ipsogen[®] JAK2 MutaScreen Kit Handbuch

10 (Katalog-Nr. 673022)
 24 (Katalog-Nr. 673023)

Version 1

IVD

Quantitatives In-vitro-Diagnostikum

Zum Gebrauch mit Rotor-Gene® Q, Applied Biosystems®, ABI PRISM® oder LightCycler® Thermocyclern

CE

REF 673022, 673023

QIAGEN GmbH, QIAGEN-Straße 1, 40724 Hilden, GERMANY

R3 MAT 1072500DE

Sample & Assay Technologies

QIAGEN Sample and Assay Technologies

QIAGEN ist der führende Anbieter von innovativen Probenvorbereitungs- und Testtechnologien, die die Isolierung und die Analyse von Nukleinsäuren und Proteinen in jedem biologischen Probenmaterial ermöglicht. Unsere fortschrittlichen, qualitativ hochwertigen Produkte und Dienstleistungen stellen den Erfolg von der Probe bis zum Ergebnis sicher.

QIAGEN setzt Standards in:

- der Reinigung von DNA, RNA und Proteinen,
- Nukleinsäure- und Protein-Assays,
- microRNA-Forschung und RNAi sowie
- der Automatisierung von Probenvorbereitungs- und Testtechnologien.

Unsere Mission ist es, Ihnen herausragende Erfolge und bahnbrechend neue Erkenntnisse bei Ihrer Forschung zu ermöglichen. Weitere Informationen finden Sie auf der Website **www.qiagen.com**.

Inhaltsverzeichnis

Vorgesehener Verwendungszweck	4
Zusammenfassung und Hintergrundinformationen	4
Prinzip des Testverfahrens und seine Anwendung	7
Mit dem Kit gelieferte Materialien	9
Kit-Inhalt	9
Vom Anwender bereitzustellende Ausrüstung und Reagenzien	10
Warnhinweise und Vorsichtsmaßnahmen	12
Allgemeine Vorsichtsmaßnahmen	12
Lagerung und Handhabung der Reagenzien	13
Verfahren	14
DNA-Isolierung aus der Probe	14
Lagerung der Nukleinsäuren	14
Protokolle	
qPCR mit Rotor-Gene Q Thermocycler mit 72er-Rotor	15
qPCR mit Applied Biosystems oder ABI PRISM Thermocycler	25
qPCR mit LightCycler 480 Thermocycler	34
qPCR mit LightCycler 2.0 Thermocycler	43
Interpretation der Ergebnisse	49
Grafische Darstellung und Qualitätskontrollkriterien	49
Berechnung des normalisierten FAM/VIC-Verhältnisses und Genotypisie	erung50
Hilfe zur Fehlerbehebung	53
Qualitätskontrolle	55
Beschränkungen des Tests	55
Leistungscharakteristik	56
Untersuchung nichtklinischer Proben	56
Untersuchung klinischer Proben	57
Literatur	63
Symbole	64
Kontaktinformationen	64
Bestellinformationen	65

Vorgesehener Verwendungszweck

Die *ipsogen* JAK2 MutaScreen Kits sind für den Nachweis der JAK2-V617Fbzw. -G1849T-Mutation in genomischer DNA von Personen mit Verdacht auf myeloproliferative Neoplasie (MPN) vorgesehen. Das Fehlen von JAK2-V617F bzw. -G1849T schließt das Vorhandensein anderer JAK2-Mutationen nicht aus. Der Test kann falsch-negative Ergebnisse anzeigen, falls zusätzliche Mutationen im Bereich der Codons 615 bis 619 vorliegen (1).

Hinweis: Der Kit sollte gemäß den Anweisungen in diesem Handbuch und in Kombination mit validierten Reagenzien und Geräten verwendet werden. Bei nicht vorgesehenem Gebrauch (sog. "Off-Label-Use) dieses Produkts und/oder durch Modifikation seiner Komponenten erlischt jegliche Haftung QIAGENs.

Zusammenfassung und Hintergrundinformationen

Im Jahr 2005 wurde die rekurrente somatische Mutation V617F, die das Janus-Tyrosin-Kinase-2-(JAK2-)Gen betrifft, identifiziert (2–5). Diese Entdeckung stellte einen bedeutenden Durchbruch im Verständnis und für die Klassifizierung und Diagnose myeloproliferativer Neoplasien (MPNs) dar. JAK2 ist bei einer Reihe von Zytokinen, darunter auch Erythropoetin, ein kritisches Molekül für intrazelluläre Signalwege.

Die JAK2-Mutation V617F lässt sich bei > 95 % der Patienten mit Polycythaemia vera (PV), 50–60 % der Patienten mit essenzieller Thrombozythämie (ET) und bei 50 % der Patienten mit primärer Myelofibrose (PMF) nachweisen. JAK2-V617F wurde auch in einigen seltenen Fällen von chronischer myelomonozytärer Leukämie, myelodysplastischem Syndrom, systemischer Mastozytose und chronischer neutrophiler Leukämie detektiert, gar nicht (0 %) dagegen bei CML (6).

Die Mutation entspricht einer einzelnen Nukleotid-Veränderung, und zwar des JAK2-Nukleotids 1849 im Exon 14, wodurch es zu einer Substitution der Aminosäure Valin (V) durch Phenylalanin (F) in Position 617 des Proteins (in der JH2-Domäne) kommt. Sie führt zu einer konstitutiven JAK2-Aktivierung, einer hämatopoetischen Transformation in vitro und einem Erythropoetin-unabhängigen Wachstum endogener erythroider Kolonien (EECs) bei allen Patienten mit PV und einem hohen Prozentsatz der ET- und PMF-Patienten (7). JAK2-V617F ist einer der Hauptfaktoren, der die Transformation der hämatopoetischen Zellen bei MPN fördert. Allerdings müssen die zugrunde liegenden pathologischen Mechanismen, die – bei Vorliegen derselben, einzigartigen Mutation – zu solch unterschiedlichen klinischen und biologischen Phänotypen führen, noch genauer erforscht werden.

Traditionell erfolgte die Diagnose der MPNs auf der Basis klinischer Befunde sowie aufgrund histologischer Knochenmarks- und zytogenetischer Kriterien. Die Entdeckung eines krankheitsspezifischen molekularen Markers führte sowohl zu einer Vereinfachung des Verfahrens als auch zu erhöhter diagnostischer Genauigkeit. Der Nachweis der JAK2-Mutation V617F ist jetzt Bestandteil der Referenzkriterien der WHO des Jahres 2008 für die Diagnose einer BCR-ABL-negativen MPN (siehe Tab. 1), und das Vorhandensein dieser Mutation ist ein wesentliches Kriterium bei der Bestätigung der Diagnose.

Tabelle 1. WHO-Kriterien für die Diagnose einer MPN (nach Referenz 8)

Kriterien	für die Diagnose einer Polycythaemia vera (PV)
Haupt-	1. Hämoglobin (Hb) > 18,5 g·dl ⁻¹ (Männer) bzw. > 16,5 g·dl ⁻¹
kriterien	(Frauen) oder
	Hb oder Hämatokrit (Hkt) > 99. Perzentil des Reterenzbereichs
	bezogen dut Alter, Geschlecht oder Hone des wonnorts oder Hb > 17 a.dl ⁻¹ (Männer) bzw. > 15 a.dl ⁻¹ (Frauen) falls assoziiert
	mit anhaltender Erhöhung um > 2 g·dl ⁻¹ über Baseline, die nicht
	einer Eisenmangel-Korrektur zugeschrieben werden kann, oder
	Um > 25% über dem mittleren normalen prognostischen Wert
	erhöhte Erythrozyten-Fraktion
ĺ	2. Vorhandensein von JAK2-V617F oder einer ähnlichen Mutation
Neben-	1. Knochenmark mit trilinearer Myeloproliferation
kriterien	2. Serum-Erythropoetin-Spiegel unterhalb des Normalbereichs
	3. Wachstum endogener erythroider Kolonien (EECs)
Kriterien	für die Diagnose einer essenziellen Thrombozythämie (ET)
Haupt-	1. Thrombozytenzahl \geq 450 x 10 ⁹ ⁻¹
kriterien	2. Megakaryozyten-Proliteration mit großer und reiter Morphologie.
	Keine oder nur geringe Granulozyten- oder erythroide Proliteration
	3. Nichtertullung der WHO-Kriterien für chronische myeloische Leu-
	Syndrom (MDS) oder eine andere myeloische Neoplasie
ĺ	4 Nachweis von JAK2-V617E oder anderer klonaler Marker oder
l	Kein Nachweis einer reaktiven Thrombozytose
Neben-	- '
kriterien	
Kriterien	für die Diagnose einer primären Myelofibrose (PMF)
Haupt-	1. Megakaryozyten-Proliferation und -Atypie, verbunden mit
kriterien	Retikulin- und/oder Kollagenfibrose, oder
	Bei Nichtvorhandensein einer Retikulinfibrose müssen die mega-
	karyozytären Veränderungen mit Hyperzellularität des Knochen-
	marks, granulozytarer Proliteration und offmals einer abgeschwäch-
	2. Nighterfüllung der M/HO Kriterien für (CAL) DV ADS oder eine
	2. Nichterfullung der WHO-Kriterien für (CML), FV, MDS öder eine
	3 Nachweis von JAK2-V617E oder anderer klonaler Marker oder
	Kein Nachweis einer reaktiven Knochenmarkfibrose
Neben-	1. Leukoerythroblastose
kriterien	2. Erhöhte Serum-Lactatdehydrogenase-Aktivität (LDH)
	3. Anämie
	4. Tastbare Milzvergrößerung (Splenomegalie)

Vor Kurzem hat ein internationales Expertengremium Kriterien für therapeutische Studien zu PV und ET vorgeschlagen. Auf der Grundlage von Daten zu Allotransplantationen, Alpha-Interferon bzw. Hydroxyharnstoff wurde die JAK2-V617F-Quantifizierung als ein potenziell hilfreiches Instrument zur Überwachung der Therapiereaktion mit aufgenommen (9). Als Reaktion auf einige neue auf JAK2 abzielende Arzneimittel, die sich in der klinischen Entwicklung befinden, wurde eine Abnahme der JAK2-V617F-Mutationslast beobachtet (10).

