ir pieņemamajā diapazonā, katrs tiek parādīts kā "Valid" (Derīgs). Pretējā gadījumā rezultāts ir "Invalid" (Nederīgs).

Paraugu kontroles reakcija C_T > 31,10, tiek parādīts kā "Invalid" (Nederīgs). DNS daudzums nav pietiekams mutācijas analīzei. Testējiet paraugu atkārtoti. Ja DNS daudzums joprojām nav pietiekams, ekstrahējiet vairāk audzēja audu, ja iespējams.

Paraugu kontroles reakcija C_T < 23,70, tiek parādīts kā "Invalid" (Nederīgs). DNS koncentrācija ir pārāk augsta mutācijas analīzei. Atšķaidiet ar ūdeni bez nukleāzes atšķaidīšanai (Dil.) un testējiet atkārtoti. Atšķaidiet līdz C_T vērtībai 23,70-31,10. Atšķaidījums attiecībā 1:1 palielina C_T vērtību par aptuveni 1,0.

Paraugu kontroles reakcija C_T ir 23,70–31,10 (23,70 \leq kontroles C_T \leq 31,10), tiek parādīts kā "Valid" (Derīgs). DNS koncentrācija ir piemērota mutācijas analīzei.

Piezīme: Ja nepieciešama atkārtota ekstrahēšana vai atšķaidīšana, atkārtojiet kontroles reakciju, lai apstiprinātu, ka DNS koncentrācija ir piemērota lietošanai.

 Noklikšķiniet uz Report (Pārskats), lai izveidotu pārskata failu. Tiek atvērts logs "Report Browser" (Pārskatu pārlūks). Sadaļā "Templates" (Veidnes) atlasiet EGFR CE Analysis Report (BRAF CE analīzes pārskats) un pēc tam noklikšķiniet uz Show (Rādīt) (9. attēls).

Piezīme: Lai pārskatus saglabātu citā atrašanās vietā tīmekļa arhīvu formātā, noklikšķiniet uz **Save As** (Saglabāt kā) katra pārskata augšējā kreisajā stūrī.

9. attēls. "EGFR CE Analysis Report" (EGFR CE analīzes pārskats) atlasīšana. 1 = "Report" (Pārskats), 2 = logs "Report Browser" (Pārskatu pārlūks), 3 = "EGFR Analysis Report" (EGFR analīzes pārskats) atlasīšana; 4 = "Show" (Rādīt).

Protokols: EGFR mutācijas noteikšana

Šis protokols ir paredzēts EGFR mutāciju noteikšanai. Kad paraugam ir veikta parauga DNS izvērtēšana, to var testēt, izmantojot EGFR mutācijas testus, kas izmanto automatizētu programmatūru.

Piezīme: Informāciju par manuālu mutācijas noteikšanu skatiet šeit: A pielikums: *therascreen* EGFR RGQ PCR Kit manuālais protokols.

Svarīga informācija pirms darba sākšanas

- Lai iegūtu pareizus rezultātus, testa iestatīšanas procesa katras samaisīšanas darbības laikā noteikti jāizpilda aprakstītā samaisīšanas procedūra.
- Pirms procedūras sākšanas izlasiet sadaļu Vispārējie piesardzības pasākumi.
- Pirms protokola izpildes sākšanas rūpīgi iepazīstieties ar Rotor-Gene Q MDx 5plex HRM instrumentu. Skatiet instrumenta lietotāja rokasgrāmatu.
- Paraugu var testēt, izmantojot EGFR mutācijas testus, kad tam ir veikta parauga DNS izvērtēšana.
- Lai optimāli izmantotu *therascreen* EGFR RGQ PCR Kit, paraugi ir jāgrupē partijās pa septiņiem. Mazāki partiju lielumi nozīmē, ka ar komplektu *therascreen* EGFR RGQ PCR Kit var testēt mazāku paraugu skaitu.
- Paraugs jātestē, izmantojot visus reakciju maisījumus, kas pieejami komplektā therascreen EGFR RGQ PCR Kit.
- Nemaisiet *Taq* vai citu maisījumu, kas satur *Taq*, jo tas var inaktivēt enzīmu.
- Pipetējiet *Taq*, uzmanīgi novietojot pipetes galu tieši zem šķidrās virsmas, lai gals nepārklātos ar lieku enzīmu.

Pirms darba sākšanas veicamās darbības

 Pirms sākat lietot Rotor-Gene Q MDx 5plex HRM instrumentu, pārliecinieties, vai ir instalēta *therascreen* EGFR CE Assay Package programmatūra (skatiet šeit: B pielikums: therascreen EGFR CE Assay *Package* instalēšana).

- Pirms katras lietošanas reizes visi reaģenti ir pilnībā jāatkausē vismaz 1 stundu un maksimāli 4,5 stundas apkārtējās vides temperatūrā (15–25 °C), jāsajauc, apvēršot stobriņus 10 reizes, un īslaicīgi jācentrifugē, lai saturs sakrātos stobriņa apakšā.
- Sajauciet visus paraugus, apvēršot stobriņus 10 reizes, un īslaicīgi centrifugējiet, lai saturs sakrātos stobriņa apakšā.
- Pirms katras lietošanas reizes pārliecinieties, vai *Taq* ir apkārtējās vides temperatūrā (15–25 °C). Īslaicīgi centrifugējiet stobriņu, lai enzīms sakrātos stobriņa apakšā.

Procedūra

 Atkausējiet visus reakcijas maisījuma stobriņus, ūdeni kontrolei NTC un EGFR PC apkārtējās vides temperatūrā (15–25 °C) vismaz 1 stundu un maksimāli 4,5 stundas. Reaģentu atkausēšanas, PCR iestatīšanas un uzglabāšanas ilgums pirms izpildes sākšanas ir norādīts 5. tabulā.

5 f	ahula	Atkaucāčanac	ilgume DCI) inetatīčanae	ilaume un	uzalahāčanae	tomporatūra
υ. ι	abula.	Alkausesallas	ilguins, FOI	\ IESIALISAIIAS	s ngums un	uzyiavasailas	temperatura

Minimālais atkausēšanas ilgums	Maksimālais atkausēšanas ilgums	Uzglabāšanas temperatūra pēc PCR iestatīšanas	Maksimālais PCR iestatīšanas un uzglabāšanas ilgums
1 h	4,5 h	Apkārtējās vides temperatūra (15–25 °C)	6 h
1 h	4,5 h	2–8 °C	18 h

Piezīme: PCR iestata apkārtējās vides temperatūrā (15–25 °C). Uzglabāšana attiecas uz laiku no PCR iestatīšanas pabeigšanas līdz PCR izpildes sākumam Rotor-Gene Q MDx 5plex HRM instrumentā.

Piezīme: Noturiet *Taq* (stobriņš *Taq*) apkārtējās vides temperatūrā (15–25 °C) vienlaikus ar pārējiem reaģentiem (skatiet šeit: Reaģentu glabāšana un lietošana). Īslaicīgi centrifugējiet stobriņu, lai enzīms sakrātos stobriņa apakšā.

 Kad reaģenti ir atkusuši, sajauciet tos, apgriežot katru stobriņu 10 reizes, lai novērstu lokālas sāļu koncentrācijas, pēc tam īslaicīgi centrifugējiet, lai saturs sakrātos stobriņa apakšā.
Sagatavojiet pietiekamu daudzumu testa Master maisījumu (testa reakcijas maisījums plus *Taq*) DNS paraugiem, EGFR PC un NTC reakciju atbilstoši tilpumiem, kas norādīti 6. tabulā. Ietveriet reaģentus vienam papildu paraugam, lai nodrošinātu pietiekamu papildu daudzumu PCR iestatīšanai.

Master maisījumi satur visus PCR analīzei nepieciešamos komponentus, izņemot paraugu.

Tests	Reakcijas maisījuma stobriņš	Reakcijas maisījuma tilpums	<i>Taq</i> DNS polimerāzes (stobriņš <i>Taq</i>) tilpums
Kontrole	CTRL	19,5 µl x (n + 1)*	0,5 µl x (n + 1)*
T790M	T790M	19,5 µl x (n+1)	0,5 μl x (n+1)
Delēcijas	Del	19,5 µl x (n + 1)	0,5 µl x (n+1)
L858R	L858R	19,5 µl x (n+1)	0,5 µl x (n+1)
L861Q	L861Q	19,5 µl x (n+1)	0,5 μl x (n+1)
G719X	G719X	19,5 µl x (n+1)	0,5 µl x (n+1)
S768I	S768I	19,5 µl x (n+1)	0,5 µl x (n+1)
Insercijas	Ins	19,5 µl x (n + 1)	0,5 µl x (n+1)

6. tabula. Testa Master maisījumu sagatavošana

 n = reakciju skaits (paraugi plus kontroles). Sagatavojiet pietiekamu daudzumu Master maisījuma vienam papildu paraugam (n + 1), lai nodrošinātu pietiekamu papildu daudzumu PCR iestatīšanai. Vērtība n nedrīkst pārsniegt "septiņi" (plus kontroles), jo tas ir maksimālais paraugu skaits, ko var apstrādāt vienā izpildes reizē.

4. Rūpīgi sajauciet testa Master maisījumus, 10 reizes saudzīgi pipetējot uz augšu un uz leju. levietojiet atbilstošu teststrēmeļu stobriņu skaitu ielādes blokā atbilstoši izkārtojumam, kas norādīts šeit: Tabula 7. Nekavējoties pievienojiet 20 µl atbilstošā testa Master maisījuma katrā PCR teststrēmeļu stobriņā.

Neizņemiet vāciņus no plastmasas iepakojuma, kamēr tie nav nepieciešami.

					Poz	zīcija			
	Kon	troles			Parau	ga numurs			
Tests	PC	NTC	1	2	3	4	5	6	7
Kontrole	1	9	17	25	33	41	49	57	65
T790M	2	10	18	26	34	42	50	58	66
Delēcijas	3	11	19	27	35	43	51	59	67
L858R	4	12	20	28	36	44	52	60	68
L861Q	5	13	21	29	37	45	53	61	69
G719X	6	14	22	30	38	46	54	62	70
S768I	7	15	23	31	39	47	55	63	71
Insercijas	8	16	24	32	40	48	56	64	72

7. tabula. Kontroļu un mutācijas testu izkārtojums ielādes blokā. Cipari norāda pozīcijas ielādes blokā un rotora beigu pozīciju.

- Nekavējoties pievienojiet 5 µl ūdens kontrolei NTC stobriņos 9.–16. pozīcijā un aizkorķējiet stobriņus.
- Paraugu stobriņos pievienojiet 5 µl katra parauga (stobriņu pozīcijas 17.–24., 25.–32., 33.–40., 41.–48., 49.–56., 57.–64. un 65.–72.) un aizkorķējiet stobriņus.
- 7. Pievienojiet 5 µl EGFR PC stobriņos 1.–8. pozīcijā un aizkorķējiet stobriņus.

Uzmanieties, lai nepieļautu ielādes vai pipetēšanas kļūdu un nodrošinātu pareizu NTC, paraugu un EGFR PC pievienošanu atbilstošajos stobriņos.

Katram stobriņam jāsatur kopējais reakcijas tilpums 25 µl (20 µl testa Master maisījums, kas sagatavots 3. darbībā (6. tabula), plus 5 µl NTC/parauga/PC). Cipari norāda pozīcijas ielādes blokā un rotora beigu pozīciju.

Marķējiet stobriņu vāciņus, lai norādītu stobriņu ievietošanas virzienu Rotor-Gene Q MDx 5plex HRM instrumentā.

- Kad visi PCR stobriņi ir aizkorķēti, vizuāli pārbaudiet paraugu stobriņu uzpildes līmeni, lai nodrošinātu, ka paraugs ir pievienots visiem stobriņiem.
- 9. Apgrieziet visus PCR stobriņus 4 reizes, lai sajauktu paraugus un reakciju maisījumus.

 levietojiet PCR teststrēmeļu stobriņus attiecīgajās pozīcijās 72-Well Rotor ierīcē atbilstoši izkārtojumam, kas norādīts šeit: Tabula 7.

Katrā PCR izpildē var iekļaut maksimāli 7 paraugus. Ja rotors nav pilnībā aizpildīts, visas tukšās rotora pozīcijas aizpildiet ar aizkorķētiem, tukšiem stobriņiem.

 72-Well Rotor nekavējoties ievietojiet Rotor-Gene Q MDx 5plex HRM instrumentā.
 Pārbaudiet, vai rotora augšpusē ir novietots slēdzējgredzens (Rotor-Gene Q MDx 5plex HRM instrumenta piederums), lai fiksētu stobriņus izpildes laikā.

Piezīme: Ja EGFR mutāciju nosakāt manuāli, informāciju par to skatiet šeit: A pielikums: *therascreen* EGFR RGQ PCR Kit manuālais protokols.

 Divreiz noklikšķiniet uz *therascreen* EGFR CE Locked Template ikonas ar Rotor-Gene Q MDx 5plex HRM instrumentu savienotā klēpjdatora darbvirsmā, lai startētu Rotor-Gene Q programmatūru (10. attēls).

therascreen EGFR CE Locked Template

10. attēls. EGFR CE Locked Template ikona (EGFR mutācijas noteikšana).

 Pēc noklusējuma tiek atvērta cilne "Setup" (lestatīšana) (11. attēls). Pārliecinieties, vai slēdzējgredzens ir pareizi piestiprināts, un pēc tam atzīmējiet izvēles rūtiņu Locking Ring Attached (Slēdzējgredzens piestiprināts). Aizveriet Rotor-Gene Q MDx 5plex HRM instrumenta vāku.

V	civ.										
<u>इल्प्</u> र			Bun P	logress			ľ		é	nalysia	
This screen displays microleneous roles policing for the same Kit Name: therascreen/EGFR CE RGQ PCR Ka Template Version: 3.0.4	Complete the fields and click. Start Run who Bellor:	en you are ready to	begin the run pipelting adapte	NTC	Not used	Not used	Returned) (Not used	Net used) (Not used) (
Run ID:		Control	Position: 1 PC Control	Position: 9 NTC Control	Positiox17 Notused	Pesilior:25 Not used	Pasition 33 Not used	Position 41 Net used	Position:48 National	Position 57 Not used	Position
Jmoot Samples Samples: Sample Name:		1750M	Position:2 PC T790M	Position:10 NTC T790M	Position 18 Not used	Peolion:25 Not used	Position:34 Not used	Position 42 Net used	Position:50 Nat used	Position 58 Not used	Positian 6 Not used
Sample ID Sample Name		Deletions	Position: 3 PC Deletions	Position: 11 NTC Deletions	Position:19 Not used	Pesition:27 Not used	Pasition:35 Not used	Position:43 Not used	Position:51 Not used	Position 59 Not used	Position
		LB58R	Position: 4 PC L858B	Position: 12 NTC L858R	Position 20 Not used	Position:28 Not used	Position:36 Not used	Position:44 Not used	Position:52 Nat used	Position 50 Not used	Position: Not uneo
Notes :		LBEIQ	Position: 5 PC L951Q	Position: 13 NTC L861Q	Position 21 Not used	Pesition:29 Not used	Position:37 Not used	Positon 45 Net used	Position:53 Nationed	Position 61 Not used	Position
		6719K	Position:6 PC 6715K	Position: 14 NTC G713K	Position 22 Net used	Position: 30 Not used	Position:30 Not used	Position 46 Net used	Position:54 Nationed		Positional Not used
		57581	Position:7 PC S768I	Position: 15 NTC S768	Position 23 Net used	Pesition: 31 Nat used	Pasition:39 Not used	Position 47 Net used	Position:55 Nat used	Position S3 Not used	Positan'
		Insetions	Position: 8 PC Insertions	Position: 16 NTC Insertions	Postion 24	Peoliore32	Position:40	Position-48	Postor:55	Postkn 54	Position

11. attēls. Cilne "Setup" (lestatīšana) (1) un izvēles rūtiņa "Locking Ring Attached" (Slēdzējgredzens piestiprināts) (2).

 Atbilstoši vietējai nosaukumdošanas metodei laukā Run ID (Izpildes ID) ievadiet izpildes ID. Atbilstoši vietējai nosaukumdošanas metodei laukā Sample Name (Parauga nosaukums) ievadiet parauga nosaukumu un nospiediet taustiņu Return (Atgriezties).

