

2022年6月

QlAamp[®] DSP DNA FFPE Tissue Kit 使用说明(性能特点)

第2版

供体外诊断使用 适用于 QIAamp DSP DNA FFPE Tissue Kit

60404

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, 德国

R 1

性能特点提供电子版,可以在 www.qiagen.com 产品页面的"资源"标签下找到。

一般说明

QlAamp DSP DNA FFPE Tissue Kit 是一个利用二氧化硅膜技术(QlAamp 技术)从福尔马林固定和石蜡包埋(FFPE)的生物标本中分离和纯化基因组 DNA 的系统。

它用于手动样本制备,不提供定性或定量测试结果。

性能特点

提示:性能特点高度依赖于各种因素,并与特定的下游应用相关。已经建立了 QIAamp DSP DNA FFPE Tissue Kit 与示例性 FFPE 组织类型 及示例性下游应用联用的性能特点。然而,核酸分离方法可用于不同的生物标本,并且是多种下游应用的前端。作为下游应用开发的一部分,任何此类工作流都需要建立性能参数,例如交叉污染或运行重复性和再现性。因此,用户有责任验证整个工作流,以确立适合的性能参数。

基本性能以及与不同下游应用的兼容性

下游分析

洗脱的基因组 DNA 可以用于不同的下游检测,包括各种体外诊断下游检测。有关特定系统性能的详情,请参阅相关 QIAGEN® 试剂盒手册。

纯化 DNA 产量

福尔马林固定和石蜡包埋 (Formalin-Fixed, Paraffin-Embedded, FFPE) 样本可能表现出高度的组织异质性。此外,FFPE 样本中的组织表面积具有很大差异性,这会导致提取的 DNA 数量及质量不同。因此,用户应优化目标样本的切片数量、切片厚度和切片表面积以及其实验室使用的任何步骤流程,以获得适合特定下游应用的 DNA 数量及质量。

如果将试剂盒与 QIAGEN 下游应用配合使用,请参阅相关的说明手册。

FFPE 组织制备过程中组织脱水不足、在样本提取管中加入过多石蜡、使用低于推荐纯度的乙醇(非分子生物级)或在样本中保留二甲苯或乙醇,可能导致提取效果不佳以及 DNA 数量和质量偏低。

重复性

使用由福尔马林固定和石蜡包埋的人体细胞制成的 6 种 FFPE 细胞系对重复性进行了评价。使用 QuantiTect® SYBR® Green 预混液和 β-肌动蛋白基因特异性引物以及 Rotor-Gene® Q real-time PCR 循环仪对样本进行检测。对人 β-肌动蛋白基因的 174 bp 片段和 218 bp 片段进行 PCR 反应。

针对每个片段大小使用 72 个数据点进行统计分析。统计分析包括计算标准差 (standard deviation, SD) 以及 95% 置信度上限和下限。使用方差组分分析得出的标准差评估 218 bp 片段的变异性 (SD: 0.342 CT; 95% 置信度下限: 0.291; 95% 置信度上限: 0.413)。这可以用于评估提取过程的重复性。评估得到 174 bp 片段的变异性为 0.258 CT; 95% 置信度下限: 0.220; 95% 置信度上限: 0.312。

再现性

使用 3 个含有非小细胞肺癌 (non-small cell lung cancer, NSCLC) 组织的临床 FFPE 标本在三个实验室中进行了再现性评估:一个携带 6223 缺失突变的标本、一个携带 L858R 突变的标本以及一个野生型 (wild-type, WT) 标本。根据 Sanger 测序,按照其已知的突变状态选择临床 FFPE 标本。

对于每种突变型临床 FFPE 标本,将 48 个连续 FFPE 切片随机配对用于提取,并分为三个批次,每个测试地点使用一个批次。

在每个测试地点进行重复两次提取。每个地点都使用一个唯一批次的 QIAamp FFPE DNA DSP Kit 进行提取。在所有三个地点均使用 therascreen® EGFR RGQ PCR Kit 进行样本评估和突变评估。在 6 天时间内的 3 个不连续日期对样本进行测试。在每个地点对每个标本进行 6 次测试,因此每个标本共计得到 18 个数据点。

在所有三个地点,对于所有样本均证明具备 100% 正确突变识别。

线性

QIAamp DSP DNA FFPE Tissue Kit 可用于从不同类型的组织中分离 DNA。应根据客户要求建立线性范围,并针对特定用途进行验证。对于不同的组织类型,预计会有不同的线性范围,具体取决于系统中的组织上样量以及组织特征。