Prinzip des Testverfahrens und seine Anwendung

In einem Alleldiskriminierungs-Assay werden zwei TaqMan[®] Sonden gleichzeitig eingesetzt (Multiplex-Assay). Bei der einen liegt eine vollkommene Übereinstimmung ("Perfect Match") zur Sequenz des Allels 2 (z. B. des Wildtyp-Allels) vor, während die andere vollkommen mit der Sequenz von Allel 1 (z. B. dem Allel mit einer Mutation) übereinstimmt. Jede Sonde ist an ihrem 5'-Ende mit einem bestimmten Fluoreszenzfarbstoff, dem Reporter – z. B. FAM[™] oder VIC[®] – markiert und trägt außerdem einen nicht fluoreszierenden Quencher an ihrem 3'-Ende. Die Sonden enthalten außerdem einen sog. "Minor Groove Binder" (MGB[™]) zur Stabilisierung der Bindung bei Verwendung kürzerer Sonden, wodurch eine genauere Alleldiskriminierung ermöglicht wird.

In der Elongationsphase der PCR wird die Perfect-Match-Sonde durch die 5'→3'-Exonuklease-Aktivität der Taq-DNA-Polymerase gespalten, wodurch der Reporter-Farbstoff vom Quencher getrennt wird und ein messbares Fluoreszenzsignal abgegeben wird. Die Sonde, deren Sequenz nicht perfekt übereinstimmt, wird eher verdrängt als durch die Taq-DNA-Polymerase gespalten, sodass kein Reporter-Farbstoff frei wird. Das generierte Fluoreszenzsignal (durch VIC oder FAM) wird am Ende der PCR erfasst (Endpunkt-PCR) und zeigt unmittelbar das Vorhandensein der Zielsequenz(en) in der Probe an (Wildtyp-Allel, mutiertes Allel oder beide), ohne dass langwierige und arbeitsintensive Schritte nach der PCR erforderlich sind, die zudem das Kontaminationsrisiko erhöhen. Die tatsächliche Menge an Ziel- oder Targetsequenz wird nicht bestimmt.

Die Anwendung dieser Technologie beim *ipsogen* JAK2 MutaScreen Kit ist in der folgenden Abbildung (siehe Abb. 1) dargestellt.

Abbildung 1. Multiplex-Assay mit TaqMan Sonden. Beim *ipsogen JAK2 MutaScreen Kit wird diese Technologie zur Alleldiskriminierung verwendet.*

Mit dem Kit gelieferte Materialien

Kit-Inhalt

ipsogen JAK2 MutaScreen Kit Katalog-Nr.		(10) 673022	(24) 673023
Anzahl Reaktionen		24	10
V617F Positive Control* (V617F-Positivkontrolle)	PC-VF	30 <i>µ</i> l	30 <i>µ</i> l
V617F Negative Control [†] (V617F-Negativkontrolle)	NC-VF	30 <i>µ</i> l	30 <i>µ</i> I
Cut-Off Sample (Cut-off-Probe)	COS-VF	30 <i>µ</i> l	30 <i>µ</i> l
Primers and probes mix JAK2 V617F [‡] (Primer- und Sonden- Mischung JAK2-V617F)	PPM-VF, 10x	70 <i>µ</i> l	145 <i>μ</i> Ι
ipsogen JAK2 MutaScreen Kit Handbook (in Englisch)		1	1

* Positivkontrolle: 100 % V617F-DNA.

⁺ Negativkontrolle: 100 % Wildtyp-DNA; 0 % V617F.

[‡] Mischung aus spezifischen Vorwärts- und Rückwärts-Primern für das JAK2-Gen, der spezifischen V617F-FAM-Sonde und der Wildtyp-VIC-Sonde.

Hinweis: Zentrifugieren Sie die Reagenzien-Röhrchen kurz vor Gebrauch.

Hinweis: Voraussetzung für die Analyse unbekannter Proben mit dem *ipsogen* JAK2 MutaScreen Kit ist die Extraktion genomischer DNA. Die Reagenzien, die für die DNA-Extraktion benötigt werden (z. B. der QIAGEN[®] QIAamp[®] DNA Mini Kit, Kat.-Nr. 51304), sind nicht Bestandteil des Kits und müssen in Kombination mit dem Kit validiert werden.

Vom Anwender bereitzustellende Ausrüstung und Reagenzien

Tragen Sie beim Umgang mit Chemikalien immer einen Laborkittel, Schutzhandschuhe und eine Schutzbrille. Weitere Informationen können Sie den entsprechenden Sicherheits-Datenblättern (Material Safety Data Sheets, MSDS) entnehmen, die Sie vom jeweiligen Hersteller beziehen können.

Reagenzien

- Nukleasefreies Wasser (für PCR-Zwecke)
- Nukleasefreier 1x-TE-Puffer, pH 8,0 (z. B. von Thermo Fisher Scientific Inc., Kein Num 12000015)
 - Kat.-Nr. 12090015)
- Puffer und Taq-DNA-Polymerase: Als validierte Reagenzien werden der TaqMan Universal PCR Master Mix (2x-PCR-Master-Mix; von Thermo Fisher Scientific Inc., Kat.-Nr. 4304437) und der LightCycler TaqMan Master (5x-PCR-Master-Mix; von Roche, Kat.-Nr. 04535286001) verwendet.
- Reagenzien für Agarosegel (0,8–1,0 %) in 0,5x-TBE-Elektrophoresepuffer

Verbrauchsartikel

- Nukleasefreie, sterile PCR-Pipettenspitzen mit hydrophoben Filtern
- RNase- und DNase-freie 0,5-ml- oder 0,2-ml-PCR-Reaktionsgefäße
- Eis

Geräte

- Pipetten* (1–10 μl; 10–100 μl; 100–1000 μl)
- Tischzentrifuge* mit Rotor f
 ür 0,2-ml-/0,5-ml-Reaktionsgef
 ä
 ße (erforderliche Drehzahl: 10.000 UpM)
- Spektralfotometer* für die DNA-Quantifizierung
- Real-Time-PCR-Thermocycler:* Rotor-Gene Q 5plex HRM oder anderer Rotor-Gene Thermocycler; LightCycler 2.0 oder 480; Applied Biosystems 7300 Real-Time-PCR-System, Applied Biosystems 7500 Real-Time-PCR-System, ABI PRISM 7000 SDS, ABI PRISM 7700 SDS oder ABI PRISM 7900HT SDS; sowie gerätespezifisches Zubehörmaterial
- Gerät* (und Zubehör) für Pulsed-Field-Gelelektrophorese

* Stellen Sie sicher, dass die Geräte regelmäßig und gemäß den Herstellerangaben überprüft und kalibriert werden.

Warnhinweise und Vorsichtsmaßnahmen

Für in-vitro-diagnostische Anwendungen

Tragen Sie beim Umgang mit Chemikalien immer einen Laborkittel, Schutzhandschuhe und eine Schutzbrille. Weitere Informationen können Sie den entsprechenden Sicherheits-Datenblättern entnehmen (*Material Safety Data Sheets*, MSDS). In unserer Online-Sammlung der Materialsicherheits-Datenblätter unter **www.qiagen.com/safety** finden Sie zu jedem QIAGEN Kit und zu jeder Kit-Komponente das jeweilige MSDS als PDF-Datei, die Sie einsehen und ausdrucken können.

Entsorgen Sie den bei Probenverarbeitung und PCR-Reaktion angefallenen (Flüssig-)Abfall gemäß den geltenden Sicherheitsbestimmungen.

Allgemeine Vorsichtsmaßnahmen

Quantitative PCR-Tests setzen die Einhaltung der guten Laborpraxis voraus, einschließlich der Wartung der für molekularbiologische Zwecke vorgesehenen Geräte gemäß den anzuwendenden Vorschriften und relevanten Normen.

Dieser Kit ist für in-vitro-diagnostische Anwendungen vorgesehen. Die in diesem Kit enthaltenen Reagenzien und mitgelieferten Anweisungen wurden für optimale Leistung validiert. Eine weitere Verdünnung der Reagenzien oder die Änderung von Inkubationszeiten oder -temperaturen könnte zu fehlerhaften oder widersprüchlichen Daten führen. Das PPM-VF-Reagenz könnte unter Lichteinfluss chemischen Veränderungen unterliegen. Die Formulierung aller Reagenzien ist spezifisch auf den Gebrauch mit diesem Test abgestimmt. Um die optimale Leistungsfähigkeit des Tests zu erhalten, dürfen keine Reagenzien ausgetauscht werden.

Gehen Sie äußerst sorgfältig vor, um Folgendes zu vermeiden:

- DNase-Kontamination, die einen Abbau der Template-DNA verursachen könnte
- DNA- oder PCR-Produkt-Kontaminationen durch Verschleppung, die zu einem falsch-positiven Signal führen könnten

Wir empfehlen daher, folgende Maßnahmen einzuhalten.

- Verwenden Sie nukleasefreie Verbrauchsmaterialien (z. B. Pipetten, Pipettenspitzen, Reaktionsgefäße) und tragen Sie bei der Durchführung des Assays immer Einmal-Handschuhe.
- Benutzen Sie bei allen Pipettierschritten neue Pipettenspitzen mit Filter als Aerosolbarriere, um eine Kreuzkontamination der Proben und Reagenzien zu vermeiden.
- Setzen Sie den Master-Mix vor der PCR mit dafür reservierten Materialien (Pipetten, Pipettenspitzen etc.) in einem speziell dafür vorgesehenen

Laborbereich an, in den keine DNA-Matrizen (DNA, Plasmid-DNA) hineingetragen werden. Pipettieren Sie die Template-DNA in einem separaten Laborbereich (vorzugsweise in einem anderen Laborraum) mit speziell dafür reservierten Materialien (Pipetten, Pipettenspitzen etc.).

Lagerung und Handhabung der Reagenzien

Die Kits werden auf Trockeneis verschickt und müssen nach Eingang bei –30 °C bis –15 °C gelagert werden.