Tādējādi parauga nosaukums tiek pievienots paraugu sarakstam un paraugam tiek piešķirts "Sample ID" (Parauga ID) (1, 2, 3 utt.). Turklāt tiek atjaunināts panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums) labajā pusē, ietverot parauga nosaukumu (12. attēls).

Piezīme: Paraugu nosaukumus, kas saglabāti *.smp (Rotor-Gene Q parauga fails) vai *.csv (komatatdalītās vērtības) formātā, arī var importēt, izmantojot pogu Import Samples (Importēt paraugus). Izmantojot šo metodi, paraugu nosaukumi tiek aizpildīti automātiski.

Piezīme: Panelī "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums) pārbaudiet, vai parauga nosaukuma pievienošana ir izcelta ar krāsas maiņu un vai parauga nosaukums ir parauga pozīcijā (12. attēls).

Piezīme: Var pievienot maksimāli 7 paraugus. Paraugu identifikatori (paraugu apļos) automātiski tiek piešķirti no 1 līdz 7.

Piezīme. Paraugu nosaukumi ar vairāk nekā 8 rakstzīmēm, iespējams, netiks pilnībā attēloti panelī "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums).

12. attēls. "Run ID" (Izpildes ID) un "Sample Name" (Parauga nosaukums) ievadīšana. 1 = lauks "Run ID" (Izpildes ID), 2 = poga "Import Samples" (Importēt paraugus), 3 = lauks "Sample Name" (Parauga nosaukums), 4 = "Paraugu saraksts", 5 = panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums), 6 = izcelts parauga aplis un kolonna ar 8 testiem zem tā.

- 15. Atkārtojiet 14. darbību, lai ievadītu visu papildu paraugu nosaukumus (13. attēls).
 - Piezīme: Lai rediģētu parauga nosaukumu, paraugu sarakstā noklikšķiniet uz Sample
 Name (Parauga nosaukums), un atlasītais paraugs tiek parādīts augšā laukā Sample
 Name (Parauga nosaukums). Rediģējiet parauga nosaukumu atbilstoši vietējai
 nosaukumdošanas metodei un nospiediet taustiņu Return (Atgriezties), lai atjauninātu nosaukumu.

13. attēls. Papildu paraugu nosaukumu ievadīšana laukā "Sample Name" (Parauga nosaukums). 1 = lauks "Sample Name" (Parauga nosaukums), 2 = "Paraugu saraksts", 3 = panelis "Layout of the pipetting adapter" (Pipetēšanas adaptera izkārtojums).

16. Kad visu paraugu nosaukumi ir ievadīti, pārbaudiet, vai tie ir pareizi. Ja nepieciešams, laukā Notes (Piezīmes) pievienojiet papildinformāciju un pēc tam noklikšķiniet uz Start Run (Sākt izpildi) (14. attēls).

Piezīme: Ja kāda rotora pozīcija nav izmantota, tiek parādīts paziņojums "Warning" (Brīdinājums) (14. attēls), lai lietotājam atgādinātu, ka visas neizmantotās rotora pozīcijas ir jāaizpilda ar aizkorķētiem, tukšiem stobriņiem. Pārbaudiet, vai visas neizmantotās rotora pozīcijas ir aizpildītas ar aizkorķētiem, tukšiem stobriņiem, un noklikšķiniet uz **OK** (Labi), lai turpinātu.

	View											
	Setup	Ĭ		Bun	Progress			Ϋ́		A	nalysis	
This screen displays misc	ellaneous setup options for the run. Com	plete the fields and click Start Run v	then you are ready to	begin the run.								
Kit Name:	therascreen EGFR CE R	otor: 🖂	Layout of the	pipetting adapte	a:	-		_		_		_
Template Version:	RGQ PCR Kit 3.0.4			PC	NTC	Sample 1) (Sample 2) (Sample 3) (Sample 4) (Sample 5	Sample 6	Not used
Run ID: Mutat	on Analysis		_ Control	Position:1 PC Control	Position:9 NTC Control	Position:17 Sample 1 Control	Position 25 Sample 2 Control	Position:33 Sample 3 Control	Position:41 Sample 4 Control	Position:49 Sample 5 Control	Position:57 Sample 6 Control	Position 65 Not used
Import Samples Samples Samples		Rotor-Gene	Q Series Software Warning - There a	re unused Ro	tor Tubes.	X	Position:26 Sample 2 T790M	Position:34 Sample 3 T790M	Position:42 Sample 4 T790M	Position:50 Sample 5 T790M	Position:58 Sample 6 T790M	Position 66 Not used
1 Samp	e 1 e 2	-	Please fill all unus Do you wish to co	ed positions v ntinue?	with empty tu	ibes.	Position 27 Sample 2 Deletions	Position:35 Sample 3 Deletions	Position:43 Sample 4 Deletions	Position:51 Sample 5 Deletions	Position:59 Sample 6 Deletions	Position 67 Not used
3 Samp 4 Samp 5 Samp 6 Samp	e3 e4 e5 e6		_	ОК		ancel	Position 28 Sample 2 L858R	Position:36 Sample 3 L858R	Position:44 Sample 4 L858R	Position:52 Sample 5 L858R	Position:60 Sample 6 L858R	Position 68 Not used
Notes :			L861Q	Position:5 PC L861Q	Position:13 NTC L861Q	Position 21 Sample 1 L8610	Position 29 Sample 2 L861Q	Position 37 Sample 3 L8610	Position:45 Sample 4 L8610	Position:53 Sample 5 L8610	Position:61 Sample 6 L851Q	Position 69 Not used
			6719X	Position:6 PC 6719X	Position:14 NTC 6719X	Position 22 Sample 1 6719K	Position 30 Sample 2 G719K	Position 38 Sample 3 G719K	Position:46 Sample 4 G713K	Position:54 Sample 5 G719X	Position:62 Sample 6 G719K	Position 70 Not used
			\$7681	Position:7 PC S768I	Position:15 NTC S768I	Position 23 Sample 1 S768	Position 31 Sample 2 S768	Position 39 Sample 3 S768I	Position:47 Sample 4 S768I	Position:55 Sample 5 S768I	Position:63 Sample 6 S768I	Position 71 Not used
		_	Insertions	Position:8 PC Insertions	Position:16 NTC Insertions	Position 24 Sample 1 Insertions	Position 32 Sample 2 Insertions	Position:40 Sample 3 Insertions	Position:48 Sample 4 Insertions	Position:56 Sample 5 Insertions	Position:64 Sample 6 Insertions	Position 72

14. attēls. Lauks "Notes" (Piezīmes) (1), poga "Start Run" (Sākt izpildi) (2) un "Warning" (Brīdinājums) par neizmantotām rotora pozīcijām (3).

 Tiek atvērts logs "Save As" (Saglabāt kā). Ievadiet atbilstošu faila nosaukumu un saglabājiet PCR izpildi kā *.rex izpildes failu atlasītajā atrašanās vietā. Noklikšķiniet uz Save (Saglabāt) (15. attēls).

)rganize 🔻		()
Favorites	 Hard Disk Drives (1) 	
🔰 Libraries	Windows7 (C:) 145 GB free of 232 GB	
🖳 Computer	Devices with Removable Storage (8)	
🖣 Network	Network Location (11)	
File <u>n</u> ame:	therascreen EGFR CE	•
Save as <u>t</u> ype:	Run File (*.rex)	-

15. attēls. Logs "Save As" (Saglabāt kā) (1). 2 = Lauki "File Name" (Faila nosaukums) un "Save as type" (Saglabāt kā tipu); 3 = "Save" (Saglabāt).

3

Sākas PCR izpilde.

Piezīme: Kad sākas izpilde, tiek atvērta cilne "Run Progress" (Izpildes norise), rādot temperatūras pierakstu un atlikušo izpildes laiku (16. attēls).

16. attēls. Cilne "Run Progress" (Izpildes norise).

Pēc izpildes pabeigšanas tiek atvērta cilne "Analysis" (Analīze).

Piezīme: Ja cilne "Analysis" (Analīze) netiek atvērta, noklikšķiniet uz cilnes "Analysis" (Analīze) (17. attēls).

Piezīme: Aprēķināšanas metodes izskaidrojums ir sniegts sadaļā "Rezultātu interpretācija (automatizēta)".

17. attēls. Cilne "Analysis" (Analīze) (1) un rezultātu uzrādīšana. 2 = panelis "Run Controls, Positive Control" (Izpildes kontroles, pozitīvā kontrole), 3 = panelis "Run Controls, Negative Control" (Izpildes kontroles, negatīvā kontrole), 4 = "Sample Result Table" (Paraugu rezultātu tabula), 5 = panelis "Mutation Status" (Mutācijas statuss).

Testu rezultāti tiek uzrādīti, kā aprakstīts tālāk (18. attēls).

Run Controls, Positive Control (Izpildes kontroles, pozitīvā kontrole): Ja rezultāti ir pieņemamajā diapazonā, "Positive Control Status" (Pozitīvās kontroles statuss) tiek parādīts kā "Valid" (Derīgs), pretējā gadījumā rezultāts ir "Invalid" (Nederīgs).

Run Controls, Negative Control (Izpildes kontroles, negatīvā kontrole): Ja "NTC" un "Internal Control" (Iekšējā kontrole) rezultāti ir pieņemamā diapazonā, "Negative Control Status" (Negatīvās kontroles statuss) tiek parādīts kā "Valid" (Derīgs), pretējā gadījumā rezultāts ir "Invalid" (Nederīgs).

Sample Result Table (Paraugu rezultātu tabula): Mutācijas pozitīviem paraugiem kolonnā "EGFR Mutation Status" (EGFR mutācijas statuss) tiek uzrādītas konkrētas mutācijas.

 Noklikšķiniet uz Report (Pārskats), lai izveidotu pārskata failu. Tiek atvērts logs "Report Browser" (Pārskatu pārlūks). Sadaļā Templates (Veidnes) atlasiet EGFR CE Analysis Report (BRAF CE analīzes pārskats) un pēc tam noklikšķiniet uz Show (Rādīt) (18. attēls).

Piezīme: Lai pārskatu saglabātu citā atrašanās vietā tīmekļa arhīvu formātā, noklikšķiniet uz Save As (Saglabāt kā) katra pārskata augšējā kreisajā stūrī.

18. attēls. "EGFR CE Analysis Report" (EGFR CE analīzes pārskats) atlasīšana. 1 = "Report" (Pārskats), 2 = panelis "Report Browser" (Pārskatu pārlūks), 3 = "EGFR CE Analysis Report" (EGFR CE analīzes pārskats); 4 = "Show" (Rādīt).

Rezultātu interpretācija (automatizēta)

Analīzes un mutācijas nosaukšanu *therascreen* EGFR Assay Package veic automātiski, kad izpilde ir pabeigta. Tālāk sniegtajā informācijā izskaidrots, kā *therascreen* EGFR Assay Package veic analīzes un mutācijas nosaukšanu.

Piezīme: Informāciju par rezultātu manuālu analīzi skatiet sadaļā Rezultātu interpretācija (manuāli).

PCR cikls, kurā fluorescence no konkrētas reakcijas pārsniedz robežvērtību, ir definēta kā C_T vērtība. C_T vērtības norāda specifiskā ievades DNS daudzumu. Zemas C_T vērtības norāda augstākus ievades DNS līmeņus, un augstas C_T vērtības norāda zemākus ievades DNS līmeņus. Reakcijas ar C_T vērtību tiek klasificētas kā pozitīvas amplifikācijas.

Rotor-Gene Q programmatūra interpolē fluorescences signālus starp jebkurām divām reģistrētajām vērtībām. C_T vērtības var būt jebkāds īsts skaitlis (neaprobežojoties ar veseliem skaitļiem) diapazonā no 0 līdz 40. Komplektā *therascreen* EGFR RGQ PCR Kit robežvērtība ir iestatīta kā 0,075 relatīvās fluorescences vienības zaļajam (FAM) kanālam un 0,02 — dzeltenajam (HEX) kanālam. Šīs vērtības tiek automātiski konfigurētas pakotnē *therascreen* EGFR Assay Package. Izpildes kontroles (PC, NTC un IC) tiek izvērtētas, lai nodrošinātu, ka tiek sasniegtas pieņemamas C_T vērtības un reakcijas tiek pareizi izpildītas.

Paraugu ΔC_T vērtības aprēķina katram mutācijas testam izmantojot vienādojumu:

Paraugi tiek klasificēti kā pozitīvas mutācijas paraugi, ja to ΔC_T vērtība atbilst konkrētā testa ΔC_T robežvērtību diapazonam. Ja ΔC_T vērtība ir virs robežvērtību diapazona, paraugs var saturēt vai nu mazāku mutācijas procentuālo daudzumu, ko spēj noteikt *therascreen* EGFR RGQ PCR Kit (ārpus testu robežām), vai arī paraugs ir mutācijas negatīvs, un tam tiek uzrādīts rezultāts "No Mutation Detected" (Mutācija nav noteikta). Ja ΔC_T vērtība ir zem robežvērtību diapazona, paraugam tiek uzrādīts rezultāts "Invalid" (Nederīgs).

Ja mutācijas reakcijās nav amplifikācijas, iegūtais rezultāts ir "No Mutation Detected" (Mutācija nav noteikta). Paredzams, ka ΔC_T vērtības, kas aprēķinātas no fona amplifikācijas, būs lielākas par ΔC_T robežvērtību diapazona augšējo robežu, un paraugs tiek klasificēts kā "No Mutation Detected" (Mutācija nav noteikta).

Testu rezultāti tiek uzrādīti kā "Mutation Detected" (Mutācija noteikta), "No Mutation Detected" (Mutācija nav noteikta), "Invalid" (Nederīgs) vai, ja izpildes kontrole neizdodas, "Run Control Failed" (Izpildes kontrole neizdevās). Pozitīvas mutācijas paraugiem tiks uzrādītas konkrētās mutācijas. Audzējs var saturēt vairākas mutācijas. Šādos gadījumos tiek uzrādītas vairākas mutācijas.

Rotor-Gene Q therascreen EGFR Assay Package karodziņi

8. tabulā (nākamajā lappusē) norādīti iespējamie karodziņi, ko var ģenerēt Rotor-Gene Q *therascreen* EGFR Assay Package, to nozīme un veicamās darbības.

Karodziņu nosaukumi ir izveidoti tā, lai sniegtu informāciju par komplekta skarto komponentu, skarto paraugu vai kontroli un kļūmes režīmu.