干扰性物质

QIAamp DSP DNA FFPE Tissue Kit 可用于从不同类型的组织中分离 DNA。潜在干扰性物质可能来自不同来源,例如特定组织类型和器官的天然代谢物、病理条件下产生的代谢物、患者治疗期间产生的物质或患者摄入的物质。

已经通过使用 QIAamp DSP DNA FFPE Tissue Kit 进行样本制备,并结合示例性下游应用评估提取的核酸质量,对干扰性物质进行了测试。测试的 QIAGEN 诊断试剂盒示例见表 1。

然而,不同的下游应用对纯度可能有不同的要求(即,不存在潜在干扰性物质),并且特定样本中存在的干扰物可能多种多样。因此,还需要建立相关干扰性物质的识别、测试和控制,作为 QIAamp DSP FFPE Tissue Kit 和特定下游应用的特定诊断工作流的一部分。

表 1. 下游检测干扰性物质研究

诊断试剂盒	测试的干扰物	结论
therascreen PIK3CA RGQ PCR Kit	石蜡 二甲苯 乙醇 Buffer ATL 蛋白酶 K Buffer AL Buffer AW1 Buffer AW2 血红蛋白	在五个突变型样本(每个样本代表 PIK3CA 试剂盒的一种检测)和一个 WT 样本中加入 9 种潜在干扰性物质,并测试干扰性物质对平均 ΔCt 和突变识别的影响。该研究得出的数据表明,测试的干扰物在所用浓度下对突变型或 WT 样本均没有影响。其中观察到一个显著性差异,该显著性差异处于检测的 3 倍中间精度范围内,因此仍然处于该检测的固有变异性范围内。 突变型和 WT 样本中的所有突变识别均符合预期。研究中观察到的数据表明该研究符合验收标准。
therascreen KRAS RGQ PCR Kit	石蜡 二甲苯 乙醇 Buffer ATL 蛋白酶 K Buffer AL Buffer AW1 Buffer AW2	该研究旨在评估潜在干扰性物质对 KRAS 试剂盒性能的影响。 对于突变型样本,目标是证明与不含干扰性物质的样本相比,含有干扰性物质的样本的平均检测值不存在显著性差异。对于 WT 样本,目标是证明存在干扰性物质不会导致假阳性结果。 有两种检测/干扰性物质组合产生了假阳性结果。然而,这些结果均出现在含有低水平二甲苯的情况下,在高水平样本中未观察到类似的假阳性结果。 上述两个目标均已实现,因此证实了该研究的假设,即 QlAamp DSP DNA FFPE Tissue Kit 中的物质在正常使用浓度下均不会干扰 KRAS 试剂盒区分突变阳性和突变阴性样本的能力。
therascreen EGFR RGQ PCR Kit (EGFR Kit)	石蜡 二甲苯 乙醇 Buffer ATL 蛋白酶 K Buffer AW1 Buffer AW2	该研究的目的是验证在 QIAGEN Rotor-Gene Q MDx Plotform (RGQ) 上使用 therascreen EGFR RGQ PCR Kit (EGFR Kit) 时,提取过程中使用的潜在干扰性物质对 其性能的影响。 这研究选择了 8 个 FFPE 标准品样本,分别代表 7 种 EGFR 突变检测以及一种野生型 (Wild-Type, WT) 样本。 在两个干扰物水平和"空白"重复样本之间,每种突变型 FFPE 标准品的平均 Δ Ct 值的估计差异均与零相比无显著性差异,或认为差异较小(小于 1Ct)。对于所有干扰物,在低水平和高水平干扰物下,所有突变型重复样本的突变识别均为检测到突变。对于所有干扰物,在低水平和高水平干扰物下,所有 WT 重复样本的突变状态均为未检测到突变该研究证实,FFPE Extraction Kit 中使用的试剂不会影响 EGFR Kit 的性能。
therascreen KRAS RGQ PCR NSCLC Kit	石蜡 二甲苯 乙醇 Buffer ATL Buffer AL Buffer AW1 Buffer AW2 Buffer ATE	该研究旨在证明潜在干扰性物质(来自 QlAamp DSP DNA FFPE Tissue Kit [FFPE Extraction Kit])的存在不会导致 KRAS System NSCLC 试剂盒产生任何假阳性或假阴性结果,即,突变识别会受到影响或由于产生无效样本状态导致系统出现"故障安全"。 确定了来自 DNA 提取过程的 8 种潜在干扰性物质。针对 8 种 FFPE 细胞系测试每种物质,分别代表 KRAS Kit NSCLC Kit 检测的 7 种突变外加一个 WT 样本。在相当于约 3 倍检测限 (3 x LOD) 的水平下对突变样本进行测试。该研究表明,测试的物质在 1 倍干扰物水平下对检测性能没有产生任何不利影响;始终具有正确的突变识别,并且干扰性物质的存在对大多数测试样本条件(58 种/64 种条件,1 倍干扰物水平)下的 Δ Ct 差异没有统计学显著影响。对于确实显示出统计学显著差异的 6 个样本,在每个样本中观察到的均值差异都在 ±2 x SD 的研究验收标准范围内(SD 估计值取自重复性和再现性研究报告)。研究还表明,该检测对每种物质的耐受水平高于预期残留水平,即,存在 10 倍最高预期浓度的干扰性物质时,仍然会得到正确的突变识别。