- Sorgen Sie dafür, dass die Primer- und Sonden-Mischungen (PPM-VF-Röhrchen) nicht (bzw. möglichst wenig) dem Licht ausgesetzt werden.
- Schütteln Sie die Röhrchen vorsichtig und zentrifugieren Sie sie kurz vor dem Öffnen.
- Lagern Sie alle Kit-Komponenten in ihren Originalgefäßen/-behältern.

Diese Lagerungsbedingungen gelten sowohl für geöffnete als auch ungeöffnete Komponenten. Komponenten, die nicht unter den auf den Etiketten angegebenen Bedingungen gelagert wurden, könnten in ihrer Funktion beeinträchtigt sein, was sich ungünstig auf die Assay-Ergebnisse auswirken könnte.

Das Haltbarkeitsdatum eines Reagenzes ist jeweils auf dem Etikett der einzelnen Komponente angegeben. Bei Aufbewahrung unter korrekten Lagerungsbedingungen behält das Produkt seine Leistungsfähigkeit bis zu dem Haltbarkeitsdatum, das auf dem Etikett angegeben ist.

Es liegen keine Anhaltspunkte vor, die auf eine Instabilität dieses Produkts hindeuten. Dennoch sollten beim Testen unbekannter Proben immer Positivund Negativkontrollen simultan mitgeführt werden.

Verfahren

DNA-Isolierung aus der Probe

Die genomische DNA sollte entweder aus Vollblut, gereinigten Lymphozyten aus peripherem Blut, polynukleären Zellen oder Granulozyten isoliert werden. Um Ergebnisse miteinander vergleichen zu können, empfehlen wir, dieselbe Zellfraktion und dieselbe DNA-Extraktionsmethode zu verwenden. Die DNA-Extraktion kann nach einer laboreigenen Methode oder mithilfe eines kommerziell erhältlichen Kits erfolgen.

Die DNA-Menge sollte durch Messung der optischen Dichte (OD) bei 260 nm bestimmt werden. Die Kontrolle der DNA-Qualität sollte durch Spektralfotometrie oder Gelelektrophorese erfolgen.

Das OD₂₆₀/OD₂₈₀-Verhältnis sollte 1,7–1,9 betragen. Geringere Werte deuten in der Regel auf eine Kontamination mit Protein oder auf organische Chemikalien hin. Bei der elektrophoretischen Analyse in einem 0,8–1,0%igen Agarosegel sollte sich die isolierte DNA als einzelne deutliche Bande bei ungefähr 20 kb anfärben lassen. Auch ein leichter Schmier ergibt akzeptable Ergebnisse.

Die erhaltene DNA wird auf eine Konzentration von 5 ng/ μ l in TE-Puffer verdünnt. Die qPCR-Reaktion ist für 25 ng gereinigte genomische DNA optimiert.

Lagerung der Nukleinsäuren

Kurzfristig – für maximal 24 Stunden – können die gereinigten Nukleinsäuren bei 2–8 °C aufbewahrt werden. Für eine längerfristige Lagerung (über 24 Stunden) empfehlen wir, die Nukleinsäuren bei –20 °C einzufrieren.

Protokoll: qPCR mit Rotor-Gene Q Thermocycler mit 72er-Rotor

Bei Verwendung dieses Thermocyclers empfehlen wir, alle Messungen als Doppelbestimmung, wie in Tabelle 2 angegeben, durchzuführen.

Tabelle 2. Anzahl an Reaktionen für Rotor-Gene Q MDx 5plex HRM oder Rotor-Gene Q 5plex HRM Thermocycler mit 72er-Rotor

Proben	Reaktionen		
Mit JAK2-V617F-Primer- und Sonden-Mix (PPM-VF) (56 Reaktionen)			
24 DNA-Proben	24 x 2 Reaktionen		
3 DNA-Kontrollen	3 x 2 Reaktionen (PC-VF, NC-VF und COS-VF, jede als Doppelbestimmung getestet)		
Wasser-Kontrolle	2 Reaktionen		

Abbildung 2. Vorgeschlagenes Rotor-Set-up bei einem Experiment mit dem ipsogen JAK2 MutaScreen Kit. PC-VF: Positivkontrolle; NC-VF: Negativkontrolle; COS-VF: Cut-off-Probe; S: DNA-Probe; H₂O: Wasser-Kontrolle.

Hinweis: Achten Sie darauf, immer eine zu testende Probe in Position 1 des Rotors zu platzieren. Andernfalls wird der Thermocycler während des Kalibrierungsschritts keine Kalibrierung durchführen und es werden falsche Fluoreszenzsignaldaten erfasst.

Setzen Sie in alle übrigen Positionen ein leeres Reaktionsgefäß ein.

qPCR mit Rotor-Gene Q Thermocycler mit 72er-Rotor

Hinweis: Führen Sie alle Arbeitsschritte auf Eis durch.

Durchführung

1. Tauen Sie alle Komponenten auf und stellen Sie sie auf Eis. Nehmen Sie die Komponenten ungefähr 10 min vor Beginn der Testdurchführung aus dem Kühlschrank.

- 2. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 3. Setzen Sie entsprechend der Anzahl an zu verarbeitenden Proben den folgenden qPCR-Mix an.

Alle Konzentrationsangaben beziehen sich auf das Endvolumen der Reaktion.

Die Tabelle 3 dient als Pipettierschema für das Ansetzen eines Reagenzien-Mix, der für ein Reaktions-Endvolumen von 25 μ l berechnet ist. Sie können, entsprechend der Anzahl an Reaktionen, einen Pre-Mix mit demselben Primer- und Sonden-Mix ansetzen. Ein zusätzliches Volumen zur Kompensation von Pipettierfehlern ist jeweils berücksichtigt.

Bei Verwendung eines Rotor-Gene Thermocyclers können mit dem *ipsogen* JAK2 MutaScreen Kit 24 Proben als Doppelbestimmung in einem Experiment (siehe Abb. 2), 20 Proben als Doppelbestimmung in zwei Experimenten oder 15 Proben als Doppelbestimmung in drei Experimenten analysiert werden.

	Anzahl Reaktionen				
Komponente	1	56 + 1*	28 + 1 [†]	18 + 1‡	Endkon- zentration
TaqMan Universal PCR- Master-Mix, 2x	12,5	712,5	362,5	237,5	١x
Primer- und Sonden-Mix, 25x	2,5	142,5	72,5	47,5	lx
Nukleasefreies Wasser (für PCR- Zwecke)	5,0	285,0	145,0	95,0	_
Probe (Zugabe bei Schritt 5)	5,0	jeweils 5,0	jeweils 5,0	jeweils 5,0	-
Gesamtvolumen	25,0	jeweils 25,0	jeweils 25,0	jeweils 25,0	-

Tabelle 3. Ansetzen des qPCR-Mix

* 24 Proben; 1 Experiment/Kit.

⁺ 10 Proben; 2 Experimente/Kit.

[‡] 5 Proben; 3 Experimente/Kit.

- 4. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 5. Pipettieren Sie 20 μ l des qPCR-Mix in jedes Reaktionsgefäß.
- 6. Geben Sie 5 μ l der genomischen DNA der Probe oder der Kontrolle in die entsprechenden Reaktionsgefäße (Gesamtvolumen 25 μ l).
- 7. Mischen Sie jeweils durch vorsichtiges Auf- und Abpipettieren.
- 8. Verschließen Sie die PCR-Reaktionsgefäße. Setzen Sie die Reaktionsgefäße gemäß den Empfehlungen des Herstellers in den 72er-Rotor. Setzen Sie in alle übrigen Positionen ein leeres Reaktionsgefäß ein.
- 9. Achten Sie darauf, dass der Sicherungsring (Locking Ring; Zubehör des Rotor-Gene Thermocyclers) auf den Rotor aufgesetzt wird, um ein unbeabsichtigtes Öffnen der Reaktionsgefäße während des Laufs zu verhindern. Setzen Sie den Rotor gemäß den Anweisungen des Herstellers in den Rotor-Gene Q Thermocycler ein.
- 10. Erstellen Sie zum Nachweis der JAK2-DNA gemäß den folgenden Schritten ein Temperaturprofil.

Einstellung allgemeiner Assay-Parameter	Abbildungen 3, 4
Amplifikation der DNA	Abbildung 5
Einstellung der Fluoreszenzkanal-Sensitivität	Abbildung 6

Weitere Einzelheiten zur Programmierung der Rotor-Gene Thermocycler entnehmen Sie bitte dem jeweiligen Geräte-Handbuch. In den Abbildungen sind die Einstellungen in der Software durch schwarze Rahmen hervorgehoben. Abgebildet sind die Einstellungen für die Rotor-Gene Q Geräte.

11. Starten Sie die Software. Klicken Sie im "New Run"-Dialogfenster ("Neuer Lauf") auf die Schaltfläche "New".

Abbildung 3. Das Dialogfenster "New Run".

12. Stellen Sie im "New Run Wizard" das Reaktionsvolumen auf 25 μl ein und klicken Sie auf "Next" ("Weiter").

New Run Wizard		×
	This screen displays miscellaneous options for the run. Complete the fields, clicking Next when you are ready to move to the next page. This box help on the wiza on an its your moi item for 1 Operator : DB Operator item fields, on a loc your moi item for 1 Notes : Programme PCR allelic discrimination can also combo the help abor available	displays elements in rd. For help m, hover use over the help. You click on a box to display but its a settings.
	Reaction Volume (μL): Sample Layout : 1, 2, 3	
	Skip Wizard << <u>B</u> ack <u>N</u> ext >>	

Abbildung 4. Einstellung der allgemeinen (PCR-)Assay-Parameter.

13. Klicken Sie im nächsten "New Run Wizard"-Dialogfenster auf die Schaltfläche "Edit Profile" ("Profil editieren") und programmieren Sie das in Tabelle 4 und Abbildung 5 wiedergegebene Temperaturprofil ein. Vergewissern Sie sich, dass bei jedem Zyklus als letzter Schritt die (Daten-)Erfassung bei 60 °C eingefügt ist – sowohl für den grünen Fluoreszenz-Kanal ("Green"; Farbstoff FAM) als auch den gelben Kanal ("Yellow"; Farbstoff VIC).