Piemēri:

- PC_CTRL_ASSAY_FAIL = pozitīvā kontrole (PC), kontroles tests (CTRL_ASSAY) neizdevās (FAIL)
- NTC_INT_CTRL_FAIL = kontrole bez matricas (NTC), iekšējā kontrole (INT_CTRL) neizdevās (FAIL)
- SAMPLE_CTRL_HIGH_CONC = paraugs (SAMPLE), kontroles testā (CTRL) ir augsta koncentrācija (HIGH_CONC)

8. tabula. Karodziņi, to nozīme un veicamās darbības

Karodziņš	Nozīme	Darbība
PC_CTRL_ASSAY_FAIL	PCR izpilde nederīga — FAM C⊤ vērtība pozitīvajai kontrolei ārpus diapazona kontroles reakcijā.	Atkārtojiet visu PCR izpildi.
PC_MUTATION_ ASSAY_FAIL	PCR izpilde nederīga — FAM C⊤ vērtība ārpus diapazona vienā vai vairākās mutācijas kontroles reakcijās.	Atkārtojiet visu PCR izpildi.
PC_CTRL_INVALID_ DATA	PCR izpilde nederīga — fluorescences datus pozitīvajā kontrolē (kontroles reakcijas maisījums) nevar interpretēt.	Atkārtojiet visu PCR izpildi, īpašu uzmanību pievēršot samaisīšanas darbībām.
PC_MUTATION_ INVALID_DATA	PCR izpilde nederīga — fluorescences datus pozitīvajā kontrolē (mutācijas reakcijas maisījums) nevar interpretēt.	Atkārtojiet visu PCR izpildi, īpašu uzmanību pievēršot samaisīšanas darbībām.
NTC_INT_CTRL_FAIL	PCR izpilde nederīga — negatīvajā kontrolē iekšējās kontroles vērtība virs diapazona.	Atkārtojiet visu PCR izpildi.
NTC_INT_CTRL_ EARLY_CT	PCR izpilde nederīga — negatīvajā kontrolē iekšējās kontroles vērtība zem diapazona.	Atkārtojiet visu PCR izpildi.
NTC_INVALID_CT	PCR izpilde nederīga — negatīvajā kontrolē FAM vērtība nederīga (mazāka par ierobežojumu).	Atkārtojiet visu PCR izpildi, īpašu uzmanību pievēršot samaisīšanas darbībām.
NTC_INVALID_DATA	PCR izpilde nederīga — fluorescences datus negatīvajā kontrolē nevar interpretēt.	Atkārtojiet visu PCR izpildi, īpašu uzmanību pievēršot samaisīšanas darbībām.
SAMPLE_CTRL_ INVALID_DATA	Paraugs nederīgs — fluorescences datus parauga kontrolē nevar interpretēt.	lestatiet jaunu PCR izpildi, lai atkārtotu attiecīgo paraugu apstrādi, īpašu uzmanību pievēršot samaisīšanas darbībām.
SAMPLE_CTRL_ HIGH_CONC	Paraugs nederīgs — FAM C _T vērtība pārāk zema parauga kontrolē.	Atšķaidiet paraugu, lai palielinātu kontroles C_T vērtību. Šis atšķaidījums ir jāaprēķina ar pieņēmumu, ka, atšķaidot attiecībā 1:1 ar komplektā iekļauto ūdeni, C_T vērtība pieaugs par 1,0; kad paraugs ir atšķaidīts, iestatiet jaunu mutācijas izvērtēšanas izpildi, lai atkārtotu parauga apstrādi. Vai arī, ja paraugs atšķaidīts pēc DNS parauga izvērtēšanas izpildes, pārejiet tieši pie EGFR mutācijas noteikšanas izpildes ar atšķaidīto paraugu.

Karodziņš	Nozīme	Darbība
SAMPLE_CTRL_FAIL	Paraugs nederīgs — FAM C _T vērtība pārāk augsta parauga kontroles reakcijā.	lestatiet jaunu PCR izpildi, lai atkārtotu parauga apstrādi. Ja atkārtotā PCR izpildē paraugs ir nederīgs un DNS daudzums joprojām nav pietiekams, ekstrahējiet vēl 2 FFPE audu sekcijas, ja iespējams. lestatiet jaunu PCR izpildi, lai testētu šo ekstrahēto paraugu. Ja paraugs ir nederīgs, atkārtojiet PCR izpildi ar otro ekstrahēto paraugu. Ja pēc šīs izpildes paraugs neuzrāda derīgu rezultātu, paraugam tiek piešķirts nenosakāmas mutācijas statuss, un tālāka testēšana nav jāveic.
SAMPLE_INT_CTRL_ FAIL	C⊤ vērtība pārāk augsta (vai nav C⊤) iekšējā kontrolē (HEX), FAM kanāls mutācijas negatīvs.	Paraugiem, kam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš un klīniski nozīmīgā mutācijas reakcijas maisījumā ir noteikta (vai nav noteikta) mutācija, uzrādiet rezultātus, papildu testēšana nav vajadzīga. Atšķaidiet paraugu ar komplektā iekļauto ūdeni ar pieņēmumu, ka, atšķaidot attiecībā 1:1, kontroles reakcijas Cr vērtība pieaugs par 1,0, nodrošinot galīgo tilpumu > 40 µl (piemēram, 40 µl DNS un 40 µl ūdens no stobriņa ar marķējumu "DIL"). Iestatiet jaunu PCR izpildi, lai atkārtotu parauga apstrādi. Ja tas ir nederīgs atkārtotā PCR izpildē, ekstrahējiet paraugu no vēl divām FFPE sekcijām. Iestatiet jaunu PCR izpildi, lai testētu šo ekstrahēto paraugu. Ja otrais ekstrahētais paraugs ir nederīgs, atšķaidiet, kā aprakstīts iepriekš. Ja pēc šīs izpildes paraugs neuzrāda derīgu rezultātu, paraugam tiek piešķirts nenosakāmas mutācijas statuss. un tālāka testēšana nav iāveic
SAMPLE_INT_CTRL_ EARLY_CT	Mutācijas stobriņš nederīgs — C⊤ HEX vērtība paraugā pārāk zema (iekšējā kontrole).	Paraugiem, kam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš un klīniski nozīmīgā mutācijas reakcijas maisījumā ir noteikta (vai nav noteikta) mutācija, uzrādiet rezultātus, papildu testēšana nav vajadzīga. Iestatiet jaunu PCR izpildi, lai atkārtotu parauga apstrādi. Ja tas ir nederīgs atkārtotā PCR izpildē, ekstrahējiet vēl 2 FFPE audu sekcijas, ja iespējams. Iestatiet jaunu PCR izpildi, lai testētu šo ekstrahēto paraugu. Ja tas ir nederīgs, atkārtojiet PCR izpildi ar otro ekstrahēto paraugu. Ja pēc šīs izpildes paraugs neuzrāda derīgu rezultātu, paraugam tiek piešķirts nenosakāmas mutācijas statuss, un tālāka testēšana nav jāveic.

Tabulas turpinājums no iepriekšējās lappuses

Karodziņš	Nozīme	Darbība
SAMPLE_INVALID_ DATA	Mutācijas stobriņš nederīgs — fluorescences datus iekšējā kontrolē nevar interpretēt.	Paraugiem, kam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš un klīniski nozīmīgā mutācijas reakcijas maisījumā ir noteikta (vai nav noteikta) mutācija, uzrādiet rezultātus, papildu testēšana nav vajadzīga. Iestatiet jaunu PCR izpildi, lai atkārtotu parauga
		apstrādi. Ja tas ir nederīgs atkārtotā PCR izpildē, ekstrahējiet vēl 2 FFPE audu sekcijas, ja iespējams. Iestatiet jaunu PCR izpildi, lai testētu šo ekstrahēto paraugu. Ja tas ir nederīgs, atkārtojiet PCR izpildi ar otro ekstrahēto paraugu. Ja pēc šīs izpildes paraugs neuzrāda derīgu rezultātu, paraugam tiek piešķirts nenosakāmas mutācijas statuss, un tālāka testēšana nav jāveic.
SAMPLE_POSITIVE_ AND_INVALID	Viena vai vairākas mutācijas paraugā ir pozitīvas, vienlaikus viena vai vairākas mutācijas tam pašam paraugam ir	Paraugiem, kam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš un klīniski nozīmīgā mutācijas reakcijas maisījumā ir noteikta (vai nav noteikta) mutācija, uzrādiet rezultātus, papildu testēšana nav vajadzīga.
	nederīgas.	Ja paraugam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš ar rezultātu INVALID (Nederīgs), kas iegūts klīniski nozīmīgā mutācijas reakcijas maisījumā, paraugu vēlreiz testējiet ar visiem reakciju maisījumiem, izpildot konkrētā nederīgā karodziņa darbību.
		Ja ietekmētajam paraugam SAMPLE_INT_CTRL_FAIL karodziņš ģenerēts kopā ar citu karodziņu, tad jāizpilda SAMPLE_INT_CTRL_FAIL karodziņa parauga atšķaidīšanas darbība. Iestatiet jaunu PCR izpildi un vēlreiz testējiet paraugu.
		Ja paraugam ģenerēts SAMPLE_POSITIVE_AND_ INVALID karodziņš ar rezultātu INVALID (Nederīgs), kas iegūts klīniski nozīmīgā mutācijas reakcijas maisījumā atkārtotajā PCR izpildē, ekstrahējiet paraugu no vēl 2 FFPE sekcijām. Iestatiet jaunu PCR izpildi ar visiem reakciju maisījumiem, lai testētu šo ekstrahēto paraugu.
		Ja šim paraugam klīniski nozīmīgā mutācijas reakcijas maisījumā vēlreiz iegūst nederīgu rezultātu, paraugu vēlreiz apstrādājiet ar visiem reakciju maisījumiem, izpildot konkrētā nederīgā karodziņa darbību. Ja ietekmētajam paraugam SAMPLE_INT_CTRL_FAIL ģenerēts kopā ar citu karodziņu, tad jāizpilda SAMPLE_INT_CTRL_FAIL karodziņa parauga atšķaidīšanas darbība. Iestatiet jaunu PCR izpildi un vēlreiz testējiet šo paraugu.
		Ja šajā atkārtotajā testēšanā novēro SAMPLE_POSITIVE_AND_INVALID karodziņu, paraugam tiek piešķirts nenosakāmas mutācijas statuss.

Tabulas turpinājums no iepriekšējās lappuses

Karodziņš	Nozīme	Darbība
MUTATION_EARLY_CT	Paraugs nederīgs — ∆C⊤ vērtība pārāk zema vai C⊤ vērtība ir zem robežvērtību diapazona.	lestatiet jaunu PCR izpildi, lai atkārtotu parauga apstrādi, īpašu uzmanību pievēršot samaisīšanas darbībām.

Tabulas turpinājums no iepriekšējās lappuses

Norādījumi par problēmu novēršanu

Šie norādījumi par problēmu novēršanu var palīdzēt atrisināt radušās problēmas. Vairāk informācijas skatiet arī lapā "Biežāk uzdotie jautājumi" (Frequently Asked Questions, FAQ), kas pieejama mūsu tehniskā atbalsta centra vietnē: **www.qiagen.com/FAQ/FAQList.aspx**. QIAGEN tehniskā atbalsta darbinieki vienmēr labprāt atbildēs uz visiem jūsu jautājumiem par šajā rokasgrāmatā sniegto informāciju un protokoliem vai par paraugu un testu tehnoloģijām (kontaktinformāciju skatīt uz aizmugurējā vāka vai vietnē **www.qiagen.com**).

Komentāri un ieteikumi

NTC paraugi uzrāda pozitīvu rezultātu Green FAM kanālā

PCR sagatavošanas laikā ir radusies kontaminācija	Atkārtojiet PCR, atkārtojumos izmantojot jaunus reaģentus.
	Ja iespējams, noslēdziet PCR stobriņus uzreiz pēc testējamā parauga pievienošanas.
	Nodrošiniet, lai regulāri tiek veikta darba vietas un instrumentus dekontaminēšana.

Nav signāla, izmantojot EGFR pozitīvo kontroli

a)	PCR datu analīzei atlasītais fluorescences kanāls neatbilst protokolam	Datu analīzei atlasiet fluorescences kanālu Cycling Green attiecībā uz analītisko EGFR PCR un fluorescences kanālu Cycling Yellow attiecībā uz iekšējās kontroles PCR.
b)	Nepareizi programmēts Rotor Gene Q MDx 5plex HRM instrumenta temperatūras profils	Salīdziniet temperatūras profilu ar protokolu. Ja tas ir nepareizs, atkārtojiet izpildi
c)	Nepareiza PCR konfigurācija	Pārbaudiet veiktās darbības, izmantojot pipetēšanas shēmu, un, ja nepieciešams, atkārtojiet PCR.

Komentāri un ieteikumi

 d) Viena vai vairāku komplekta komponentu uzglabāšanas apstākļi neatbilda norādījumiem, kas sniegti šeit: "Reaģentu glabāšana un lietošana" (18. lpp.)
 e) Beidzies *therascreen* Pārbaudiet reaģentu uzglabāšanas apstākļus un derīguma termiņu (skatīt

EGFR RGQ PCR Kit derīguma termiņš Pārbaudiet reaģentu uzglabāšanas apstākļus un derīguma termiņu (skatīt komplekta etiķeti) un, ja nepieciešams, izmantojiet jaunu komplektu.

Kvalitātes kontrole

Atbilstoši ISO prasībām sertificētajai QIAGEN kvalitātes vadības sistēmai katra *therascreen* EGFR RGQ PCR Kit partija ir testēta, salīdzinot ar iepriekš noteiktām specifikācijām, lai nodrošinātu pastāvīgu produkta kvalitāti.

lerobežojumi

Ar produktu iegūtie rezultāti ir jāinterpretē kopā ar visiem saistītajiem klīniskajiem un laboratoriskiem konstatējumiem, un tos nevar izmantot savrupi diagnozes noteikšanai.

Produktu drīkst izmantot tikai personāls, kas speciāli instruēts un apmācīts in vitro diagnostikas procedūrām un Rotor-Gene Q MDx 5plex HRM instrumentu izmantošanai.

Produkts ir paredzēts izmantošanai tikai Rotor-Gene Q MDx 5plex HRM real-time PCR amplifikatorā.

Lai iegūtu optimālus rezultātus, stingri jāievēro *therascreen EGFR RGQ PCR Kit rokasgrāmatā* sniegtie norādījumi. Reaģentu atšķaidīšana, izņemot tos gadījumus, kas aprakstīti šajā rokasgrāmatā, nav ieteicama, un tā samazinās komplekta veiktspēju.

Svarīgi, lai paraugā esošās DNS daudzums un kvalitāte tiktu izvērtēta pirms parauga analīzes, izmantojot *therascreen* EGFR RGQ PCR Kit. Komplektā iekļauts papildu kontroles reakcijas maisījums, lai noteiktu, vai C_T vērtība ir pieņemama testam. Absorbcijas rādītājus nedrīkst izmantot, jo tiem nav korelācijas ar C_T vērtībām fragmentētajos DNS paraugos.

Praimeri EGFR Deletions Reaction maisījumā ir paredzēti, lai noteiktu vairākas 19. eksona delēcijas, aptverot nukleotīdus no 55174772 līdz 55174795 (GRCh38 chr7) 23 bp diapazonā.

Lai gan 19. eksona delēciju tests ir analītiski apstiprināts un ir pierādīts, ka tas nosaka 14 norādītās delēcijas 19. eksonā (skatiet sarakstu šīs rokasgrāmatas 1. tabulā), tomēr delēciju praimeru komplekts var amplificēt papildu mutācijas (tostarp, bet ne tikai papildu 19. eksona delēcijas, 19. eksona insercijas un L747P mutāciju).

Ja šādas papildu mutācijas ir, konkrētā pacienta parauga rezultāts būs "Deletions Detected" (Delēcijas noteiktas).

Ar L858R testu var noteikt arī L858Q mutāciju. Tāpēc, ja pacienta paraugā ir L858Q mutācija, rezultāts var būt "L858R Detected" (L858R noteikta).

Pievērsiet uzmanību derīguma termiņiem un uzglabāšanas nosacījumiem, kas norādīti uz kastītes un visu komponentu etiķetēm. Neizmantojiet nederīgus vai nepareizi uzglabātus komponentus.

Veiktspējas raksturojums

Analītiskā veiktspēja

therascreen EGFR RGQ PCR Kit īpašo veiktspējas raksturojumu noteica pētījumos, izmantojot FFPE audu paraugus, kas paņemti no NSŠPV pacientiem, un FFPE cilvēka šūnu līnijas (FFPE šūnu līnijas). FFPE šūnu līnijas ģenerēja, izmantojot plaušu karcinomas šūnu līniju (A549), lai iegūtu šūnu līnijas ar vēlamajām konkrētajām EGFR mutācijām. Ja audu paraugs vai šūnu līnijas nebija pieejamas, izmantoja plazmīdas DNS.

Tukšo paraugu robežvērtība (Limit of Blank, LOB), darbības diapazons, robežvērtības un ΔC_T robežvērtību diapazoni

Kopā 417 FFPE paraugus testēja pētījumā, ievērojot NCCLS EP17-A (2004) (12) vadlīnijas, lai noteiktu katra mutācijas testa LOB un ΔC_T robežvērtības. Noteica arī darbības diapazonu. ΔC_T robežvērtību diapazoni ir attēloti 9. tabulā.

Tests	C⊤ diapazons	ΔC_T robežvērtību diapazons (ΔC_T)
T790M	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 7,40
Delēcijas	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 8,00
L858R	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 8,90
L861Q	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 8,90
G719X	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 8,90
S768I	No 0,00 līdz 40,00	No –10,00 ≥ līdz ≤ 8,90
Insercijas	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,00

9. tabula. Katra mutācijas testa iegūtie /	∆C⊤ robežvērtību diapazoni
--	----------------------------

Kontroles reakcijas C_T diapazonu noteica kā no 23,70 līdz 31,10 C_T .