有关特定的 QIAGEN 下游应用中干扰性物质的更多信息,请参阅试剂盒手册。

交叉污染

为评估交叉污染水平,使用了两种 FFPE 细胞系 NSCLC 样本: WT 样本以及携带 21 号外显子 L858R 突变的 FFPE 细胞系样本。该研究的目的旨在模仿以下情况:在提取过程中,含有高水平突变的样本可能会对其他样本产生交叉污染。通过使用同一批试剂从紧邻 WT 样本的 L858R 突变型样本中纯化 DNA,进行 DNA 纯化来挑战该操作流程。使用 therascreen EGFR RGQ PCR Kit 评估交叉污染。结果显示,整个系统没有交叉污染。

QIAamp DSP DNA FFPE DNA 在 Pyrosequencing® 和 qPCR 检测中的洗脱性能

将从 FFPE 组织中分离的 DNA 稀释至 2 ng/μ l 的 DNA 浓度,以便使用 *therascreen* EGFR Pyro Assay 进行分析。在用于确定性能特点的 所有运行中,所有密码子的信号均高于 30 RLU(相对光单位),并且所有样本的突变分析医学结果均正确。

将从结直肠癌、非小细胞肺癌和乳腺癌患者的 FFPE 组织中分离的 DNA 直接用于 therascreen KRAS RGQ PCR Kit、therascreen EGFR RGQ PCR Kit、KRAS RGQ PCR NSCLC Kit 和 therascreen PIK3CA RGQ PCR Kit。使用 QIAamp DSP DNA FFPE Tissue Kit 提取的 DNA 的 Ct 值在每种检测定义的工作范围参数内,详情请参阅对应手册。

洗脱液稳定性

洗脱液稳定性取决于共纯化杂质的含量和类型(与组织类型有关)、洗脱体积以及存储条件。我们建议用户根据自身的具体要求建立洗脱液稳定性。

如果将试剂盒与 QIAGEN 下游应用配合使用,请参阅相关的试剂盒说明手册。一项示例稳定性验证研究表明,从 FFPE 组织样本中提取 的 DNA 在 4° C 下存放最长 7 天,然后继续在 -20° C 下存放,合计总存放期最长 5 周,期间经历多次冻融循环之后,仍然适用于 therascreen KRAS RGQ PCR Kit。

符号

本文档中出现了以下符号。有关使用说明或包装和标签上所用符号的完整列表,请参阅手册。

符号	符号定义
CE	本产品符合体外诊断医疗器械法规 2017/746 的要求。
IVD	体外诊断医疗器械
REF	目录编号
Rn	R 表示使用说明为修订版, n 为修订版本号
	制造商

修订历史

修订日期	说明	
R1,2022年6月	第2版,	修订 1
	•	更新到第 2 版以符合 IVDR
	•	增加了干扰性物质、交叉污染、洗脱液稳定性和下游应用兼容性章节

有关最新许可信息以及产品特定免责声明,请参阅相应的 QIAGEN 试剂盒手册或用户手册。QIAGEN 试剂盒手册和用户手册可从 www.qiagen.com 或 QIAGEN 技术服务部门以及您当地的经销商处获得。

商标: QIAGEN®、Sample to Insight®、QIAamp®、Pyrosequencing®、QuantiTect®、Rotor-Gene®、*therascreen® (QIAGEN Group): SYBR® (Life Technologies Corporation)。本文档中使用的注册名称、商标等,即便未专门标记,也不得视为不受法律保护。
06/2022 HB-3033-D01-001 © 2022 QIAGEN,保留所有权利。