Halten ("Hold")	Temperatur: 50 °C Zeit: 2 min
Halten 2 ("Hold 2")	Temperatur: 95 °C Zeit: 10 min
Zykleneinstellungen	50 Zyklen 92 °C für 15 s 60 °C für 1 min; Einzel ("Single") Erfassung der FAM-Fluoreszenz im Fluoreszenz-Kanal "Grün" ("Cycling A Green") Erfassung der VIC-Fluoreszenz im Fluoreszenz-Kanal "Gelb" ("Cycling A Yellow")

Tabelle 4. Temperaturprofil

Abbildung 5. Amplifikation der DNA.

14. Der Messbereich der Fluoreszenz-Kanäle muss entsprechend den Fluoreszenzintensitäten in den PCR-Ansätzen bestimmt werden.

Klicken Sie im "New Run Wizard"-Dialogfenster auf die Option "Gain Optimisation" ("Verstärkungsoptimierung"), um das Dialogfenster "Auto-Gain Optimisation Setup" ("Einstellung der automatischen Verstärkungsoptimierung") zu öffnen. Klicken Sie auf "Optimise Acquiring" (siehe Abb. 6), um die Datenerfassung zu optimieren, und dann jeweils auf "OK" in den Dialogfenstern "Auto-Gain Optimisation Channel Settings" ("Kanaleinstellungen für automatische Verstärkungsoptimierung") für jeden verwendeten Kanal (hier: Grün und Gelb; siehe Abb. 6). Vergewissern Sie sich, dass für jeden Kanal das Kontrollkästchen "Perform Optimisation Before 1st Acquisition" ("Optimierung vor 1. Datenerfassung durchführen") aktiviert ist (siehe Abb. 6).

Abbildung 6. Einstellung der Sensitivität der Fluoreszenz-Kanäle.

- 15. Die durch die Kanal-Kalibrierung ermittelten Gain-Werte (Verstärkungsfaktoren) werden automatisch gespeichert und sind im letzten Dialogfenster der Programmierung aufgeführt. Zum Starten des Programms klicken Sie auf "Start Run" ("Lauf starten").
- 16. Geben Sie das Rotor-Set-up in der Rotor-Gene Software ein (siehe Abb. 7).

iki Edit Eile <u>E</u> di	4 Edit Samples						
Standar	rd]	Botor Style					
— Satting							
o:	48. 0	F		La cata da s			
Given	Lon	ic. Format : 123456,78	9123467 💌 Unit	: [copies/re	actio More Uptions		
Sample	es :						
	_						
in the		L	1				
)	Name	l ype	Groups	Given Conc.		
	1	PC	Positive Control				
	2	PC	Positive Control				
	3	H2U	NIL				
len in	4	NO	None				
	0	NU	Negative Control				
	- 7	NC	Negative Control				
		H20	Nec				
	0	DC	None				
	10	no DC	Unknown				
	11	13	None				
	12		None				
1000	13	S1	Unknown				
	14	51	Unknown				
	15	52	Unknown				
100 C	16	52	Unknown				
	17	53	Unknown				
	18	\$3	Unknown				
	19	S4	Unknown				
	20	S4	Unknown		-		
•					•		
	-						
Page : Name : JAK2 Ipsogen < > New Delete Synchronize pages							
	Undo <u>D</u> K Cancel <u>H</u> elp						

Abbildung 7. Set-up des Rotor-Gene Rotors: "Edit Samples" ("Proben konfigurieren").

Einstellung für Endpunkt-Analyseverfahren beim Rotor-Gene Q 5plex HRM Thermocycler

17. Nachdem das PCR-Programm beendet ist, klicken Sie in der Menüleiste auf "Analysis" ("Analyse"; siehe Abb. 8).

Abbildung 8. Menüpunkt "Analysis" in der Werkzeugleiste.

18. Wählen Sie im "Analysis"-Dialogfenster (siehe Abb. 9) durch Doppelklick den grünen Fluoreszenz-Kanal "Cycling A. Green" aus und klicken Sie anschließend auf "OK". Wiederholen Sie diesen Schritt für den gelben Kanal "Cycling A. Yellow".

2 Std Curves (Rel.) Other Quantitation Melt	
Cycling A.Green Cycling A.Yellow	At Least Two Standards Required
	The auto-find threshold feature requires that you have defined at least 2 selected standards. To set this up, right-click on the sample list and select Edit Samples
	Don't show this message in future.
<u>S</u> how <u>H</u> ide	

Abbildung 9. Quantifizierung: "Cycling A. Green" ("Datenerfassungs-Kanal Grün").

 Ein neues Fenster wird eingeblendet (siehe Abb. 10). Klicken Sie in beiden Teilbereichen des Bildschirms auf die Funktion "Slope Correct" ("Steigung korrigieren"), wie in Abbildung 10 dargestellt.

Abbildung 10. Einstellung "Slope Correct" ("Steigung korrigieren").

- 20. Um die erhaltenen Daten exportieren zu können, speichern Sie sie als Excel® Datenblatt. Klicken Sie auf "OK", geben Sie einen Namen für die Exportdatei ein und speichern Sie sie als Textdatei (*.txt).
- 21. Öffnen Sie die Textdatei in Excel und markieren Sie die Spalte A. Klicken Sie auf "Data" ("Daten"), anschließend auf "Convert" ("Konvertieren") und dann auf "Next" ("Weiter"). Wählen Sie das Komma als Separator und klicken Sie dann auf "End". Die Ergebnisse erscheinen dann wie in Abbildung 11 dargestellt auf dem Bildschirm.

Abbildung 11. Beispiel für die Analyseergebnisse, dargestellt als Excel Datei.

Hinweis: Die Datei enthält sowohl die Rohdaten als auch standardisierte Daten. Nur die standardisierten Daten müssen berücksichtigt werden.

Diese Daten finden sich in den Bereichen "Quantitative analysis of channel Cycling A Green" und "Quantitative analysis of channel Cycling A Yellow" der Tabelle, die die quantitativen Analysedaten des Fluoreszenz-Kanals Grün bzw. Gelb enthalten. Die für die Auswertung vorgesehenen Daten sind diejenigen, die im PCR-Zyklus 50 erfasst werden (in obiger Abb. rechts, eingekreist).

Protokoll: qPCR mit Applied Biosystems oder ABI PRISM Thermocycler

Bei Verwendung eines dieser qPCR-Thermocycler für 96-Well-Platten empfehlen wir, alle Messungen als Doppelbestimmung, wie in Tabelle 5 angegeben, durchzuführen.

Tabelle 5. Anzahl an Reaktionen bei Verwendung eines Applied Biosystems 7300 oder 7500, ABI PRISM 7000, ABI PRISM 7700 oder ABI PRISM 7900HT Thermocyclers

Proben	Reaktionen		
Mit JAK2-V617F-Primer- Reaktionen)	und Sonden-Mix (PPM-VF) (56		
24 DNA-Proben	24 x 2 Reaktionen		
3 DNA-Kontrollen	3 x 2 Reaktionen (PC-VF, NC-VF und COS- VF, jede als Doppelbestimmung getestet)		
Wasser-Kontrolle	2 Reaktionen		

Probenverarbeitung bei Applied Biosystems 7300 oder 7500, ABI PRISM 7000, ABI PRISM 7700 oder ABI PRISM 7900HT Thermocycler

Abbildung 2. Vorgeschlagenes Platten-Set-up bei einem Experiment mit dem ipsogen JAK2 MutaScreen Kit. PC: Positivkontrolle; NC: Negativkontrolle; COS: Cut-off-Probe; S: DNA-Probe; H₂ O: Wasser-Kontrolle.

qPCR mit dem Applied Biosystems 7300 oder 7500, ABI PRISM 7000, ABI PRISM 7700 oder ABI PRISM 7900HT Thermocycler

Hinweis: Führen Sie alle Arbeitsschritte auf Eis durch.

Durchführung

- 1. Tauen Sie alle Komponenten auf und stellen Sie sie auf Eis. Nehmen Sie die Komponenten ungefähr 10 min vor Beginn der Testdurchführung aus dem Kühlschrank.
- Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 3. Setzen Sie entsprechend der Anzahl an zu verarbeitenden Proben den folgenden qPCR-Mix an.

Alle Konzentrationsangaben beziehen sich auf das Endvolumen der Reaktion.

Die Tabelle 6 dient als Pipettierschema für das Ansetzen eines Reagenzien-Mix, der für ein Reaktions-Endvolumen von 25 μ l berechnet ist. Sie können, entsprechend der Anzahl an Reaktionen, einen Pre-Mix mit demselben Primer- und Sonden-Mix ansetzen. Ein zusätzliches Volumen zur Kompensation von Pipettierfehlern ist jeweils berücksichtigt.

Bei Verwendung eines Applied Biosystems 7300 oder 7500, ABI PRISM 7000, ABI PRISM 7700 oder ABI PRISM 7900HT Thermocyclers können mit dem *ipsogen* JAK2 MutaScreen Kit 24 Proben als Doppelbestimmung in einem Experiment (siehe Abb. 12), 20 Proben als Doppelbestimmung in zwei Experimenten oder 15 Proben als Doppelbestimmung in drei Experimenten analysiert werden.

	Anzahl Reaktionen				
Komponente	1	56 + 1*	28 + 1 [†]	18 + 1‡	Endkonzen- tration
TaqMan Universal PCR- Master-Mix, 2x	12,5	712,5	362,5	237,5	1x
Primer- und Sonden-Mix, 10x	2,5	142,5	72,5	47,5	1x
Nukleasefreies Wasser (für PCR-Zwecke)	5,0	285,0	145,0	95,0	_
Probe (Zugabe bei Schritt 4)	5,0	jeweils 5,0	jeweils 5,0	jeweils 5,0	-
Gesamtvolumen	25,0	jeweils 25,0	jeweils 25,0	jeweils 25,0	_

Tabelle 6. Ansetzen des qPCR-Mix

* 24 Proben; 1 Experiment/Kit.

⁺ 10 Proben; 2 Experimente/Kit.

[‡] 5 Proben; 3 Experimente/Kit.

- Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 5. Pipettieren Sie 20 μ l des qPCR-Pre-Mix in jedes Well.
- 6. Geben Sie 5 μ l der genomischen DNA der Probe oder der Kontrolle in das entsprechende Well (Gesamtvolumen 25 μ l).
- 7. Mischen Sie jeweils durch vorsichtiges Auf- und Abpipettieren.
- Schließen Sie die Platte und zentrifugieren Sie kurz (300 x g, ca. 10 s).
- 9. Setzen Sie die Platte gemäß den Angaben des Herstellers in den Thermocycler.
- 10. Programmieren Sie den Thermocycler mit dem zyklischen Temperaturprogramm, wie in Tabelle 7 angegeben, und starten Sie den Lauf.

Halten ("Hold")	Temperatur: 50 °C Zeit: 2 min
Halten 2 ("Hold 2")	Temperatur: 95 °C Zeit: 10 min
Zykleneinstellungen	50 Zyklen 92 °C für 15 s 60 °C für 1 min

Tabelle 7. Temperaturprofil für Applied Biosystems und ABI PRISM Thermocycler

"Post-Read"-Laufanalyseverfahren für Applied Biosystems und ABI PRISM Thermocyclern

Einzelheiten zur Programmierung des Applied Biosystems 7300 oder 7500, ABI PRISM 7000, ABI PRISM 7700 oder ABI PRISM 7900HT Thermocyclers entnehmen Sie bitte der Bedienungsanleitung des jeweiligen Geräts. Im Folgenden sind die Software-Einstellungen zur besseren Übersicht schwarz eingerahmt.

- Wählen Sie nach Ende des Laufs "Start/Program" ("Starten/Programmieren") und anschließend die Option "File/New" ("Datei/Neu").
- Klicken Sie im Dialogfenster "New Document Wizard" auf das "Assay"-Drop-down-Menü und wählen Sie den Assay "Allelic Discrimination" ("Alleldiskriminierung"; siehe Abb. 13).
- 13. Übernehmen Sie die Voreinstellungen in den Feldern "Container" ("Reaktionsgefäß") und "Template" ("Vorlage"): "96-Well Clear" ("96-Well-Platte, transparent") bzw. "Blank Document" ("Leeres Dokument") (siehe Abb. 13). Geben Sie im Feld "Plate Name" den Plattennamen ein, z. B. AD Post-read (siehe Abb. 13) und klicken Sie dann auf "Next>" ("Weiter"), um zum Dialogfenster "Select Markers" ("Marker auswählen") zu wechseln.

Assay :	Allelic Discrimination	-			
Container :	96-Well Clear	-			
Template :	Blank Document	-	Browse		
Run Mode :	Standard 7500	•			
Operator :	Administrator		_		
Comments :				_	
				-	
			-		

Abbildung 13. Voreinstellungen beim Anlegen eines neuen "Post-Read"-Laufs (im "New Document Wizard").

- 14. Falls im "Markers in Document"-Feld des "Select Markers"-Dialogfensters ein geeigneter Marker für Ihre Applikation aufgeführt ist, fahren Sie mit Schritt 18 fort, andernfalls mit Schritt 15.
- 15. Legen Sie wie folgt Detektor und Marker an. Klicken Sie auf "New Detector" ("Neuer Detektor"; siehe Abb. 14).

kers in Document	March and Discourse	B-t-t-t	
	Add >> Remove		

Abbildung 14. Das "Markers in Document"-Feld enthält keinen geeigneten Marker für Ihre Applikation.

16. Tippen Sie im "New Detector"-Dialogfenster im Feld "Name" z. B. die Bezeichnung Allel A ein ("Allele A"; siehe Abb. 15). Lassen Sie die Einstellung für den Reporter-Farbstoff ("Reporter Dye") auf "FAM". Klicken Sie auf die "Color"-Schaltfläche, wählen Sie eine Farbe aus und klicken Sie anschließend auf "OK" (siehe Abb. 15). Klicken Sie auf "Create Another" ("Weiteren anlegen"; siehe Abb. 15).

Abbildung 15. Anlegen der Detektoren.

- 17. Tippen Sie im nächsten "New Detector"-Dialogfenster im Feld "Name" die Bezeichnung Allel B ein ("Allele B"). Wählen Sie im "Reporter Dye"-Feld den Reporter-Farbstoff "VIC" aus. Klicken Sie auf die "Color"-Schaltfläche, wählen Sie eine Farbe aus und klicken Sie anschließend auf "OK".
- 18. Klicken Sie im Dialogfenster "Select Markers" ("Marker auswählen") auf die Schaltfläche "New Marker" ("Neuer Marker"; siehe Abb. 14).
- 19. Tippen Sie im "New Marker"-Dialogfenster im Feld "New Marker Name" die Bezeichnung JAK2 ein (siehe Abb. 16). Wählen Sie die Detektoren "Allel A" und "Allel B" (in den Schritten 16 und 17 angelegt, oder zuvor bereits definiert) und klicken Sie auf "OK" (siehe Abb. 16).

Abbildung 16. Anlegen der Marker.

20. Wählen Sie im "Select Markers"-Dialogfenster die Option "JAK2" (wie zuvor angelegt) oder einen geeigneten vordefinierten Marker und klicken Sie anschließend auf "Add>>" ("Hinzufügen>>"; siehe Abb. 17).

Hinweis: Um einen Marker wieder zu entfernen, markieren Sie ihn und klicken dann auf die Schaltfläche "Remove" ("Entfernen").

nu j		<u> </u>		Passive Referen	nce: ROX	-
Marker Name	Detector 1	Detector 2		Markers in	Document	
JAK2	Allele B	Allele A				_
			Add>	·>		
			Remo	ve		
				-		

Abbildung 17. Auswählen der Marker.

- 21. Klicken Sie auf "Next>" ("Weiter>").
- 22. Im Dialogfenster "Setup Sample Plate" ("Einrichten der Probenplatte") klicken Sie den Marker an und ziehen ihn auf die Wells, die Proben enthalten. Klicken Sie auf "Finish" ("Beenden").
- 23. Wechseln Sie zur "Instrument"-Registerkarte und ändern Sie das Probenvolumen ("Sample volume") auf 25 μl.
- 24. Wählen Sie die Option "File/Save" ("Datei/Speichern") und klicken Sie dann auf "Save", um den Namen, den Sie beim Anlegen der Platte zugewiesen haben, beizubehalten.
- 25. Setzen Sie die Platte mit den Reaktionsansätzen gemäß den Angaben des Herstellers in den Thermocycler ein.

26. Starten Sie den "Post-Read"-Lauf. Klicken Sie auf "Post-Read" ("Endfluoreszenz nach Messung").

Der Thermocycler führt einen Lauf mit einem Zyklus für 60 Sekunden bei 60 °C durch. Bei diesem Lauf erfasst das Gerät die FAM- und VIC-Fluoreszenz in jedem Well (siehe Abb. 18).

ile View Tools Instrument Analysis Window Help		
☞ 🖬 🖨 🖪 🖾 🖬 💽 🛤 🖇		
tup /Instrument (Results \		
strument Control		
Pre-Read Estimated Time Remaining (hh:mm):	Sample:	Heat Sink:
	Cover:	Block:
Post-Read	- Cvde	
Disconnect Status:	Stage:	Rep:
	Time (mm:ss):	Step:
	State:	
60.0		
60.0 Add Cycle Add Hold Add Step Add Dis Settings	soutiation Stage	ete Help
60.0 Add Cycle Add Cycle Add Step Add Step Add Dis Settings Sample Volume (µL):	ssuciation Stage Del	ete Help
60.0 Add Cycle Add Hold Add Siep Add Dis Settings Sample Volume (µL) : 25 Run Mode :	sociation Stage Del	ete Help

Abbildung 18. "Post-Read"-Lauf.

27. Wählen Sie die Funktion "File/Export" ("Datei/Export") und klicken Sie dann auf "Results", um die Ergebnisse in eine Excel Datei zu exportieren. Die Ergebnisse erscheinen dann wie in Abbildung 19 dargestellt auf dem Bildschirm.

12	Comm	ents:				VIC-	Probe	1		F	AM-Prob	e 1
13	SDS v	1.2									-	
14												
15	Well	Sample Name	Marker	Task	Passive Ref	Allele X	Allele Y	Allele X Rn	Allele Y Rn	Gall	Quality Value	Method
16	A1	sample 1	VIC	Unknown	247.897	JAK2-VIC	JAK2-FAM	2.184	6.221 🥌	Undetermined	100.00	Manual Call
17	A2	sample 1	VIC	Unknown	295.565	JAK2-VIC	JAK2-FAM	2.451	6.805	Undetermined	100.00	Manual Call
18	A3	sample 2	VIC	Unknown	351.338	JAK2-VIC	JAK2-FAM	2.595	6.2	Undetermined	100.00	Manual Call
19	A4	sample 2	VIC	Unknown	379.909	JAK2-VIC	JAK2-FAM	2.553	6.01	Undetermined	100.00	Manual Call
20	A5	sample 3	VIC	Unknown	372.895	JAK2-VIC	JAK2-FAM	2.913	5.329	Undetermined	100.00	Manual Call
21	A6	sample 3	VIC	Unknown	359.717	JAK2-VIC	JAK2-FAM	2.806	5.278	Undetermined	100.00	Manual Call
22	A7	sample wt	VIC	Unknown	343.536	JAK2-VIC	JAK2-FAM	2.569	1.948	Undetermined	100.00	Manual Call
23	A8	sample wt	VIC	Unknown	277.677	JAK2-VIC	JAK2-FAM	2.684	2.015	Undetermined	100.00	Manual Call
24	A9	C-	VIC	Unknown	330.943	JAK2-VIC	JAK2-FAM	2.623	1.967	Undetermined	100.00	Manual Call
25	A10	C-	VIC	Unknown	314.623	JAK2-VIC	JAK2-FAM	2.672	2.013	Undetermined	100.00	Manual Call
26	A11	C-	VIC	Unknown	269.500	JAK2-VIC	JAK2-FAM	2.82	1.892	Undetermined	100.00	Manual Call
27	A12	C+	VIC	Unknown	211.520	JAK2-VIC	JAK2-FAM	1.249	6.14	Undetermined	100.00	Manual Call
28	B1	C+	VIC	Unknown	270.623	JAK2-VIC	JAK2-FAM	1.346	6.894	Undetermined	100.00	Manual Call
29	B2	C+	VIC	Unknown	365.112	JAK2-VIC	JAK2-FAM	1.265	6.528	Undetermined	100.00	Manual Call
30	B3	ER	VIC	Unknown	372.150	JAK2-VIC	JAK2-FAM	2.214	2.03	Undetermined	100.00	Manual Call
31	B4	ER	VIC	Unknown	404.145	JAK2-VIC	JAK2-FAM	2.419	2.295	Undetermined	100.00	Manual Call
32	B5	ER	VIC	Unknown	410.977	JAK2-VIC	JAK2-FAM	2.681	2.52	Undetermined	100.00	Manual Call
33	B6	H2O	VIC	Unknown	395.431	JAK2-VIC	JAK2-FAM	0.655	1.346	Undetermined	100.00	Manual Call
34	B7	H2O	VIC	Unknown	415.223	JAK2-VIC	JAK2-FAM	0.727	1.241	Undetermined	100.00	Manual Call
35	B8	H2O	VIC	Unknown	366.885	JAK2-VIC	JAK2-FAM	0.606	1.277	Undetermined	100.00	Manual Call

Abbildung 19. Beispiel für die Analyseergebnisse, dargestellt als Excel Datei.