Testa robežvērtības as un darbības diapazonus verificēja, izmantojot standartus un papildu FFPE paraugus. Šīs verificēšanas laikā robežvērtības tika izvērtētas, lai pārbaudītu iespēju noteikt pareizu mutāciju savvaļas tipa DNS fonā, izvērtējot katru testu ar lielu genoma DNS ievadi un lielu mutācijas DNS ievadi (skatiet šeit: Krusteniskā reakcija). Tika izvērtēts arī DNS ievades efekts uz mutācijas nosaukšanu (skatiet šeit: DNS ievades ietekme uz ΔCT vērtībām). Ir noteikta diapazona apakšējā robeža, lai izslēgtu PCR fluorescences artefaktu.

Lai izvērtētu *therascreen* EGFR RGQ PCR Kit veiktspēju, neizmantojot matrici, un nodrošinātu, ka tukšais paraugs vai paraugs ar savvaļas tipa DNS neģenerē analītisku signālu, kas var norādīt uz zemu mutācijas koncentrāciju, novērtēja paraugus bez matrices un NSŠPV EGFR savvaļas tipa DNS. Rezultāti neuzrādīja pozitīvas mutācijas nosaukšanu NTC paraugiem un FFPE savvaļas tipa paraugiem.

DNS ievades ietekme uz ΔC_T vērtībām

DNS ievades līmenis ir definēts kā amplificējamās EGFR DNS kopējais daudzums paraugā, ko nosaka pēc C_T vērtībām no kontroles reakcijas. Lai pierādītu, ka *therascreen* EGFR RGQ PCR Kit veiktspēja ir konsekventa visā kontroles reakcijas C_T diapazonā (23,70–31,10), visus 7 EGFR mutāciju testus testēja, salīdzinot ar 6 punktu 1 no 3 atšķaidījumu sērijām (DNS ekstrahēta no FFPE šūnu līnijām). Mērķa C_T katras mutācijas 1. atšķaidījumam bija aptuveni 24,70. Galīgais atšķaidījums, kam iegūtā C_T vērtība bija aptuveni 32–33, bija ārpus kontroles reakcijas C_T diapazona. Kopumā Δ C_T vērtības, ko noteica dažādos kopējās DNS ievades līmeņos, bija konsekventas visā *therascreen* EGFR RGQ PCR Kit darba diapazonā.

Krusteniskā reakcija

Savvaļas tipa EGFR DNS ar augstu DNS ievadi testēja, lai izvērtētu nespecifisku amplifikāciju. Rezultāti uzrādīja, ka zemākās ΔC_T vērtības pārsniedza iegūtās robežvērtības, un tas liecina, ka nav nespecifiskas amplifikācijas.

FFPE šūnu līnijas ar augstu DNS ievadi testēja, salīdzinot ar visiem reakciju maisījumiem, lai izvērtētu iespējamo krustenisko reakciju. Rezultāti neuzrādīja ietekmi, jo starp mutantām reakcijām bija krusteniskās reakcijas. Visas minimālās ∆C⊤ vērtības bija augstākas par visu neatbilstošo reakciju maisījumu un DNS paraugu attiecīgo testu robežvērtībām.

Pareizība: salīdzinājums ar analītiskās references metodi

Pētījumā tika pierādīta atbilstība starp mutāciju noteikšanu ar *therascreen* EGFR RGQ PCR Kit un divvirzienu Sanger sekvencēšanu. Šajā pētījumā testēja 360 FFPE paraugus.

Paraugi ar derīgiem Sanger un *therascreen* EGFR RGQ PCR Kit rezultātiem tika analizēti, lai izvērtētu pozitīvo procentuālo sakritību (PPA), negatīvo procentuālo sakritību (NPA) un kopējo procentuālo sakritību (OPA). Šīs procentuālās vērtības kopā ar atbilstošajiem divpusējiem 95% ticamības intervāliem (TI) ir apkopotas 10. tabulā.

10. tabula. Sakritības analīze

Mērījums	Procentuālais saskaņojums (N)	95% TI
Pozitīvā procentuālā sakritība	99,4% (157/158)	96,5%-100,0%
Negatīvā procentuālā sakritība	86,6% (175/202)	81,2%–91,0%
Kopējā procentuālā sakritība	92,2% (332/360)	89,0%–94,8%

28 pretrunīgie kopējās procentuālās sakritības rezultāti

- 1 (3,6%) paraugam, analizējot ar *therascreen* EGFR RGQ PCR Kit, bija savvaļas tipa rezultāts (respektīvi, No Mutation Detected (Mutācija nav noteikta)), taču Sanger sekvencēšana uzrādīja rezultātu ar noteiktu mutāciju.
- 27 (96,4%) paraugiem, analizējot ar *therascreen* EGFR RGQ PCR Kit, noteica mutāciju, taču Sanger sekvencēšana uzrādīja rezultātus ar savvaļas tipa mutāciju.

Kvalitatīvās noteikšanas robežas (LOD) vērtības

Tika veikts pētījums, lai noteiktu LOD katrai no 29 EGFR mutācijām. LOD definēja kā mazāko mutantas DNS daudzumu savvaļas tipa DNS fonā, kuru sasniedzot, mutanta paraugs uzrādīs mutācijas pozitīvus rezultātus 95% testa rezultātu (C_{95}).

Lai noteiktu katras mutācijas LOD, paraugus ar atšķirīgu mutācijas procentuālo vērtību sagatavoja ar zemu un augstu DNS ievades koncentrāciju un testēja ar *therascreen* EGFR RGQ PCR Kit (11. tabula). LOD katram testam aprēķināja, izmantojot loģistiskās regresijas metodi. Lai apstiprinātu LOD vērtību, testēja mutācijas paraugus ar noteikto LOD vērtību, un apstiprināja pozitīvo testu rādītājus.

				<u>LOD (%</u>	<u>mutanta)</u>
Eksons	Mutācija	COSMIC* ID	Bāzes izmaiņas	Zema	Augsta
18	G719A	6239	2156G>C	7,41†	1,57 [†]
	G719S	6252	2155G>A	5,08 [‡]	7,75 [§]
	G719C	6253	2155G>T	10,30 [‡]	_1
19	Delēcijas	12384	2237_2255>T	1,58 [§]	0,49 [§]
		12387	2239_2258>CA	4,91†	1,48 [†]
		12419	2238_2252>GCA	16,87†	12,47†
		12422	2238_2248>GC	3,24†	1,65†
		13551	2235_2252>AAT	4,24†	1,41†
		12678	2237_2251del15	0,55 [§]	0,24§
		6218	2239_2247del9	8,47†	_1
		12728	2236_2253del18	2,43†	_1
		12367	2237_2254del18	2,72†	_1
		6210	2240_2251del12	4,09†	_1
		6220	2238_2255del18	2,70†	0,82†
		6223	2235_2249del15	6,40†	1,63 [†]
		6225	2236_2250del15	2,80†	1,42†
		6254	2239_2253del15	0,86 [§]	0,47 [§]
		6255	2239_2256del18	0,14§	0,05§
		12369	2240_2254del15	4,94 [§]	1,56 [§]
		12370	2240_2257del18	8,10 [§]	2,08§
		12382	2239_2248TTAAGAGAAG>C	0,25 [§]	0,10§
		12383	2239_2251>C	4,58 [§]	1,74 [§]

11. tabula. Noteiktā LOD, izmantojot zemas un augstas DNS ievades FFPE klīniskos paraugus, FFPE šūnu līnijas vai plazmīdas

				LOD (%)	<u>mutanta)</u>
Eksons	Mutācija	COSMIC* ID	Bāzes izmaiņas	Zema	Augsta
20	S768I	6241	2303G>T	7,66†	2,18 [†]
	Insercijas	12376	2307_2308insGCCAGCGT G	11,61†	_1
		12378	2310_2311insGGT	4,91†	1,31†
		12377	2319_2320insCAC	2,40†	0,65†
	T790M	6240	2369C>T	9,72†	5,09 [†]
21	L858R	6224	2573T>G	5,94†	1,13 [†]
	L861Q	6213	2582T>A	2,22†	0,66†

* COSMIC: Vēža somatisko mutāciju katalogs: http://cancer.sanger.ac.uk/.

[†] LOD vērtības noteica, izmantojot šūnu līnijas.

[‡] LOD vērtības noteica, izmantojot plazmīdas.

§ LOD vērtības noteica, izmantojot klīniskos paraugus.

[¶] Nav izvērtēts.

Interference

Atmirušu audu ietekme

NSŠPV FFPE klīniskie paraugi ar atmirušiem audiem līdz 50% — gan EGFR mutanti, gan savvaļas tipa paraugi — netraucēja *therascreen* EGFR RGQ PCR Kit rezultātu nosaukšanai.

Eksogēnās vielas

Potenciālās interferējošās vielas, kas ir klātesošas DNS ekstrahēšanas procesā, testēja mutantu un savvaļas tipa paraugos 10 x lielākā koncentrācijā: parafīna vasku, ksilolu, etanolu un proteināzi K. Rezultāti uzrādīja, ka šīs vielas netraucē *therascreen* EGFR RGQ PCR Kit rezultātu nosaukšanai.

Reproducējamība

Partiju savstarpējā reproducējamība

therascreen EGFR RGQ PCR Kit testu sistēma izmanto divus atsevišķus komplektus: QIAamp DSP DNA FFPE Tissue Kit vai QIAamp DNA FFPE Tissue Kit, lai izolētu DNS, un *therascreen* EGFR RGQ PCR Kit, lai amplificētu DNS un noteiktu EGFR mutācijas statusu. Partiju savstarpējo reproducējamību un aizstājamību pierādīja, izmantojot 3 QIAamp DSP DNA FFPE Tissue Kit partijas un 3 *therascreen* EGFR RGQ PCR Kit partijas. Kopējais pareizu nosaukšanu procentuālais daudzums visām partijām EGFR mutācijas testam bija 97,8% (317/324) un savvaļas tipa paraugiem bija 100% (379/379).

Paraugu lietošana

QIAamp DSP DNA FFPE Tissue Kit reproducējamību pārbaudīja, izmantojot sekcijas no trim FFPE paraugu blokiem, īpaši 19. eksona delēcijas mutāciju (2235-2249 del15), 21. eksona L858R mutāciju un vienu savvaļas tipu. Katru paraugu ekstrahēja divas reizes 3 pētījumu vietās un testēja 3 nesecīgas dienas 6 dienu periodā, katram paraugam iegūstot pavisam 18 datu punktus. Katrā pētījumu vietā 2 operatori veica testēšanu, izmantojot 1 partiju QIAamp DSP DNA FFPE Tissue Kit (1 partija katrā vietā, pavisam 3 partijas) kopā ar vienu un to pašu partiju *therascreen* EGFR RGQ PCR Kit reaģentu visās pētījumu vietās. Visi mutanto un savvaļas tipa paraugu rezultāti bija derīgi, un ieguva paredzēto rezultātu nosaukšanu (pareiza nosaukšana = 100%, 18/18 katram paraugam), atbalstot *therascreen* EGFR RGQ PCR Kit reproducējamību un atkārtojamību DNS izolēšanas pirmsanalītiskajā darbībā.

Precizitāte un reproducējamība

therascreen EGFR RGQ PCR Kit precizitāti un reproducējamību pētīja, testējot DNS, kas ekstrahēta no NSŠPV FFPE klīniskajiem paraugiem vai FFPE šūnu līnijām, aptverot visus septiņus mutāciju testus no komplekta *therascreen* EGFR RGQ PCR Kit. Pētījumā iekļāva arī NSŠPV savvaļas tipa FFPE klīniskos paraugus (12. tabula).

Matricas pētījuma modelis tika ieviests, lai izvērtētu testa reproducējamību, testējot paraugus 3 laboratorijās (pētījumu vietās) ar *therascreen* EGFR RGQ PCR Kit 3 partijām (3 partijas 3 pētījumu vietās), strādājot 2 operatoriem katrā pētījumu vietā, 2 instrumentos katrā pētījumu vietā, katru paraugu (kas sagatavoti LOD tuvā koncentrācijā) testējot divas reizes kopumā 16 dienu laikā. Katras atsevišķas mutācijas reproducējamību pētīja nesecīgās dienās katrā pētījumu centrā. Pareizo nosaukšanu proporcija ir attēlota 12. tabulā nākamajā lappusē.

			Nosaukšana		Pareiza, %
Eksons	Mutācija	COSMIC* ID	Pareiza/kopā	Pareiza, %	Vienpusējā 95% TI apakšējā vērtība
18	G719A	6239	77/78	98,72	94,06
19	Delēcijas	12384	92/92	100	96,80
		12387	95/95	100	96,90
		12419	83/83	100	96,46
		12422	94/94	100	96,86
		13551	95/95	100	96,90
		6220	96/96	100	96,93
		6223	95/95	100	96,90
		6225	91/95	95,79	90,62
		6254	92/92	100	96,80
		6255	94/96	97,92	93,59
		12369	95/95	100	96,90
		12370	62/63	98,41	92,69
		12382	92/95	96,84	92,04
		12383	93/93	100	96,83
20	S768I	6241	82/82	100	96,41
	Insercijas	12376	92/92	100	96,80
		12378	93/93	100	96,83
		12377	94/94	100	96,86
	T790M	6240	92/92	100	96,80
21	L858R	6224	83/84	98,81	94,48
	L861Q	6213	84/84	100	96,50
Savvaļas tips	_	-	77/78	98,72	94,06

12. tabula. Testa reproducējamība — testēto EGFR mutāciju pareizo nosaukšanu proporcija

* COSMIC: Vēža somatisko mutāciju katalogs: http://cancer.sanger.ac.uk/.

Dispersijas komponentu analīzi izmantoja, lai aprēķinātu mainīguma standarta novirzi un 95% ticamības intervālus izpildē, starp izpildēm, starp dienām, starp partijām un starp pētījumu centriem. Visu dispersijas komponentu kopējais variācijas koeficients (VK) visām testētajām EGFR mutācijām bija ≤ 14,11%. Visiem mutantu paneļa elementiem VK procents starp partijām, starp dienām un starp izpildēm bija ≤ 8,33%. Izpildes mainīguma (atkārtojamības/precizitātes) VK procents bija diapazonā no 5,99% līdz 13,49%.

Klīniskā veiktspēja

Klīnisko rezultātu dati: GIOTRIF®

Klīniskais pētījums LUX-Lung 3 bija starptautisks, daudzcentru, atklāts, randomizēts 3. fāzes pētījums par afatiniba salīdzinājumā ar ķīmijterapiju kā pirmās izvēles terapiju pacientiem ar IIIB vai IV stadijas plaušu adenokarcinomu ar EGFR aktivizējošu mutāciju (ClinicalTrials.gov Nr. NCT00949650). Pacienta atbilstību iekļaušanai pētījumā noteica, pacientam testējot EGFR mutācijas statusu atbilstoši klīniskā izmēģinājuma testam (Clinical Trial Assay, CTA). Audu paraugus retrospektīvi testēja, izmantojot *therascreen* EGFR RGQ PCR Kit. Saistītu pētījumu veica, lai izvērtētu atbilstību starp *therascreen* EGFR RGQ PCR Kit un CTA.

Pamatojoties uz CTA testu rezultātiem, 345 pacienti bija randomizētajā kopā (afatinibs: 230 pacienti; ķīmijterapija: 115 pacienti). Primārais efektivitātes rezultāts bija dzīvildze bez slimības progresēšanas (Progression-Free Survival, PFS), ko vērtēja neatkarīga vērtēšanas komiteja (Independent Review Committee, IRC). No 345 randomizētajiem pacientiem retrospektīvi testēja 264 pacientu (afatinibs: 178 pacienti; ķīmijterapija: 86 pacienti) audzēja paraugus, izmantojot *therascreen* EGFR RGQ PCR Kit. Statistiski nozīmīgu PFS uzlabojumu, ko noteica IRC, novēroja pacientiem, kurus randomizēja afatiniba grupā, salīdzinot ar pacientiem, kurus randomizēja ķīmijterapijas grupā, vispārējā CTA+ populācijā un *therascreen* EGFR RGQ PCR Kit+/CTA+ populācijā. Kopējo efektivitātes rezultātu kopsavilkums sniegts 13. tabulā un 19. attēlā.