Protokoll: qPCR mit LightCycler 480 Thermocycler

Bei Verwendung eines qPCR-Thermocyclers für 96-Well-Platten empfehlen wir, alle Messungen als Doppelbestimmung, wie in Tabelle 8 angegeben, durchzuführen.

Tabelle 8. Anzahl an Reaktionen bei Verwendung eines LightCycler 480 Thermocyclers

Proben	Reaktionen
Mit JAK2-V617F-Primer- und -	Sonden-Mix (PPM-JAK2)
24 DNA-Proben	24 x 2 Reaktionen
3 DNA-Kontrollen	3 x 2 Reaktionen (PC-VF, NC-VF und COS-VF, jede als Doppelbestimmung getestet)
Wasser-Kontrolle	2 Reaktionen

Probenverarbeitung bei LightCycler 480 Thermocycler

Abbildung 20. Vorgeschlagenes Platten-Set-up bei einem Experiment mit dem ipsogen JAK2 MutaScreen Kit. PC: Positivkontrolle; NC: Negativkontrolle; COS: Cut-off-Probe; S: DNA-Probe; H₂ O: Wasser-Kontrolle.

qPCR mit LightCycler 480 Thermocycler

Hinweis: Führen Sie alle Arbeitsschritte auf Eis durch.

Durchführung

- Tauen Sie alle Komponenten auf und stellen Sie sie auf Eis. Nehmen Sie die Komponenten ungefähr 10 min vor Beginn der Testdurchführung aus dem Kühlschrank.
- 2. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 3. Setzen Sie entsprechend der Anzahl an zu verarbeitenden Proben den folgenden qPCR-Mix an.

Alle Konzentrationsangaben beziehen sich auf das Endvolumen der Reaktion.

Die Tabelle 9 dient als Pipettierschema für das Ansetzen eines Reagenzien-Mix, der für ein Reaktions-Endvolumen von 25 μ l berechnet ist. Sie können, entsprechend der Anzahl an Reaktionen, einen Pre-Mix mit demselben Primer- und Sonden-Mix ansetzen. Ein zusätzliches Volumen zur Kompensation von Pipettierfehlern ist jeweils berücksichtigt.

Bei Verwendung des LightCycler 480 Thermocyclers können mit dem *ipsogen* JAK2 MutaScreen Kit 24 Proben als Doppelbestimmung in einem Experiment (siehe Abb. 20), 20 Proben als Doppelbestimmung in zwei Experimenten oder 15 Proben als Doppelbestimmung in drei Experimenten analysiert werden.

		Anzahl F	Reaktioner	1	
Komponente	1	56 + 1*	28 + 1 [†]	18 + 1‡	Endkonzen- tration
TaqMan Universal PCR- Master-Mix, 2x	12,5	712,5	362,5	237,5	lx
Primer- und Sonden-Mix, 10x	2,5	142,5	72,5	47,5	1x
Nukleasefreies Wasser (für PCR-Zwecke)	5,0	285,0	145,0	95,0	_
Probe (Zugabe bei Schritt 6)	5,0	jeweils 5,0	jeweils 5,0	jeweils 5,0	-
Gesamtvolumen	25,0	jeweils 25,0	jeweils 25,0	jeweils 25,0	_

Tabelle 9. Ansetzen des qPCR-Mix

* 24 Proben; 1 Experiment/Kit.

⁺ 10 Proben; 2 Experimente/Kit.

[‡] 5 Proben; 3 Experimente/Kit.

- 4. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 5. Pipettieren Sie 20 μ l des qPCR-Pre-Mix in jedes Well.
- 6. Geben Sie 5 μ l der genomischen DNA der Probe oder der Kontrolle in das entsprechende Well (Gesamtvolumen 25 μ l).
- 7. Mischen Sie jeweils durch vorsichtiges Auf- und Abpipettieren.
- Schließen Sie die Platte und zentrifugieren Sie kurz (300 x g, ca. 10 s).
- 9. Setzen Sie die Platte gemäß den Angaben des Herstellers in den Thermocycler.
- 10. Wählen Sie auf der Startseite der Software die Option "New Experiment" ("Neues Experiment").

11. Bei einem LightCycler 480 I fahren Sie mit Schritt 11a fort. Bei einem LightCycler 480 II fahren Sie mit Schritt 11b fort.

Einzelheiten zur Programmierung des LightCycler 480 Thermocyclers entnehmen Sie bitte der Bedienungsanleitung zum jeweiligen Gerät. Im Folgenden sind die Software-Einstellungen zur besseren Übersicht schwarz eingerahmt.

11a. LightCycler 480 I: Wählen Sie das Detektionsformat "Multi Color Hydrolysis Probe" ("Mehrfach markierte Hydrolysesonde"), klicken Sie auf "Customize" ("Anpassen") und überprüfen Sie dann, ob die Kanäle "FAM (483–533)" und "Hex (533–568)" (für den Farbstoff "VIC") aktiviert sind (siehe Abb. 21). Stellen Sie das Reaktionsvolumen auf 25 μl ein (siehe Abb. 21) und fahren Sie mit Schritt 12 fort.

Abbildung 21. LightCycler 480 I: Einstellung des Detektionsformats.

11b. LightCycler 480 II: Wählen Sie das Detektionsformat "Dual Color Hydrolysis Probe" ("Zweifach markierte Hydrolysesonde"), klicken Sie auf "Customize" ("Anpassen") und überprüfen Sie dann, ob die Kanäle "FAM (465–510)" und "VIC / HEX / (533–580)" aktiviert sind (siehe Abb. 22). Stellen Sie das Reaktionsvolumen auf 25 μl ein (siehe Abb. 22) und fahren Sie mit Schritt 12 fort.

r	Run Protoc	ol	Data	_	Run No	les	
ment	_ Setup						U
Subset Editor	Color Comp ID	r Hydrolysis Probe / UPL P	Tobe Customize	Block Size 96 Test ID	Plate ID	Reaction Volume 25 📑	6
Sample Editor	Program Name		Programs		1	Cycles Analysis Mode	器
Analysis	0	Detection Formats					*
Report	Target (°C)	Detection Format Dual Co Integration Time Mode (• Dynamic	lor Hydrolysis Probe / UPL Probe	ıl		Step Size (°C) Step Delay (cycles)	
	• 95 • Non	e Active Filter Combi	nation			÷0 ÷	E 2
	Θ	V FAR (465-5	10) / Yellow555 (533-580)		_		\otimes
		V FAR (455-5	10) / Yellow555 (533-580)				× ⊗ ₽
		A ALC A HEX	10) / YellowSSS (533-580)				× ⊗ ⊈
	100 300 70 70 70 70 70 70 70 70 70 70 70 70 7	A AIC / HEX	10) / Yellow\$55 (533-580)		08		

Abbildung 22. LightCycler 480 II: Einstellung des Detektionsformats.

12. Programmieren Sie den Thermocycler mit dem zyklischen Temperaturprogramm, wie in Tabelle 10 angegeben, und starten Sie den Lauf.

Hinweis: Geben Sie bei der Beschreibung des Platten-Set-ups in der Geräte-Software die Option "Endpt Geno" ("Endpunkt Geno.") im Abschnitt "Step 1 : select workflow" ("Schritt 1: Workflow wählen") ein.

Tabelle 10. Temperaturprofil für den LightCycler 480 Thermocycler

Halten ("Hold")	Temperatur: 50 °C Zeit: 2 min
Halten 2 ("Hold 2")	Temperatur: 95 °C Zeit: 10 min
Zykleneinstellungen	50 Zyklen 92 °C für 15 s; Einzel ("Single") 60 °C für 1 min; Einzel ("Single")
Halten 3 ("Hold 3")	60 °C für 1 min; Einzel ("Single")

Endpunkt-Analyseverfahren für den LightCycler 480 Thermocycler

- 13. Klicken Sie nach Ende des Laufs auf "Analysis" ("Analyse").
- 14. Wählen Sie im "Create New Analysis"-Dialogfenster ("Neue Analyse erstellen") die Option "Endpoint Genotyping" ("Endpunkt-Genotypisierung") und wählen Sie dann das zu analysierende Subset im "Subset"-Menü aus (siehe Abb. 23).

Abbildung 23. Auswahl des Analysetyps und des zu analysierenden Subsets.

 15. Wählen Sie im nächsten Fenster die "Hex"-Fluoreszenz (d. h. den Farbstoff "VIC") für "Allel X" und die "FAM"-Fluoreszenz für "Allel Y" (siehe Abb. 24).

Abbildung 24. Auswahl der Fluoreszenz-Kanäle für "Allel X" und "Allel Y".