13. tabula. Ar therascreen EGFR RGQ PCR Kit testēto pacientu klīniskie ieguvumi klīniskā pētījuma LUX-Lung 3 populācijā

	<i>therascreen</i> EGFR RGQ PCR Kit+/ CTA+ populācija n = 264		CTA+ populācija, n = 345	
Parametrs	Ķīmijterapija n = 86	Afatinibs n = 178	Ķīmijterapija n = 115	Afatinibs n = 230
Dzīvildze bez slimības progresēšanas (PFS)				
Nāves gadījumu vai progresēšanas skaits, N (%)	53 (61,6%)	120 (67,4%)	69 (60,0%)	152 (66,1%)
PFS mediāna (mēneši)	6,9	11,2	6,9	11,1
PFS mediāna 95% TI	5,3; 8,2	9,7; 13,7	5,4; 8,2	9,6; 13,6
Riska koeficients	0,49		0,58	
Riska attiecība 95%	0,35; 0,69		0,43; 0,78	
P vērtība (stratificētais log-rank tests)*	< 0,0001		< 0,001	

* Stratificēts pēc EGFR mutācijas statusa un rases.

19. attēls. Dzīvildzes bez slimības progresēšanas (PFS) Kaplana-Meijera līkne, kas novērtēta neatkarīgajā vērtēšanā, pa ārstēšanas grupām (*therascreen* EGFR RGQ PCR Kit+/CTA+ populācija).

therascreen EGFR RGQ PCR Kit+/CTA+ apakšgrupas (n = 264) analīzē atklājās, ka pacientiem, ko ārstēja ar afatinibu, nozīmīgi pieauga PFS laiks (PFS mediāna 11,2, salīdzinot ar 6,9 mēnešiem) un ka viņiem ir mazāka slimības progresēšanas vai nāves iespējamība (RK = 0,49, 95% TI [0,35; 0,69], p < 0,0001) nekā ar ķīmijterapiju ārstētajiem pacientiem. Pacientu apakšgrupai, ko testēja ar *therascreen* EGFR RGQ PCR Kit, konstatētais klīniskais ieguvums bija salīdzināms ar pilna pētījuma populācijai (n = 345) novēroto ieguvumu.

Klīnisko rezultātu dati: IRESSA®

Pētījums IRESSA Follow-up Measure (IFUM) bija atklāts, vienas grupas 4. fāzes pētījums (NCT01203917), kurā raksturoja pirmās izvēles gefitiniba efektivitāti un drošumu/panesību baltās rases pacientiem ar IIIA/B/IV stadijas EGFR mutācijas pozitīvu lokāli progresējošu vai metastātisku NSŠPV. Pētījumā IFUM bija paredzēts novērtēt objektīvo atbildes reakcijas rādītāju atbilstoši RECIST kritērijiem prospektīvi izvēlētiem EGFR mutanta NSŠPV baltās rases pacientiem.

Dalības kritērijiem atbilstošiem pacientiem bija jābūt delēcijai EGFR 19. eksonā, L858R, L861Q vai G719X punktveida mutācijā un nevienai T790M vai S768l mutācijai vai 20. eksona insercijām audzēja paraugos, ko prospektīvi noteica CTA. Retrospektīva paraugu testēšana no pacientiem, kuriem tika veikts skrīnings klīniskajam pētījumam IFUM, tika izpildīta ar papildu diagnostikas komplektu *therascreen* EGFR RGQ PCR Kit. Tika veikts saistīts klīniskais pētījums, lai izvērtētu *therascreen* EGFR RGQ PCR Kit atbilstību CTA, ko izmantoja pacientu atlasīšanai klīniskajam pētījumam IFUM. Abu testu vispārējā atbilstība EGFR 19. eksona delēciju un L858R mutācijas noteikšanai bija 98,2% (n = 700/713; 95% TI: 96,9%; 99,0%), PPA bija 88,2% (n = 90/102; 95% TI: 80,4%; 93,8%) un NPA bija 99,8% (n = 610/611; 95% TI: 99,1%; 100,0%).

CTA testa rezultātus ieguva par 859 atlasītajiem pacientiem, no tiem 106 pacientiem bija piemērota ārstēšana ar gefitinibu. No 859 paraugiem ar CTA rezultātu 765 paraugi bija pieejami retrospektīvai testēšanai ar *therascreen* EGFR RGQ PCR Kit, tostarp 87 paraugi, kas bija EGFR mutācijas pozitīvi, gan ar CTA, gan *therascreen* EGFR RGQ PCR Kit.

Nozīmīgākais efektivitātes rezultāts bija objektīvais atbildes reakcijas rādītājs (objective response rate, ORR), ko izvērtēja maskētā neatkarīgā centrālā vērtēšanā (Blinded Independent Central Review, BICR) un pētnieki. Pacientu apakšgrupai, ko testēja ar *therascreen* EGFR RGQ PCR Kit, konstatētais klīniskais ieguvums bija salīdzināms ar pilna pētījuma populācijai novēroto ieguvumu.

Kopējo efektivitātes rezultātu kopsavilkums sniegts 14. tabulā.

14. tabula. Ar *therascreen* EGFR RGQ PCR Kit testēto pacientu klīniskie ieguvumi klīniskā pētījuma IFUM populācijā

Parametrs	<i>therascreen</i> EGFR RGQ PCR Kit+ populācija, n = 87	CTA+ populācija, n = 106
Objektīvie atbildes rādītāji (ORR), ko sniedza BIRC Atbilžu skaits (N)	42	53
ORR, % (95% TI)	48,3 (38,1–58,6)	50,0 (40,6-59,4)
Atbildes reakcijas ilguma mediāna (mēneši)	6,9 (5,6–11,4)	6,0 (5,6-11,1)
Objektīvie atbildes rādītāji (ORR), ko sniedza pētnieki Atbilžu skaits (N)	62	74
ORR, % (95% TI)	71,3 (61,0–79,7)	69,8 (60,5-77,7)
Atbildes reakcijas ilguma mediāna (mēneši)	8,3 (7,2–11,3)	8,3 (7,6-11,3)

BICR: maskēta neatkarīga centrāla vērtēšana; TI: ticamības intervāls; CTA: klīniskā izmēģinājuma tests. Piezīme: Kit+ ir pozitīvi 19. eksona delēciju/L8585R/L861Q/G719X rezultāti.

Ņemot vērā to, ka *therascreen* EGFR RGQ PCR Kit neizmantoja, atlasot pacientus klīniskajam pētījumam IFUM, veica papildu efektivitātes analīzes, lai apsvērtu pacientus, kas netika iekļauti pētījumā, jo viņiem ar CTA veiktais tests bija negatīvs, taču, testu veicot ar *therascreen* EGFR RGQ PCR Kit (t.i., *therascreen* EGFR RGQ PCR Kit+/CTA–), testa rezultāts varētu būt pozitīvs, kā arī pacientus, kurus iekļāva pētījumā, bet kuriem nebija derīgi atkārtotas testēšanas rezultāti no *therascreen* EGFR RGQ PCR Kit (t.i., *therascreen* EGFR RGQ PCR Kit nezināms/CTA+). Rezultāti no visām hipotētiskajām analīzēm pamatā bija līdzīgi primārajā efektivitātes analīzē iegūtajiem rezultātiem.

Atsauces

- Pao, W. and Miller, V.A. (2005) Epidermal growth factor receptor mutations, small molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 23, 2556.
- 2. Johnson, B.E. and Jaenne, P.A. (2005) Epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Cancer Res. 65, 7525.
- 3. Inoue, A., et al. (2006) Prospective Phase II study of gefitinib for chemotherapy-naive patients with advanced non-small cell lung cancer with epidermal growth factor receptor gene mutations. J. Clin. Oncol. 24, 3340.
- Asahina, H., et al. (2006) A Phase II study of gefitinib as a first-line therapy for advanced non-small cell lung cancers with epidermal growth factor receptor (EGFR) gene mutations. 42nd Ann Mtg of the American Society of Clinical Oncology (ASCO), Atlanta 2 6 June 2006. J. Clin. Oncol. 24 (18S) (Suppl), Abstr 13014.
- Paz-Ares, L. et al. A prospective phase II trial of erlotinib in advanced non-small cell lung cancer (NSCLC) patients (p) with mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR). 42nd Ann Mtg of the American Society of Clinical Oncology (ASCO), Atlanta 2 6 June 2006. J. Clin. Oncol. 24 (18S) (Suppl), Abstr 7020.
- Kobayashi, K., et al. (2008) First-line gefitinib for poor PS patients with EGFR mutations. 44th Ann Mtg of the American Society of Clinical Oncology (ASCO), Chicago 31 May 3 June 2008. J. Clin. Oncol. 26 (15S) (Suppl), Abstr 8070.
- 7. Sequist, L.V., et al. (2008) First-line gefitinib in patients with advanced non-small cell lung cancer harbouring somatic EGFR mutations. J. Clin. Oncol. 15, 2442.
- Porta, R. et al. (2008) Erlotinib customization based on epidermal growth factor receptor (EGFR) mutations in stage IV non-small-cell lung cancer (NSCLC) patients (p). J. Clin. Oncol. 26 (May 20 suppl), abstr 8038.

- 9. Jaene, P.A. and Johnson, B.E. (2006) Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin. Cancer Res. 12, 4416s.
- 10. Whitcombe, D. et al. (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotech. 17, 804.
- 11. Thelwell, N. et al. (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 28, 3752.
- Clinical and Laboratory Standards Institute (CLSI) (2004). Protocols for Determination of Limits of Detection and Limits of Quantitation: Approved Guideline, 1st ed. CLSI Document EP-17A. Wayne, PA: Clinical and Laboratory Standards Institute (formerly NCCLS).
Simboli

Uz iepakojuma un marķējuma var būt šādi simboli:

Simbols	Simbola definīcija
∑ <n></n>	Satur reaģentus, kuru daudzums ir pietiekams <n> reakcijām</n>
\geq	Izlietot līdz
IVD	In vitro diagnostikas medicīnas ierīce
REF	Kataloga numurs
LOT	Partijas numurs
MAT	Materiāla numurs
紊	Sargāt no gaismas iedarbības
GTIN	Globālais tirdzniecības identifikācijas numurs (GTIN)
Rn	R attiecas uz lietošanas instrukciju (rokasgrāmatas) versiju, n norāda versijas numuru
	Temperatūras ierobežojums
	Ražotājs
i	Skatīt lietošanas norādījumus
	Uzmanību!

A pielikums: *therascreen* EGFR RGQ PCR Kit manuālais protokols

Šajā sadaļā ir norādījumi *therascreen* EGFR RGQ PCR Kit izmantošanai ar Rotor-Gene Q progrmmatūras versiju 2.3.5 vai jaunāku atvērtajā režīmā (t.i., neizmantojot Rotor-Gene Q *therascreen* EGFR CE Assay Package).

Vispārīga informācija

- Nepieciešamo materiālu sarakstu skatiet šeit: Nepieciešamie materiāli, kas netiek nodrošināti.
- Pilnīgus norādījumus par paraugu sagatavošanu un paraugu izkārtojumu skatiet šeit: Protokols: Paraugu izvērtēšana un Protokols: EGFR mutācijas noteikšana.
- Pirms katras izpildes sākšanas pārliecinieties, ka cikla parametri ir pareizi.

Protokols: temperatūras profila izveide

Pirms darba sākšanas izveidojiet *therascreen* EGFR RGQ PCR Kit analīzes temperatūras profilu. Cikla parametri ir identiski DNS paraugu izvērtēšanai un EGFR mutācijas noteikšanai.

Procedūra

Cikla parametru kopsavilkums redzams 15. tabulā.

15. tabula. Temperatūras profils

Cikli	Temperatūra	Laiks	Datu iegūšana
1	95 °C	15 minūtes	Nav
40	95 °C 60°C	30 sekundes 60 sekundes	Nav Green un Yellow

- Divreiz noklikšķiniet uz Rotor-Gene Q Series Software 2.3 ikonas ar Rotor-Gene Q MDx 5plex HRM instrumentu savienotā datora darbvirsmā.
- Lai izveidotu jaunu matrici, atlasiet Empty Run (Tukša izpilde), pēc tam noklikšķiniet uz New (Jauns), lai ievadītu "New Run Wizard" (Jaunas izpildes vednis).
- Atlasiet 72-Well Rotor kā rotora tipu. Pārliecinieties, ka slēdzējgredzens ir piestiprināts, un atzīmējiet rūtiņu Locking Ring Attached (Slēdzējgredzens piestiprināts). Noklikšķiniet uz Next (Tālāk) (20. attēls).

20. attēls. Dialoglodziņš "New Run Wizard" (Jaunas izpildes vednis.). 1 = "Rotor type" (Rotora tips), 2 = rūtiņa "Locking Ring Attached" (Slēdzējgredzens piestiprināts), 3 = "Next" (Tālāk).

levadiet operatora vārdu. Ievadiet piezīmes, ja tādas ir, un reakcijas tilpumu kā 25.
 Pārliecinieties, ka laukā Sample Layout (Paraugu izkārtojums) ir norādīts 1, 2, 3....
 Noklikšķiniet uz Next (Tālāk) (21. attēls).

New Run Wizard		
This screen displays miscellaneous options for the run. Complete the fields, clicking Next when you are ready to move to the next page.	This box displays help on elements in the wizard. For help	1
Operator : NAME	p n an item, hover your mouse over the	
Notes :	tem tor help. You can also click on a combo box to display help about its available settings.	
Reaction Volume (µL):		
Sample Layout : 1, 2, 3		2
Skip Wizard << <u>B</u> ack <u>N</u> ext >>		3

21. attēls. Operatora vārda un reakciju tilpumu ievadīšana. 1 = Dialoga lauks "Operator" (Operators) un dialoga lauks "Notes" (Piezīmes), 2 = lauks "Reaction Volume" (Reakcijas tilpums) un lauks "Sample Layout" (Paraugu izkārtojums), 3 = poga "Next" (Tālāk).

 Dialoglodziņā "New Run Wizard" (Jaunas izpildes vednis) noklikšķiniet uz Edit Profile (Rediģēt profilu) (22. attēls) un pārbaudiet izpildes parametrus atbilstoši tālāk norādītajām darbībām.

New Run V	Vizard					
Temperature	e Profile :					Click this button to
Edit Profile Channel Set)					edit the profile shown in the box above.
Name	Source	Detector	Gain		 Create New	
Green	470nm	510nm	5		Edit	
Yellow	530nm	555nm	5			
Urange	585nm 625nm	610nm 660nm	5		Edit Gain	
Crimson	680nm	710hp	7		Remove	
HBM	460nm	510nm	7		Baset Defaults	
					neset Defaults	
Gain Optim	nisation]				
Skip Wia	zard	<< <u>B</u> ack		<u>N</u> ext >>		, <u> </u>

22. attēls. "Edit Profile" (Rediģēt profilu) dialoglodziņā "New Run Wizard" (Jaunas izpildes vednis).

 Noklikšķiniet uz Insert after (levietot pēc) un atlasiet New Hold at Temperature (Jauna uzglabāšana temperatūrā) (23. attēls).

Edit Profile						×
Mew Ope	n Save As	🥝 Help				
e run will take a	pproximately 0	second(s) to con	plete. The graph b	elow represents the run to b	e performed :	
						_
k on a cycle be	low to modify	k:	[Invest i	Ber		
			Inset b	New Cycling		
			Ber	New Hold at Temperatur	•	_
				New HRM Step		
			L	Copy or Current Step	_	
				•		

23. attēls. Sākotnējās inkubācijas darbības ievietošana. 1 = "Insert after" (levietot pēc), 2 = "New Hold at Temperature" (Jauna uzglabāšana temperatūrā).

7. Laukā Hold Temperature (Uzglabāšanas temperatūra) ievadiet vērtību 95°C, un laukā

Hold Time (Uzglabāšanas laiks) ievadiet vērtību 15 mins 0 secs (15 min. 0 sek.).

Noklikšķiniet uz Insert After (levietot pēc), pēc tam atlasiet New Cycling (Jauns cikls)

24. attēls. Sākotnējās inkubācijas darbība 95 °C temperatūrā. 1 = "Hold Temperature and Hold Time" (Uzglabāšanas temperatūra un Uzglabāšanas laiks), 2 = "Insert after" (levietot pēc), 3 = "New Cycling" (Jauns cikls). lestatiet ciklu atkārtojumu skaita vērtību 40. Atlasiet pirmo darbību un iestatiet vērtību 95°C uz laika periodu 30 seconds (30 sekundes) (25. attēls).

🖉 Edit Profile 🛛 🔀
New Open Save As Help
The run will take approximately 38 minute(s) to complete. The graph below represents the run to be performed :
Click on a cycle below to modify it :
Hold Insert after
Bemove
This cycle repeats 40 (arrefo)
Click on one of the steps pelow to modify it, or press + or - to add and remove steps for this cycle.
Timed Step 950 for 30 serse
990 00 100 00 000 000 000 000 000 000 00
<u>D</u> K

25. attēls. Cikla darbība 95 'C temperatūrā. 1 = Rūtiņa "Cycle repeats" (Ciklu atkārtojumi), 2 = Pirmā darbība: temperatūras iestatījums, 3 = Pirmā darbība: laika iestatījums.

9. lezīmējiet otro darbību un iestatiet vērtību 60°C uz laika periodu 60 seconds

(60 sekundes). Noklikšķiniet uz **Not Acquiring** (Nenotiek iegūšana), lai iespējotu datu iegūšanu šīs darbības laikā. (26. attēls.)

26. attēls. Cikla darbība 60 °C temperatūrā. 1 = Otrā darbība: temperatūras un laika iestatījums; 2 = "Not Acquiring" (Nenotiek iegūšana).

 Atlasiet Green un Yellow kā iegūšanas kanālus. Noklikšķiniet uz >, lai šos kanālus pārnestu no saraksta Available Channels (Pieejamie kanāli) uz sadaļu Acquiring Channels (Notiek kanālu iegūšana). Noklikšķiniet uz OK (Labi) (27. attēls).

Acquisiti	ion			
Same as P	revious : [(New Acqui	sition)	
Acquisitic Available Name Crimson HRM Orange Red	on Configu Channels	ration :	Acquiring Channels :	- 1
To acquir channel, Dye Char	t >>	hannel, sele the right-ha	ct it from the list in the left and click >. To stop acquiring from a nd list and click <. To remove all acquisitions, click <<.	— 2
Channel	Source			
		Detector	Dves	
Green	470nm	Detector 510nm	Dyes FAM [®] , SYBR Green 1 [®] , Fluorescein, EvaGreen [®] , Alexa Fluor 488 [®]	
Green Yellow	470nm 530nm	510nm 555nm	Dyes FAM ⁽¹⁾ , SYBR Green 1 ⁽¹⁾ , Fluorescein, EvaGreen ⁽¹⁾ , Alexa Fluor 488 ⁽¹⁾ JOE ⁽¹⁾ , VIC ⁽¹⁾ , HEX, TET ⁽¹⁾ , CAL Fluor Gold 540 ⁽¹⁾ , Yakima Yellow ⁽¹⁾	
Green Yellow Orange	470nm 530nm 585nm	Detector 510nm 555nm 610nm	Dyes FAM ^(J) , SYBR Green 1 ^(J) , Fluorescein, EvaGreen ^(J) , Alexa Fluor 488 ^(J) JOE ^(J) , VIC ^(J) , HEX, TET ^(J) , CAL Fluor Gold 540 ^(J) , Yakima Yellow ^(J) ROX ^(J) , CAL Fluor Red 610 ^(J) , Cy3.5 ^(J) , Texas Red ^(J) , Alexa Fluor 568 ^(J)	
Green Yellow Orange Red	470nm 530nm 585nm 625nm	Detector 510nm 555nm 610nm 660nm	Dyes FAM ⁽³⁾ , SYBR Green 1 ⁽³⁾ , Fluorescein, EvaGreen ⁽³⁾ , Alexa Fluor 488 ⁽³⁾ JOE ⁽³⁾ , VIC ⁽³⁾ , HEX, TET ⁽³⁾ , CAL Fluor Gold 540 ⁽³⁾ , Yakima Yellow ⁽³⁾ ROX ⁽³⁾ , CAL Fluor Red 610 ⁽³⁾ , Cy3.5 ⁽³⁾ , Texas Red ⁽³⁾ , Alexa Fluor 568 ⁽³⁾ Cy5 ⁽³⁾ , Quasar 670 ⁽³⁾ , Alexa Fluor 633 ⁽³⁾	
Green Yellow Orange Red Crimson	470nm 530nm 585nm 625nm 680nm	Detector 510nm 555nm 610nm 660nm 710hp	Dyes FAM ^{1D} , SYBR Green 1 ⁽¹⁾ , Fluorescein, EvaGreen ⁽¹⁾ , Alexa Fluor 488 ⁽¹⁾ JOE ^{1D} , VIC ^{1D} , HEX, TET ^{1D} , CAL Fluor Gold 540 ⁽¹⁾ , Yakima Yellow ^{1D} ROX ^{1D} , CAL Fluor Red 610 ⁽¹⁾ , Cy35 ⁽¹⁾ , Texas Red ^{1D} , Alexa Fluor 568 ⁽²⁾ Cy5 ^{1D} , Quasar 670 ⁽²⁾ , Alexa Fluor 633 ⁽²⁾ Quasar705 ⁽²⁾ , Alexa Fluor 680 ⁽²⁾	

27. attēls. legūšana cikla darbība 60 °C temperatūrā. 1 = Atlasītie kanāli, 2 = "OK"(Labi).

 lezīmējiet trešo darbību un noklikšķiniet uz -, lai dzēstu. Noklikšķiniet uz OK (Labi) (28. attēls).

🖉 Edit Profile 🛛 🔀	
Ø . Ø	
The run will take approximately 135 minute(s) to complete. The graph below represents the run to be performed :	
Click on a cycle below to modify it :	
Hold Insert after	
Renove	
This cycle repeats 40 (time(s).	
Click on one of the steps below to modify it, or press + or - to add and remove steps for this cycle.	
Timed Step 95% for 30 secs	- 2
72%C	
Acquiring to Cycling B	_ 1
on Green 60°C for 60 secs	- 1
Clong Range	
<u>D</u> K	3

- 28. attēls. Pagarināšanas darbības noņemšana. 1 = Trešā darbība, 2 = Delete (Dzēst), 3 = "OK" (Labi).
- 12. Nākamajā dialoglodziņā noklikšķiniet uz **Gain Optimisation** (Pastiprinājuma optimizēšana) (29. attēls).

New Run W	izard						
Temperature	Profile :					This box displays	
Edit Profile .						available settings.	
Channel Setu	ip:						
Name S	Source	Detector	Gain		Create New		
Green 4	170nm	510nm	5		Ede		
Yellow 5	530nm	555nm	5				
Urange 5	585nm	610nm	5		Edit Gain		
Fried 6	525nm 580nm	550nm 710ho	7		Bemove		
HBM 4	160nm	510nm	ź				
					Heset Defaults		
Gain Optimis	sation			<u> </u>			
Skip Wiza	ard	<< <u>B</u> ack		Next >>		,	

29. attēls. Gain Optimisation (Pastiprinājuma optimizēšana) (1).

 Noklikšķiniet uz Optimise Acquiring (Optimizēt iegūšanu). Kanāla iestatījumi tiek attēloti katram kanālam. Noklikšķiniet uz OK (Labi), lai pieņemtu šīs noklusējuma vērtības abiem kanāliem. (30. attēls).

Optimisation: Auto-Gain Optimisation will read the fluorescence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing. Set temperature to Image: Auto-Gain Optimise Al Coptimise Al Coptimise Acquiring Perfor Perfor Channel: Settings: Channel: Green Target Sample Range: Image: Ima	Auto-Gain Optimisation Setup	
Perfor Perfor Channel: Green Tube Position: 1 + Target Sample Range: 5 + Fl up to 10 + Fl. Acceptable Gain Range: 10 + to 10 + OK Cancel Help 22	Optimisation : Auto-Gain Optimisation will read the fluorescence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing. Set temperature to	
	Opening Perfor Auto-Gain Optimisation Channel Settings Perfor Auto-Gain Optimisation Channel Settings X Channel Channel Settings : X Channel Green Tube Position : 1 Target Sample Range : 5 1 Fl up to 10 10 1 Acceptable Gain Range: 10 10 OK Cancel Help	2

30. attēls. Automātiska pastiprinājuma optimizēšana Green kanālam. 1 = "Optimise Acquiring" (Optimizēt iegūšanu), 2 = "OK" (Labi).

 Atzīmējiet rūtiņu Perform Optimisation before 1st Acquisition (Veikt optimizēšanu pirms 1. iegūšanas), pēc tam noklikšķiniet uz Close (Aizvērt), lai atgrieztos vednī (31. attēls).

Auto-Gain	Optimisatio	n Setup					×		
— Ontimisatio	n :								
- Co	Optimisation : Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing. Set temperature to								
0-1-1-1			1						
Uptim		timise Acquiring]						
Perform	r Optimisation Br	efore 1st Acquis	Right		<u> </u>				
Perform	n Optimisation Al	60 Degrees At	Beginning Of Ru	n	1	1			
- Channel S	ettings :								
	otango.					_			
						่	Add		
Name	Tube Position	Min Reading	Max Reading	Min Gain	Max Gai	in	<u>E</u> dit		
Green	1	5FI	10FI	-10	10		Remove		
Yellow	1	5FI	10FI	-10	10		D 41		
						_	Remove All		
<						>			
	_,					2			
<u>S</u> tart	Manu	al C	lose	нер		Z			

31. attēls. Green un Yellow kanālu atlasīšana. 1 = Izvēles rūtiņa "Perform Optimisation Before 1st Acquisition" (Veikt optimizēšanu pirms 1. iegūšanas), 2 = "Close" (Aizvērt).

 Noklikšķiniet uz Next (Tālāk) (32. attēls). Noklikšķiniet uz Save Template (Saglabāt matricu), lai *therascreen* EGFR RGQ PCR Kit matricu (*.ret file) saglabātu atbilstošā atrašanās vietā.

New Run	Wizard					X
Temperatur	e Profile :					This box displays
						help on elements in the wizard. For help on an item, hover your mouse over the item for help. You can also click on a combo box to display help about its wallable actings
Edit Profil	e					avaliable settings.
Channel Se	stup :				_	
Name	Source	Detector	Gain		Create New	
Green	470nm	510nm	5		Edit	
Yellow	530nm	555nm	5			
Urange	585nm 625nm	610nm	5		Edit Gain	
Crimson	680nm	710hp	7		Remove	
HRM	460nm	510nm	7		Reset Defaults	
Gain Opti	misation]			_	
Skip W	'izard	<< <u>B</u> ack		<u>N</u> ext >>	1	, <u> </u>

32. attēls. "Next" (Tālāk) (1).

Procedūra (manuāli)

Protokols: paraugu izvērtēšana (manuāli)

Šo protokolu izmanto, lai izvērtētu kopējo amplificējamās DNS daudzumu paraugos, un tas jāizpilda pirms EGFR mutācijas analīzes.

- Sagatavojiet paraugus, kā aprakstīts sadaļā Protokols: Paraugu izvērtēšana līdz 11. darbībai.
- lestatiet PCR izpildi Rotor-Gene Q MDx 5plex HRM instrumentā, kā aprakstīts sadaļā Protokols: *therascreen* EGFR RGQ PCR Kit Rotor-Gene Q iestatīšana.
- Pēc izpildes analizējiet datus atbilstoši instrukcijām sadaļā Parauga izvērtēšanas datu analīze.

Protokols: EGFR mutācijas noteikšana (manuāli)

- Kad paraugam ir veikta parauga izvērtēšana, to var testēt, lai noteiktu EGFR mutācijas.
- Sagatavojiet paraugus, kā aprakstīts sadaļā Protokols: EGFR mutācijas noteikšana līdz 11. darbībai.
- lestatiet PCR izpildi Rotor-Gene Q MDx 5plex HRM instrumentā, kā aprakstīts sadaļā Protokols: *therascreen* EGFR RGQ PCR Kit Rotor-Gene Q iestatīšana.
- Pēc izpildes analizējiet datus atbilstoši instrukcijām sadaļā EGFR mutācijas noteikšanas datu analīze.

Protokols: *therascreen* EGFR RGQ PCR Kit Rotor-Gene Q iestatīšana

Procedūra

- Atveriet Rotor-Gene Q sērijas programmatūras versiju 2.3.5 vai jaunāku un pēc tam atveriet atbilstošo *therascreen* EGFR RGQ PCR Kit temperatūras profilu (.ret fails).
 Instrukcijas par temperatūras profila izveidi un izpildes parametru pārbaudi skatiet šeit: Protokols: temperatūras profila izveide.
- Pārliecinieties, ka atlasīts pareizais rotors, un atzīmējiet rūtiņu Locking Ring Attached (Slēdzējgredzens piestiprināts). Noklikšķiniet uz Next (Tālāk) (33. attēls).

33. attēls. Dialoglodziņš "New Run Wizard" (Jaunas izpildes vednis) un sveiciena ekrāns. 1 = "Rotor type" (Rotora tips), 2 = rūtiņa "Locking Ring Attached" (Slēdzējgredzens piestiprināts), 3 = "Next" (Tālāk).

 levadiet operatora vārdu. Pievienojiet nepieciešamās piezīmes, pārliecinieties, ka reakcijas tilpums ir iestatīts kā 25 un laukā Sample Layout (Paraugu izkārtojums) ir vērtība 1, 2, 3.... Noklikškiniet uz Next (Tālāk) (34. attēls).

34. attēls. "New Run Wizard" (Jaunas izpildes vednis) opciju ekrāns. 1 = "Operator" (Operators), 2 = lauks "Notes" (Piezīmes), 3 = Reaction Volume (Reakcijas tilpums), 4 = lauks "Sample Layout" (Paraugu izkārtojums), 5 = "Next" (Tālāk).

Piezīme: Nākamajā logā iespējams rediģēt temperatūras profilu. (Rediģēšana nav nepieciešama, jo temperatūras profils jau ir izveidots atbilstoši instrukcijām šeit: Protokols: temperatūras profila izveide.) 4. Noklikšķiniet uz Next (Tālāk) (35. attēls).

N	lew Run \	Wizard					×
	Temperatur	e Profile :					This box displays
							help on elements in the wizard. For help on an item, hover your mouse over the item for help. You can also click on a combo box to display help about its
	Edit Profile	e					avallable settings.
	Channel Se	atup :					
	Name	Source	Detector	Gain		Create New	
	Green	470nm	510nm	5		Edit	
	Yellow	530nm	555nm	5			
	Urange Red	585nm 625nm	610nm CCOnm	5		Edit Gain	
	Crimson	620nm	710hn	5 7		Remove	
	HRM	460nm	510nm	7			
						Reset Defaults	
	Gain Optir	misation					
1			1				
	Skip W	izard	<< <u>B</u> ack		<u>N</u> ext>>		

35. attēls. Dialoglodziņš "New Run Wizard" (Jaunas izpildes vednis) un temperatūras rediģēšanas ekrāns (1 = "Next" (Tālāk)).

 Pārbaudiet kopsavilkumu un noklikšķiniet uz Start Run (Sākt izpildi), lai saglabātu izpildes failu un sāktu izpildi (36. attēls).

N	ew Run Wizard	×				
1	Summary :					
	Setting	Value				
	Green Gain Yellow Gain	5				
	Auto-Gain Optimisation	Before First Acquisition				
	Rotor Sample Lavout	72-Well Rotor 1, 2, 3,				
	Reaction Volume (in microliters)	25 1				
	<u>S</u> tart Run					
	Hotor 72-Well Rotor Sample Layout 1, 2, 3, Reaction Volume (in microliters) 25 Image: Constraint of the second					
ĺ	Skip Wizard << <u>B</u> ack					

36. attēls. Dialoglodziņš "New Run Wizard" (Jaunas izpildes vednis) un kopsavilkuma ekrāns (1 = "Start Run" (Sākt izpildi)).