16. Im nächsten Fenster (siehe Abb. 25) sind das Platten-Set-up (Bereich 1, oben links), die Ergebnisse der Fluoreszenzmessung für jede Probe (Bereich 2, unten links) sowie das Scatterdiagramm mit der Alleldiskriminierung (Bereich 3, rechts; FAM- und VIC-Fluoreszenz beim 50. PCR-Zyklus gemessen) dargestellt.

	1 2 A	3 4	5 6 7	8 9 10	11 12			Endpoint Fluorescence Scatter Plot Select Zoom	
	B	-ii	OS OS O	s			48,000	*	
1	C		05 05 0	s III III			46.000	*	
	D	<u> </u>	OS OS O	s			44,000	\$	
						- 7	42 000-	*	
	G			s			40.000		
	H	-ii	OS OS O	s and a second sec	i—i—		20,000	•	
			No			P	36,000	*	
			<u></u> _				36,000	*	
	Endpoint	Genotype	e results			*	34,000		
	Allele	x 🔳	Both Alleles	Allele Y			32,000		
	Unkno	wn	Negative	_			â ^{30,000}		
			noguno				G 28,000	*	~
	San	ples	Endpoint F	luorescence		R€_≜	₹ 26,000	. –	- 5
	I C P	os Name	e 523-568	483-533	Call		€ 24,000		
	✓ 3	.5 100% -	-2 10,97	46,34			ğ 22,000	ø	
		.6 100% -	-2 0,30	0,39			≜ 20,000	*	
		.7 100% -	-2 0,37	0,43			18,000		
	▲ A	10 H2O	0,21	0,29			16.000	\$ [†] [†]	
		12 120	0,23	0,32			14 000	4 ⁴	
		15 785 _1	20 26 73	48 40			19,000		
2		16 78% -2	20 27,13	48.26			12,000		
2	· •	7 78% -2	20 26,80	47,38			10,000		
	V 0	5 50% -2	20 32,03	42,50			8,000		
		6 50% -2	20 33,28	44,09			6,000		
	Image: Contract of the second seco	7 50% -2	20 33,26	44,76			4,000		
	V III	5 31% -2	20 34,58	38,54			2,000		
	V 1	6 31% -2	20 32,55	35,77				*	
	✓ I	7 31% -2	20 33,26	37,78			_	5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000	
	✓ E	5 12.5%	- 32,79	25,03				Fluorescence (523-568)	
	✓ 1	6 12.5%	- 34,93	27,79		-	Now Call	- Annhy	
	4					•	new can		
	Apply Template	, [~](Notes	Calculate				Color Comp Auto Group S23.568 / 483.533 Analysis Mode 1	

Abbildung 25. Zusammenfassung der Daten.

17. Um die Datentabelle zu exportieren, klicken Sie mit der rechten Maustaste auf die Vorlage der Probenergebnisse und wählen dann die Funktion "Export Table". Die Datei wird dann im Text-Dateiformat (.txt) gespeichert.

18. Öffnen Sie die Datei im Programm Excel, um die Ergebnisse anzuzeigen und auszuwerten. Die Ergebnisse erscheinen dann wie in Abbildung 26 dargestellt auf dem Bildschirm.

×	Microso	ft Excel -	test						
9	Eichier	Edition &	Affichage	Insertion Fo	rma <u>t O</u> utils	Données Fer	<u>lêtre ?</u>		
	i 🖉 📓	<i>6</i> a	X 电 (₿ • 	- CH - Σ	· C 2 Z	10 12	ta ta 🖾 🛛	🖬 糞 🛛 Cal
	A1	-	fx Ex	periment: OB	08-12-16 Acti	ve filters: FAM	(483-533), He	ex (523-568)	
	A		В	С	D	E	F	G	
1	Experim	ent: 08 08	-12-16 Ac	tive filters: FA	M (483-533), H	lex (523-568)			
2	Include	Colo	or	Pos	Name	523-568	483-533	Call	Score
3	True	1	10789024	A5	100%-20	10,971	46,335		0,00
4	True	1	10789024	A6	100%-20	0,302	0,392		0,00
5	True	1	10789024	A7	100%-20	0,369	0,425		0,00
6	True	1	10789024	A10	H20	0,207	0,290		0,00
7	True	1	10789024	A11	H20	0,233	0,319		0,00
8	True	1	10789024	A12	H20	0,203	0,261		0,00
9	True	1	10789024	B5	78%-20	26,731	48,396		0,00
10	True	1	10789024	B6	78%-20	27,125	48,262		0,00
11	True	1	10789024	B7	78%-20	26,803	47,383		0,00
12	True	1	10789024	C5	50%-20	32,035	42,495		0,00
13	True	1	10789024	C6	50%-20	33,278	44,086		0,00
14	True	1	10789024	C7	50%-20	33,261	44,760		0,00
15	True	1	10789024	D5	31%-20	34,584	38,536		0,00
16	True	1	10789024	D6	31%-20	32,549	35,766		0,00
17	True	1	10789024	D7	31%-20	33,262	37,780		0,00
18	True	1	10789024	E5	12.5%-20	32,794	25,028		0,00
19	True	1	10789024	E6	12.5%-20	34,932	27,788		0,00
20	True	1	10789024	E7	12.5%-20	35,089	27,848		0,00
21	True	:	10789024	F5	5%-20	35,838	20,289		0,00
22	True	1	10789024	F6	5%-20	36,786	21,487		0,00
23	True	1	10789024	F7	5%-20	36,546	21,319		0,00
24	True		10789024	G5	2%-20	35,082	17,334		0,00
25	True		10789024	G6	2%-20	35,834	17,589		0,00
26	True		10789024	G7	2%-20	34,299	17,124		0,00
27	True	1	10789024	H5	0%-20	34,449	14,315		0,00
28	True		10789024	H6	0%-20	33,520	14,012		0,00
29	True		10789024	H7	0%-20	34,125	14,335		0,00
30									

Abbildung 26. Beispiel für die Analyseergebnisse, dargestellt als Excel Datei.

Protokoll: qPCR mit LightCycler 2.0 Thermocycler

Hinweis: Wegen der besonderen technologischen Anforderungen müssen Experimente mit einem LightCycler 2.0 unter Verwendung spezifischer Reagenzien durchgeführt werden. Wir empfehlen, den "LightCycler TaqMan Master" zu verwenden. Befolgen Sie beim Ansetzen des 5x-Master-Mix die Anweisungen des Herstellers.

Bei Verwendung eines Rotors für 32 Kapillaren empfehlen wir, alle Messungen als Doppelbestimmung, wie in Tabelle 11 angegeben, durchzuführen.

Tabelle 11. Anzahl an Reaktionen bei Verwendung eines LightCycler 2.0 Thermocyclers

Proben	Reaktionen
Mit JAK2-V617F-Primer- un	d Sonden-Mix (PPM-VF) (32 Reaktionen)
12 DNA-Proben	12 x 2 Reaktionen
3 DNA-Kontrollen	3 x 2 Reaktionen (PC-VF, NC-VF und COS- VF, jede als Doppelbestimmung getestet)
Wasser-Kontrolle	2 Reaktionen

Probenverarbeitung bei LightCycler 2.0 Thermocycler

Abbildung 27. Vorgeschlagenes Rotor-Set-up bei einem Experiment mit dem ipsogen JAK2 MutaScreen Kit. PC: Positivkontrolle; NC: Negativkontrolle; COS: Cut-off-Probe; S: DNA-Probe; H₂ O: Wasser-Kontrolle.

qPCR mit LightCycler 2.0 Thermocycler

Hinweis: Führen Sie alle Arbeitsschritte auf Eis durch.

Durchführung

- Tauen Sie alle Komponenten auf und stellen Sie sie auf Eis. Nehmen Sie die Komponenten ungefähr 10 min vor Beginn der Testdurchführung aus dem Kühlschrank.
- 2. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 s bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 3. Setzen Sie entsprechend der Anzahl an zu verarbeitenden Proben den folgenden qPCR-Mix an.

Alle Konzentrationsangaben beziehen sich auf das Endvolumen der Reaktion.

Die Tabelle 12 dient als Pipettierschema für das Ansetzen eines Reagenzien-Mix, der für ein Reaktions-Endvolumen von 20 μ l berechnet ist. Sie können, entsprechend der Anzahl an Reaktionen, einen Pre-Mix mit demselben Primer- und Sonden-Mix ansetzen. Ein zusätzliches Volumen zur Kompensation von Pipettierfehlern ist jeweils berücksichtigt.

Bei einem LightCycler 2.0 Thermocycler können mit dem *ipsogen* JAK2 MutaScreen Kit 12 Proben als Doppelbestimmung in einem Experiment analysiert werden (siehe Abb. 27).

	Anzahl Re	aktionen (µl)	
Komponente	1	32 + 1	Endkonzentration
LightCycler TaqMan Master-Mix, 5x	4,0	132,0	1x
Primer- und Sonden- Mix, 10x	2,0	66,0	1x
Nukleasefreies Wasser (für PCR-Zwecke)	9,0	297,0	_
Probe (Zugabe bei Schritt 4)	5,0	jeweils 5,0	-
Gesamtvolumen	20,0	jeweils 20,0	_

Tabelle 12. Ansetzen des qPCR-Mix für LightCycler 2.0 Thermocycler

- 4. Schütteln (auf einem Vortex) und zentrifugieren Sie alle Reagenzien-Röhrchen (jeweils für ca. 10 Sekunden bei 10.000 UpM), um Tröpfchen im Deckel mit der restlichen Flüssigkeit am Boden des Gefäßes zu vereinigen.
- 5. Pipettieren Sie 15 μ l des qPCR-Pre-Mix in jede Kapillare.
- 6. Geben Sie 5 μ l der genomischen DNA der Probe oder der Kontrolle in die entsprechende Kapillare (Gesamtvolumen 20 μ l).
- 7. Mischen Sie jeweils durch vorsichtiges Auf- und Abpipettieren.
- 8. Setzen Sie die Kapillaren in den mit dem Gerät gelieferten Adapter und zentrifugieren Sie sie kurz (700 x g, ca. 10 Sekunden).
- 9. Setzen Sie die Proben gemäß den Angaben des Herstellers in den Thermocycler.
- 10. Programmieren Sie den Thermocycler (siehe Abb. 28) mit dem zyklischen Temperaturprogramm, wie in Tabelle 13 angegeben.