- Jaunajā logā, kas atveras, kad sākas izpilde, veiciet kādu no tālāk norādītajām darbībām:
 - levadiet paraugu nosaukumus.
 - Noklikšķiniet uz Finish (Beigt) un vēlāk ievadiet paraugu nosaukumus. Lai to izdarītu, izpildes laikā vai pēc izpildes pabeigšanas atlasiet Sample (Paraugs).

Svarīgi! Ja noklikšķināsiet uz Finish and Lock Samples (Pabeigt un bloķēt paraugus), jūs vairs nevarēsiet rediģēt šos paraugu nosaukumu rediģēšanu. Jābūt ļoti uzmanīgam, ievadot paraugu nosaukumus, lai nodrošinātu pareizu paraugu testēšanu un analīzi.

Piezīme: Piešķirot paraugiem nosaukumus, tukšo stobriņu lauki kolonnā "Name" (Nosaukums) jāatstāj tukši.

 Pēc izpildes pabeigšanas analizējiet datus atbilstoši sadaļai Parauga izvērtēšanas datu analīze vai EGFR mutācijas noteikšanas datu analīze, kā nepieciešams.

- Ja nepieciešamas daudzuma atskaites, Rotor-Gene Q izpildes failā rīkjoslā noklikšķiniet uz ikonas **Reports** (Atskaites).
- Atskaišu pārlūkā noklikšķiniet uz Cycling A Green (page 1) (Cycling A Green (1. lapa)) sadaļā "Report Categories" (Atskaišu kategorijas) (37. attēls).

-	🖷 Report Browser
	Report Categories : Templates : Image: Contraction Contraction Copyling A Green (Page 1) 1 Image: Copyling A Yellow (Page 1) 1
	Show Cancel

37. attēls. Report browser (Atskaišu pārlūks) (1 = "Cycling A. Green [Page 1]" (Cycling A Green (1. lapa))).

10. Atlasiet Quantitation (Full Report) (Daudzums (pilna atskaite)) sadaļā "Templates"

(Matricas) (38. attēls).

📰 Report Browser	
Report Categories : General) B-Quantitation - Cycling A. Green (Page 1) Cycling A. Yellow (Page 1)	1 Cuantitation (Condse) Quantitation (Full Report) Quantitation (Standard Report)
	Show Cancel

38. attēls. Quantitation report (Full Report) (Daudzuma atskaite (pilna atskaite)) (1).

- 11. Lai ģenerētu atskaiti, noklikšķiniet uz Show (Rādīt).
- 12. Noklikšķiniet uz Save As (Saglabāt kā), lai saglabātu elektronisku versiju.
- 13. Atkārtojiet opcijai Cycling A Yellow (Page 1) (Cycling A Yellow (1. lapa)).

Rezultātu interpretācija (manuāli)

Kad *therascreen* EGFR RGQ PCR Kit izpilde (DNS paraugu izvērtēšanai vai EGFR mutāciju analizēšanai) ir pabeigta, analizējiet datus atbilstoši tālāk aprakstītajām procedūrām:

- Programmatūras iestatījumi analīzei
- DNS paraugu izvērtēšanas analīze (manuāli)
- Piezīme: Stobriņu izkārtojumu skatiet 4. tabulā.
- EGFR mutācijas noteikšanas analīze (manuāli)
- Piezīme: Stobriņu izkārtojumu skatiet 7. tabulā.

Programmatūras analīzes iestatījumi

- Atveriet atbilstošās izpildes failu (*.rex), izmantojot Rotor-Gene Q sērijas programmatūras versiju 2.3.5 vai jaunāku.
- Ja pirms izpildes paraugiem nav piešķirti nosaukumi, noklikšķiniet uz Edit Samples (Rediģēt paraugus).
- 3. levietojiet paraugu nosaukumus kolonnā Name (Nosaukums).

Piezīme: Atstājiet tukšos stobriņus bez nosaukuma.

- Noklikšķiniet uz Analysis (Analīze). Analīzes lapā noklikšķiniet uz Cycling A Yellow, lai pārbaudītu Yellow (HEX) kanālu.
- 5. Noklikšķiniet uz Named On (Nosauktie).

Piezīme: Tas nodrošina, ka tukšie stobriņi netiek iekļauti analīzē.

- 6. Atlasiet Dynamic tube (Dinamiskais stobriņš).
- 7. Atlasiet Slope correct (Slīpums pareizs).
- 8. Atlasiet Linear scale (Lineāra skala).

- Atlasiet Take Off Adj (Atņemt Adj) un ievadiet vērtību 15.01 augšējā lodziņā ("If take off point was calculated before cycle" (Ja atņemšanas punkts tika aprēķināts pirms cikla)) un 20.01 apakšējā lodziņā ("then use the following cycle and take off point" (Pēc tam izmantot tālāk minēto ciklu un atņemšanas punktu)).
- 10. lestatiet robežvērtību 0.02 un pārbaudiet Yellow (HEX) kanāla C⊺ vērtības.
- 11. Analīzes lapā noklikšķiniet uz Cycling A Green, lai skatītu Green (FAM) kanālu.
- 12. Atlasiet Named On (Nosauktie).
- 13. Atlasiet Dynamic tube (Dinamiskais stobriņš).
- 14. Atlasiet Slope correct (Slīpums pareizs).
- 15. Atlasiet Linear scale (Lineāra skala).
- 16. Atlasiet **Take Off Adj** (Atņemt Adj) un ievadiet **15.01** augšējā lodziņā ("If take off point was calculated before cycle" (Ja atņemšanas punkts tika aprēķināts pirms cikla)) un **20.01** apakšējā lodziņā ("then use the following cycle and take off point" (Pēc tam izmantot tālāk minēto ciklu un atņemšanas punktu)).
- 17. lestatiet robežvērtību 0.075 un pārbaudiet Green (FAM) kanāla C⊤ vērtības.

Parauga izvērtēšanas datu analīze

Kad DNS paraugu izvērtēšanas izpilde beigusies, skatiet sadaļu Programmatūras analīzes iestatījumi un analizējiet datus, kā aprakstīts tālāk. (Stobriņu izkārtojumu skatiet 4. tabulā 25. lpp.)

Izpildes kontroles analīze

Negatīva kontrole

Lai nodrošinātu, ka nav matricas kontaminācijas, NTC nedrīkst ģenerēt C⊤ vērtību zem 40 Green (FAM) kanālā.

Lai nodrošinātu, ka izpilde bija iestatīta pareizi, NTC jāuzrāda amplifikācija diapazonā no 29,85 līdz 35,84 Yellow (HEX) kanālā. Norādītās vērtības ietilpst diapazonā un ietver šīs vērtības.

Pozitīva kontrole

EGFR PC jāuzrāda CT vērtība Green (FAM) kanālā diapazonā no 28,13 līdz 34,59. Vērtība ārpus šī diapazona uzrāda testa iestatīšanas problēmu. Izpilde nav izdevusies.

Piezīme: Parauga datus nedrīkst izmantot, ja negatīvā vai pozitīvā kontrole neizdevās.

Paraugu analīze

Ja DNS paraugu izvērtēšanas izpildes kontroles ir derīgas, var veikt analīzi. Parauga kontroles C_T vērtībai jāatbilst diapazonam no 23,70 līdz 31,10 Green (FAM) kanālā. Ja parauga C_T ir ārpus šī diapazona, tiek sniegti tālāk minētie norādījumi.

Paraugu kontroles tests C_T < 23,70

Paraugi ar kontroles C_T < 23,70 (augsta DNS koncentrācija) pārslogos mutācijas testus, tāpēc tie jāatšķaida. Lai noteiktu katru mutāciju zemā līmenī, pārāk koncentrētus paraugus atšķaida, lai tie atbilstu C_T diapazonam no 23,70 līdz 31,10. Ja atšķaida parauga DNS, palielinās C_T vērtība (atšķaidījums attiecībā 1:1 C_T vērtību palielina par aptuveni 1,0). Atšķaidiet paraugus, izmantojot komplektā iekļauto ūdeni (ūdens atšķaidīšanai [Dil.]).

Paraugu kontroles tests C_T > 31,10

Paraugus ar kontroles C_T > 31,10 ieteicams atkārtoti ekstrahēt Green (FAM) kanālā. Sākuma DNS matricas daudzums nav pietiekams, lai noteiktu visas EGFR mutācijas ar norādītajām testa robežvērtībām.

EGFR mutācijas noteikšanas datu analīze

Paraugam jāveic DNS parauga izvērtēšana, lai to varētu testēt un noteikt EGFR mutācijas (skatiet šeit: Parauga izvērtēšanas datu analīze).

Kad EGFR mutācijas noteikšanas izpilde beigusies, skatiet šeit: Programmatūras analīzes iestatījumi un analizējiet datus, kā aprakstīts tālāk. (Stobriņu izkārtojumu skatiet 7. tabulā.)

Izpildes kontroles analīze

Skatiet izpildes kontroles analīzes blokshēmu 39. attēlā.

39. attēls. Izpildes kontroles analīzes blokshēma EGFR mutācijas noteikšanai.

Negatīva kontrole

Lai nodrošinātu, ka nav matricas kontaminācijas, NTC katram EGFR mutācijas testam nedrīkst ģenerēt C⊤ vērtību zem 40 Green (FAM) kanālā.

Lai nodrošinātu, ka izpilde bija iestatīta pareizi, NTC jāuzrāda amplifikācija diapazonā no 29,85 līdz 35,84 Yellow (HEX) kanālā. Norādītās vērtības ietilpst diapazonā un ietver šīs vērtības.

Pozitīva kontrole

Katram EGFR mutācijas testam EGFR PC jāuzrāda C_T vērtība Green (FAM) kanālā diapazonā, kas norādīts 16. tabulā. Vērtība ārpus šī diapazona uzrāda testa iestatīšanas problēmu. Izpilde nav izdevusies.

Piezīme: Parauga datus nedrīkst izmantot, ja negatīvā vai pozitīvā izpildes kontrole neizdevās.

Reakcijas maisījums	Paraugs	Kanāls	∆C⊤ robežvērtību diapazons
Kontrole	PC	Zaļā krāsā	No 28,13 līdz 34,59
T790M	PC	Zaļā krāsā	No 30,22 līdz 34,98
Delēcijas	PC	Zaļā krāsā	No 28,90 līdz 34,90
L858R	PC	Zaļā krāsā	No 29,97 līdz 34,81
L861Q	PC	Zaļā krāsā	No 28,49 līdz 34,02
G719X	PC	Zaļā krāsā	No 29,42 līdz 34,19
S768I	PC	Zaļā krāsā	No 28,98 līdz 35,19
Insercijas	PC	Zaļā krāsā	No 27,92 līdz 34,09

16. tabula. Pieņemami C₁ diapazoni reakcijas pozitīvām kontrolēm (EGFR mutāciju noteikšanas tests)

Parauga analīze — paraugu kontroles Green (FAM) kanāla Cī vērtība

Ja pozitīvās un negatīvās kontroles EGFR mutācijas noteikšanas izpildei ir derīgas, var turpināt EGFR mutācijas noteikšanu.

Kontroles C_T vērtībai paraugam Green (FAM) kanālā jābūt diapazonā no 23,70 līdz 31,10. (Stobriņu izkārtojumu skatiet 7. tabulā.)

Ja parauga kontroles CT ir ārpus šī diapazona, tiek sniegti tālāk minētie norādījumi.

Paraugu kontroles tests C_T < 23,70

Paraugi ar kontroles C_T < 23,70 (augsta DNS koncentrācija) pārslogos mutācijas testus, tāpēc tie jāatšķaida. Lai noteiktu katru mutāciju zemā līmenī, pārāk koncentrētus paraugus atšķaida, lai tie atbilstu C_T diapazonam no 23,70 līdz 31,10. Ja atšķaida parauga DNS, palielinās C_T vērtība (atšķaidījums attiecībā 1:1 C_T vērtību palielina par aptuveni 1,0). Atšķaidiet paraugus, izmantojot komplektā iekļauto ūdeni (ūdens atšķaidīšanai [Dil.]).

Paraugu kontroles tests C_T > 31,10

Paraugus ar kontroles C_T > 31,10 ieteicams atkārtoti ekstrahēt zaļajā (FAM) kanālā. Sākuma DNS matricas daudzums nav pietiekams, lai noteiktu visas EGFR mutācijas ar norādītajām testa robežvērtībām.

Paraugu analīzes blokshēmu EGFR mutācijas noteikšanai skatiet 40. attēlā.

40. attēls. Paraugu analīzes blokshēma EGFR mutācijas noteikšanai.

Parauga analīze — paraugu iekšējās kontroles Yellow (FAM) kanāla C⊤ vērtība **Piezīme**: Paraugu analīzes blokshēmu EGFR mutācijas noteikšanai skatiet 40. attēlā.

Jāanalizē visi katra parauga stobriņi. Pārbaudiet, vai katrs stobriņš ģenerē HEX signālu diapazonā no 29,85 līdz 35,84 no iekšējās kontroles Yellow (HEX) kanālā. Iespējami 3 galarezultāti.

- Ja iekšējās kontroles C_T jebkuram mutācijas testam ir zem norādītā diapazona (< 29,85), tad rezultāts ir nederīgs Yellow (HEX) kanāla amplifikācijai. Šim stobriņam Yellow (HEX) kanāla amplifikācija ir nederīga.
- Ja iekšējās kontroles C_T atbilst norādītajam diapazonam (no 29,85 līdz 35,84), rezultāts ir pozitīvs Yellow (HEX) kanāla amplifikācijai
- Šim stobriņam Yellow (HEX) kanāla amplifikācija ir derīga.
- Ja iekšējās kontroles C_T ir virs norādītā diapazona (> 35,84), rezultāts ir negatīvs Yellow (HEX) kanāla amplifikācijai.

Ja Green (FAM) kanālā ir amplifikācija un ΔC_T šai reakcijai ir zemāka par stobriņa testa robežvērtību vai vienāda ar to, Yellow (HEX) kanāla amplifikācija ir derīga. Ja Green (FAM) kanālā stobriņam nav amplifikācijas vai ΔC_T vērtība ir augstāka par testa robežvērtību, Yellow (HEX) kanāla amplifikācija ir nederīga.

Iekšējās kontroles amplifikācija Yellow (HEX) kanālā var neizdoties PCR inhibīcijas dēļ. Parauga atšķaidīšana var samazināt inhibitoru ietekmi. Jāņem vērā, ka tādējādi arī tiek atšķaidīta mērķa DNS paraugā. Atšķaidiet paraugus, izmantojot komplektā iekļauto ūdeni (ūdens atšķaidīšanai [Dil.]).

Parauga analīze — paraugu mutāciju testu Green (FAM) kanāla CT vērtība

Jāpārbauda Green (FAM) kanāla vērtības visiem septiņiem EGFR mutāciju reakcijas maisījumiem salīdzinājumā ar vērtībām, kas norādītas 17. tabulā. Norādītās vērtības ietilpst diapazonā un ietver redzamās vērtības. (Stobriņu izkārtojumu skatiet 7. tabulā.)

Tests	C _⊤ diapazons	∆C⊤ robežvērtību diapazons
T790M	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 7,40
Delēcijas	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,00
L858R	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,90
L861Q	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,90
G719X	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,90
S768I	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,90
Insercijas	No 0,00 līdz 40,00	No −10,00 ≥ līdz ≤ 8,00

17. tabula. Pieņemamas vērtības paraugu EGFR mutāciju reakcijām Green (FAM) kanālā (EGFR mutāciju noteikšanas tests)

 Ja paraugam Green (FAM) kanāla C⊤ vērtība iekļaujas norādītajā diapazonā, tā FAM amplifikācija ir pozitīva.

 Ja paraugam Green (FAM) kanāla CT vērtība ir virs norādītā diapazona vai amplifikācijas nav, tā FAM amplifikācija ir negatīva.

Aprēķiniet ΔC_T vērtību katram EGFR mutācijas noteikšanas stobriņam ar pozitīvu FAM amplifikāciju, kā norādīts tālāk, nodrošinot, ka mutācijas un kontroles C_T vērtības ir no viena un tā paša parauga. (Stobriņu izkārtojumu skatiet 7. tabulā.)

 ΔC_T = [mutācijas testa C_T vērtība] – [kontroles testa C_T vērtība]

Parauga ΔC_T vērtību salīdziniet ar konkrēta testa ΔC_T robežvērtību diapazonu (17. tabula). Noteikti izmantojiet pareizo ΔC_T robežvērtību diapazonu.

 $\Delta C_T \text{ robežvērtību diapazona augšējais punkts ir punkts, virs kura pozitīvu testa signālu potenciāli var izraisīt ARMS praimera fona signāls savvaļas tipa DNS paraugā. Ja parauga <math display="block">\Delta C_T \text{ vērtība ir augstāka par testa } \Delta C_T \text{ robežvērtību diapazonu, paraugs tiek klasificēts kā negatīvs vai ārpus testa komplekta noteikšanas robežām. Ja parauga vērtība ir zem <math display="block">\Delta C_T \text{ robežvērtību diapazona apakšējās robežas, to potenciāli varētu būt izraisījuši fluorescences artefakti.}$

Katras mutācijas reakcijas statuss katram paraugam var būt viens no tālāk norādītajiem.

- Mutation detected (Mutācija noteikta)
- Mutation not detected (Mutācija nav noteikta)
- Invalid (Nederīgs)

Mutācija noteikta

Green (FAM) kanāla amplifikācija ir pozitīva, un ΔC_T vērtība atbilst ΔC_T robežvērtību diapazonam. Ja paraugam noteiktas vairākas mutācijas, tās visas var uzrādīt.

Mutācija nav noteikta

Green (FAM) kanāla amplifikācija ir pozitīva, un ΔC_T vērtība ir virs ΔC_T robežvērtību diapazona.

Green (FAM) kanāla amplifikācija ir negatīva, un Yellow (HEX) kanāla amplifikācija (iekšējā kontrole) ir pozitīva.

Nederīgs

Yellow (HEX) kanāla amplifikācija (iekšējā kontrole) ir nederīga.

Green (FAM) kanāla amplifikācija ir negatīva, un Yellow (HEX) kanāla amplifikācija (iekšējā kontrole) ir negatīva.

Piezīme: Paraugam vienā stobriņā var būt negatīva Yellow (HEX) kanāla amplifikācija, bet otrā stobriņā var būt pozitīva Green (FAM) kanāla amplifikācija. Šādā gadījumā rezultātu "mutācija noteikta" otrajā stobriņā var uzskatīt par derīgu, taču konkrētā noteiktā mutācija var nebūt vienīgā iespējamā mutācija šajā paraugā.

Aprēķinātā ΔC_T ir zem ΔC_T robežvērtību diapazona, un Yellow (HEX) kanāla amplifikācija (iekšējā kontrole) ir paredzamajā diapazonā.

B pielikums: *therascreen* EGFR CE Assay Package instalēšana

therascreen EGFR RGQ PCR Kit ir īpaši izstrādāts izmantošanai ar Rotor-Gene Q MDx 5plex HRM instrumentu un 72-Well Rotor. *therascreen* EGFR CE Assay Package ir pieejama lejupielādēšanai no *therascreen* EGFR RGQ PCR Kit versijas produktu tīmekļa lapas vietnē **www.qiagen.com**. Lai lejupielādētu testa pakotni, dodieties uz Product Resources (Produktu resursi) > Supplementary Protocols (Papildu protokoli). Testa pakotne ietver *"therascreen* EGFR CE Control Run Locked Template" un *"therascreen* EGFR CE Locked Template".

Piezīme: therascreen EGFR CE Assay Package ir saderīga tikai ar Rotor-Gene Q programmatūras versiju 2.3.5 vai jaunāku. Pārliecinieties, ka ir instalēta pareizā Rotor Gene Q programmatūras versija, pirms turpināt ar therascreen EGFR CE Assay Package instalēšanu. Ja jūsu Rotor-Gene Q MDx instrumentu piegādāja ar jaunāku programmatūras versiju, jauniniet to, no Rotor-Gene Q MDx 5plex HRM produktu lapas (sadalā "Product Resources" (Produktu resursi), "Operating Software" (Sistēmprogrammatūra) lejupielādējot Rotor versiju 2.3.5 Gene Q programmatūras vai iaunāku): skatiet šeit: www.giagen.com/shop/automated-solutions/pcr-instruments/rotor-gene-gmdx/#resources.

Procedūra

 Lejupielādējiet therascreen EGFR CE Assay Package no vietnes www.qiagen.com un pārnesiet to USB atmiņas ierīcē, kurā nav vīrusu.

Piezīme: Testa pakotne ir pieejama *therascreen* EGFR RGQ PCR Kit 2. versijas produktu tīmekļa lapā. Lai lejupielādētu testa pakotni, pārejiet uz Product Resources (Produktu resursi) > Supplementary Protocols (Papildu protokoli).

 Ar Rotor-Gene Q MDx 5plex HRM instrumentu savienotā datorā ievietojiet USB atmiņas ierīci.

- 3. Atrodiet therascreen EGFR CE Assay Package failu.
- 4. Ar peles labo pogu noklikšķiniet uz *therascreen* EGFR CE Assay Package, pēc tam atlasiet Extract all (Izvilkt visu), lai failu izgūtu no ZIP arhīva.
- 5. Divreiz noklikšķiniet uz **therascreen_EGFR_CE_Assay_Package_3.0.6.exe**, lai sāktu instalēšanu.

Vai arī atrodiet un palaidiet šo izpildāmo failu, izmantojot pievienotā datora failu pārlūku.

Atveras therascreen EGFR CE Assay Package iestatīšanas vednis.

6. Noklikšķiniet uz Next (Tālāk), lai turpinātu (41. attēls).

41. attēls. Dialoglodziņš "Setup Wizard" (lestatīšanas vednis) (1 = "Next" (Tālāk)).

 Dialoglodziņā izlasiet License Agreement (Licences līgums) un atlasiet I accept the agreement (Es piekrītu līgumam). Noklikšķiniet uz Next (Tālāk), lai turpinātu (42. attēls). Iestatīšana sākas automātiski.

ense Agreement Please read the following important information before continuing.	
Please read the following License Agreement. You must accept the terms of this agreement before continuing with the installation.	C
Licence Agreement 1. In the following "Qiagen" refers to Qiagen GmbH and its affiliated companies and "Software" means the programs and data supplied on this physical medium (eg. CD- ROM) or over the intermet with these conditions. (If you are unsure of any aspect of this agreement or have any questions they should be emailed to support@qiagen.com.) The Software and any accompanying documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software".	
2. Licence	-
I <u>do</u> not accept the agreement	

42. attēls. Dialoglodziņš "License Agreement" (Licences līgums). 1 = "I accept the agreement" (Es piekrītu līgumam), 2 = "Next" (Tālāk).

 Kad instalēšana beigusies, pēdējā dialoglodziņā Setup Wizard (Iestatīšanas vednis) noklikšķiniet uz Finish (Pabeigt) (43. attēls).

43. attēls. lestatīšanas vedņa pabeigšana (1 = "Finish" (Pabeigt)).

9. Restartējiet datoru.

Saīsnes uz "*therascreen* EGFR CE Control Run Locked Template" un "*therascreen* EGFR CE Locked Template" tiek ģenerētas automātiski un parādās darbvirsmā (44. attēls).

therascreen EGFR CE Control Run Locked Templ*a*te

therascreen EGFR CE Locked Template

44. attēls. EGFR CE Control Run Locked Template un EGFR CE Locked Template ikonas.

Kontaktinformācija

Lai saņemtu tehnisku palīdzību un papildu informāciju, lūdzu apskatiet mūsu tehniskā atbalsta centra vietni **www.qiagen.com/Support**, zvaniet pa tālruņa numuru 00800-22-44-6000 vai sazinieties ar kādu no QIAGEN tehnisko pakalpojumu dienesta nodaļām (skatiet aizmugurējo vāku vai apmeklējiet vietni **www.qiagen.com**).
Informācija par pasūtīšanu

Produkts	Saturs	Kat. Nr.
<i>therascreen</i> EGFR RGQ PCR Kit (24)	24 reakcijām: kontroles tests, 7 mutāciju testi, pozitīvā kontrole, <i>Taq</i> DNS polimerāze, ūdens kontrolei bez matricas un ūdens paraugu atšķaidīšanai	874111
<i>therascreen</i> EGFR Assay Package	Programmatūras protokola pakotne izmantošanai ar <i>therascreen</i> EGFR RGQ PCR Kit un QIAGEN Rotor- Gene Q MDx 5plex HRM instrumentu	Lejupielāde
QIAamp DNA FFPE Tissue Kit		
QIAamp DSP DNA FFPE Tissue Kit (50)	50 DNS paraugu sagatavošanai: QIAamp MinElute [®] stobriņi, proteināze K, buferšķīdumi un Collection Tubes (2 ml)	60404
QIAamp DNA FFPE Tissue Kit (50)	50 paraugu sagatavošanai: 50 QIAamp MinElute stobriņi, proteināze K, buferšķīdumi un Collection Tubes (2 ml)	56404
Rotor-Gene Q MDx 5plex HRM u	n piederumi	
Rotor-Gene Q MDx 5plex HRM System	Real-time PCR amplifikators un augstas izšķirtspējas kušanas analizators ar 5 kanāliem (zaļš, dzeltens, oranžs, sarkans, sārts) un HRM kanālu, klēpjdators, programmatūra, piederumi, 1 gada garantija daļām un darbam, instalācija un apmācība	9002033

Produkts	Saturs	Kat. Nr.
Rotor-Gene Q MDx 5plex HRM Platform	Real-time PCR amplifikators un augstas izšķirtspējas kušanas analizators ar 5 kanāliem (zaļš, dzeltens, oranžs, sarkans, sārts) un HRM kanālu, klēpjdators, programmatūra, piederumi: ietver 1 gada garantiju daļām un darbam, bet instalācija un apmācība nav iekļauta	9002032
Loading Block 72 x 0.1ml Tubes	Alumīnija bloks manuālai reakcijas iestatīšanai ar viena kanāla pipeti 72 x 0,1 ml stobriņos	9018901
Strip Tubes and Caps, 0.1ml (250)	250 strēmeles 4 stobriņos ar vāciņiem 1000 reakcijām	981103
Strip Tubes and Caps, 0.1ml (2500)	10 x 250 strēmeles 4 stobriņos ar vāciņiem 10 000 reakcijām	981106

Jaunāko informāciju par licencēšanu un preču juridiskās atrunas skatiet attiecīgā QIAGEN komplekta rokasgrāmatā vai lietotāja rokasgrāmatā. QIAGEN komplektu rokasgrāmatas un lietotāja rokasgrāmatas ir pieejamas vietnē **www.qiagen.com**, kā arī tās var pieprasīt QIAGEN tehniskā atbalsta centros vai pie vietējiem izplatītājiem.

Dokumenta pārskatīšanas vēsture

Datums	Izmaiņas
R5, 2019. gada janvāris	Pievienots pilnvarotais pārstāvis (priekšējais vāks). Atjaunināta sadaļa "Simboli".
R6, 2019. gada oktobris	 Mainīts likumīgais ražotājs (titullapa). Instrumenta nosaukuma pielāgošana no Rotor-Gene Q MDx uz Rotor-Gene Q MDx 5plex HRM, lai atbilstu nosaukumam instrument etiķetē. Pievienots reaģentu uzglabāšanas apstāklis sadaļā Reaģentu glabāšana un lietošana. Atjaunināta 1. tabula, to papildinot ar piezīmi par COSM6254 izņemšanu no COSMIC datubāzes. Atjaunināta sadaļa lerobežojumi ar informāciju par 19. eksona delēciju testiem un L858R testu. Nonemts EC + REP simbols no titullapas un sadalas Simboli.
R7, 2020. gada jūnijs	Atjaunināts EGFR Assay Package versijas numurs no 3.0.5 uz 3.0.6. Atjauninātas atsauces uz RGQ programmatūras versiju no 2.3 uz 2.3.5 vai jaunāku. Atjaunināta 9. un 17. tabula, ieviešot jaunos robežvērtību diapazonus, un atbilstoši precizēti visi attiecīgie apraksti (visā rokasgrāmatā). Atjauninātas visas protokolu nodaļas, iekļaujot informāciju par sajaukšanas nozīmīgumu sadaļās Svarīga informācija pirms darba sākšanas; izceltas samaisīšanas detaļas visās samaisīšanas darbībās; pievienotas samaisīšanas darbības, kur bija vajadzīgs. Pievienots MUTATION_EARLY_CT karodziņš 8. tabulā. Noņemtas visas atsauces uz CD, aizstājot ar informāciju par lejupielādēšanu.

therascreen EGFR RGQ PCR Kit ierobežots licences līgums

Šī produkta izmantošana liecina par katra produkta pircēja vai lietotāja piekrišanu tālāk minētajiem nosacījumiem.

- 1. Šo produktu drīkst lietot tikai saskaņā ar kopā ar produktu nodrošinātajiem protokoliem un šo rokasgrāmatu un tikai kopā ar sastāvdaļām, kas ietilpst šajā panelī. Uzņēmums QIAGEN nepiešķir nekāda veida licenci uz nevienu no tā intelektulaijem īpašumiem, lai šajā komplektā izmantotu kopā ar jebkādām sastāvdaļām, kas ietilpst šajā komplektā, viai r tām apvienotu, izpremot gadratījumus, kas ar pradstīti kopā ar produktu pejādātajos protokolos un šajā rokasgrāmatā, kā arī papildu protokolos, kas pieejami tīmekļa vietnē www.qiagen.com. Dažus no šiem papildu protokoliem QIAGEN lietotāji nodrošinā QIAGEN lietotājim. Šie protokolo in av rūpīgi testēti vai optimizēti uzņēmumā QIAGEN. Uzņēmums QIAGEN nedz apliecina, nedz garantē, ka tie nepārkāpi trešo personu tiesības.
- 2. Uzņēmums QIAGEN nesniedz citas garantijas, izņemot skaidri norādītās licences, ka šis panelis un/vai tā lietošana neaizskar trešo personu tiesības.
- 3. Šis komplekts un tā sastāvdalas ir licencētas vienreizējai lietošanai, un tās nedrīkst izmantot atkārtoti, atjaunot vai pārdot tālāk.
- 4. Uznēmums QIAGEN īpaši atsakās no jebkādām citām tiešām vai netiešām licencēm, kas nav skaidri norādītas.
- 5. Komplekta pircējs un lietotājs piekrīt neveikt un neatļaut citiem veikt nekādas darbības, kas varētu izraisīt vai veicināt jebkuras no iepriekš aizliegtajām darbībām. Uzņēmums QIAGEN var pieprasīt šī ierobežotā licences līguma aizliegumu īstenošanu jebkurā tiesā un apņemas atgūt visus savus izmeklēšanas un tiesas izdevumus, ieskaitot advokātu honorārus, kas radušies, īstenojot šo ierobežoto licences līgumu vai jebkuru no uzņēmuma intelektuālā īpašuma tiesībām saistībā ar komplektu un/vai tā sastāvdaļām.

Jaunākos licences nosacījumus skatiet tīmekļa vietnē www.qiagen.com

Preću zīmes: QIAGEN[®], Sample to Insigh[®], QIAamp[®], MinElute[®], Rotor-Gene[®], Scorpions[®], *therascreen[®]* (QIAGEN Group); FAM™, HEX™ (Thermo Fisher Scientific Inc.); GIOTRI[®] (Boehringer Ingelheim), IRESSA[®] (AstraZeneca Group). Tiek uzskatīts, ka šajā dokumentā minētie reģistrētie nosaukumi, preču zīmes u. c. ir aizsargāti ar likumu pat tad, ja tas nav īpaši norādītis.

therascreen EGFR RGQ PCR Kit ir diagnostikas komplekts ar CE markejumu un atbilst Eiropas Direktīvas 98/79/EK par medicīnas ierīcēm, ko lieto in vitro diagnostikā, prasībām. Visās valstīs nav pieejami.

1121935 06-2020 HB-1909-007 © 2020 QIAGEN, visas tiesības aizsargātas.

Pasūtīšana www.qiagen.com/shop | Tehniskais atbalsts support.qiagen.com | Tīmekļa vietne www.qiagen.com