Einzelheiten zur Programmierung des LightCycler 2.0 Thermocyclers entnehmen Sie bitte der Bedienungsanleitung zum Gerät. Im Folgenden sind die Software-Einstellungen zur besseren Übersicht schwarz eingerahmt.

Hinweis: Vergewissern Sie sich, dass als Analysemodus "Quantification" ("Quantifizierung") und als Erfassungsmodus "Single" ("Einzel") bei der FAM-Fluoreszenz und ebenfalls "Single" bei der VIC-Fluoreszenz eingestellt ist – sowohl im Amplifikations-/Zyklen-Schritt als auch beim abschließenden Halteschritt bei 60 °C.

Abbildung 28. Programmierungs-Bildschirm beim LightCycler 2.0 Thermocycler.

Tabelle 1	13.	Temperaturprofil	für den	LightCycler	2.0	Thermocycler
-----------	-----	------------------	---------	-------------	-----	--------------

Halten ("Hold")	Temperatur: 55 °C Zeit: 2 min "Ramp": 20
Halten 2 ("Hold 2")	Temperatur: 95 °C Zeit: 10 min "Ramp": 20
Zykleneinstellungen	50 Zyklen 92 °C für 15 s; "Ramp": 20 60 °C für 1 min; "Ramp":
Halten 3 ("Hold 3")	60 °C für 1 min; "Ramp": 20

Endpunkt-Analyseverfahren für den LightCycler 2.0 Thermocycler

11. Nach Ende des Amplifikationslaufs klicken Sie auf die Registerkarte "Online Data Display" ("Online-Datenanzeige"; siehe Abb. 29). Öffnen Sie das Anzeige-Menü oben links im Fenster "Current Fluorescence" ("Aktuelle Fluoreszenz") und tippen Sie im Feld "Acquisition no." ("Erfassung Nr.") die Zahl 51 ein.

Abbildung 29. Ergebnisse und Ergebnisverlauf in der Online-Datenanzeige.

- 12. Klicken Sie in Nähe des "Current Fluorescence"-Diagramms mit der rechten Maustaste und wählen Sie die "Export"-Funktion aus dem Kontextmenü.
- 13. Aktivieren Sie im Dialogfenster "Export chart" ("Diagramm exportieren") das "Excel"-Kontrollkästchen (siehe Abb. 30). Geben Sie einen Dateinamen im Dialogfeld "Filename" ein. Wählen Sie nach Klick auf die Schaltfläche einen Zielpfad für den Export, um die Ergebnisdatei dort zu speichern. Klicken Sie dann auf "Export".

Abbildung 30. Auswahl des Dateiformats und des Speicher-Zielorts für den Export der Ergebnisdatei.

14. Öffnen Sie die Datei im Programm Excel, um die Ergebnisse anzuzeigen und auszuwerten. Die Ergebnisse erscheinen dann wie in folgender Abbildung dargestellt auf dem Bildschirm.

_								Pos	siti	ion	
1	J	K	L	M	N	0	Р	Q	R	S T	U
Χ	Bar	Text	Х	Bar	Text	Х	Bar	Text	ŧ.	Bar	
1	2,9709	1: Sample 1 (610)	1	8,2734	1: Sample 1 (560)	1	6,6361	1: Sample 1 (530)	1	4,9943	
2	3,0182	2: Sample 2 (610)	2	8,4428	2: Sample 2 (560)	2	6,7659	2: Sample 2 (530)	2	5,0767	
3	2,9496	3: Sample 3 (610)			3: Sample 3 (560)	3	6,5568	3: Sample 3 (530)	3	4,9699	
4	2,9526	4: Sample 4 (610)	4	8,2887	4: Sample 4 (560)	4	6,6163	4: Sample 4 (530)	4	4,9119	
5	2,9450	5: Sample 5 (610)	5	8,2689	5: Sample 5 (560)	-5	6,6209	5: Sample 5 (530)	5	4,9638	
6	2,9969	6: Sample 6 (610)	6	8,4184	6: Sample 6 (560)	6	6,7674	6: Sample 6 (530)	6	5,1209	
7	3,0045	7: Sample 7 (610)	7	8,4520	7: Sample 7 (560)	- 7	6,7506	7: Sample 7 (530)	-7	5,0507	
8	3,2822	8: Sample 8 (610)	8	9,1936	8: Sample 8 (560)	8	7,3960	8: Sample 8 (530)	8	5,5314	
9	3,0274	9: Sample 9 (610)	9	8,5557	9: Sample 9 (560)	9	6,8437	9: Sample 9 (530)	9	5,0843	
10	2,8336	10: Sample 10 (610)	10	7,9713	10: Sample 10 (560)	10	6,3905	10: Sample 10 (530)	10	4,7883	
11	2,8275	11: Sample 11 (610)	11	7,9774	11: Sample 11 (560)	11	6,3874	11: Sample 11 (530)	11	4,7669	
12	2,8351	12: Sample 12 (610)	12	8,0171	12: Sample 12 (560)	12	6,4118	12: Sample 12 (530)	12	4,7944	
13	2,9511	13: Sample 13 (610)	13	8,3726	13: Sample 13 (560)	13	6,6957	13: Sample 13 (530)	13	4,9699	
14	2,8367	14: Sample 14 (610)	14	8,0217	14: Sample 14 (560)	14	6,4439	14: Sample 14 (530)	14	4,7654	
15	2,9908	15: Sample 15 (610)	15	8,4337	15: Sample 15 (560)	15	6,7445	15: Sample 15 (530)	15	5,0523	
16	2,8885	16: Sample 16 (610)	16	8,1498	16: Sample 16 (560)	16	6,5568	16: Sample 16 (530)	16	4,9577	
17	3,0152	17: Sample 17 (610)	17	8,4901	17: Sample 17 (560)	17	6,8193	17: Sample 17 (530)	17	5,1225	
							VIC	-		FAM	

Abbildung 31. Beispiel für die Analyseergebnisse mit dem LightCycler 2.0, dargestellt als Excel Datei.

Interpretation der Ergebnisse

Laden Sie eine Datei, aus der die exportierten Daten für alle Thermocycler extrahiert werden können: Rotor-Gene Q MDx 5plex HRM oder anderen Rotor-Gene Thermocycler; LightCycler 2.0 oder 480; Applied Biosystems 7300 oder 7500 Real-Time-PCR-System; ABI PRISM 7000 SDS, 7700 SDS oder 7900HT SDS, und überprüfen Sie die Fluoreszenzwerte (sie müssen bei beiden Wiederholproben konsistent sein).

Erstellen Sie ein Diagramm (Scatterdiagramm) der Fluoreszenzdaten. Darin repräsentiert die x-Achse die VIC-Fluoreszenz, die y-Achse die FAM-Fluoreszenz.

Grafische Darstellung und Qualitätskontrollkriterien

Ein Beispiel für ein Scatterdiagramm ist in Abbildung 32 wiedergegeben.

Rn fluorescence VIC 560 nm

Abbildung 32. Scatterdiagramm eines repräsentativen Experiments zur Alleldiskriminierung. Thermocycler: Rotor-Gene Q, Applied Biosystems, ABI PRISM und LightCycler 480.

Die Werte für die Proben sollten ungefähr auf einer bogenförmigen Linie liegen, die die Negativkontrollen (NC) mit den Positivkontrollen (PC) verbindet.

Eine deutlich davon abweichende Lage des Datenpunkts einer Kontrolle könnte auf einen experimentellen Fehler hindeuten.

- Die Werte der Positivkontrollen sollten oben links im Diagramm sein.
- Die Werte der Negativkontrollen dagegen unten rechts.
 - Eine stark davon abweichende Lage des Datenpunkts einer Negativkontrolle könnte auf eine Kontamination hindeuten.

- Der Wert der Cut-off-Probe sollte oberhalb der Negativkontrollen liegen.
- Die Werte der Wasser-Kontrolle sollten unten links dargestellt werden.
 - Eine stark abweichende Lage des Datenpunkts einer Wasser-Kontrolle (höher als NC bei Messung der FAM-Fluoreszenz oder höher als PC bei VIC) könnte auf eine Kontamination hindeuten.

Hinweis: Die Lage der Kontrollen könnte bei Auswertung der Messdaten eines LightCycler 2.0 Thermocyclers davon abweichen (siehe Abb. 33). Die Werte der Wasser-Kontrollen sollten nach wie vor unten links dargestellt werden.

Abbildung 33. Scatterdiagramm eines repräsentativen Experiments zur Alleldiskriminierung. Thermocycler: LightCycler 2.0.

Berechnung des normalisierten FAM/VIC-Verhältnisses und Genotypisierung

Berechnen Sie die FAM/VIC-Verhältnisse für alle Proben. Berechnen Sie die FAM/VIC-Verhältnisse für die Positivkontrolle (PC), Cut-off-Probe (COS) und Negativkontrolle (NC). Die Verhältnisse müssen jeweils bei beiden Wiederholproben konsistent sein. Berechnen Sie das durchschnittliche Verhältnis ("Ratio") für alle Doppelbestimmungen.

Berechnen Sie wie folgt das normalisierte Verhältnis ("NRatio") für die Cut-off-Probe (COS) und für alle Proben:

 $NRatio_{Probe} = \frac{Ratio_{Probe}}{Ratio_{NC}}$

Hinweis: Die Grauzone (GZ) eines Tests ist definiert als der Wertebereich, in dem die diskriminatorische Leistung unzureichend genau ist. Ist ein Wert in der Grauzone, so bedeutet dies, dass der Target-Marker weder als vorhanden noch als fehlend gewertet werden kann. Die Grauzone muss für jedes Experiment berechnet werden.

Berechnen Sie die Grauzone (GZ) – oder den Bereich der Unsicherheit – um den Wert des normalisierten Verhältnisses der COS herum (NRatio_{cos}):

GZ: [(NRatio_{COS} x 0,94); (NRatio_{COS} x 1,06)]

Vergleichen Sie das normalisierte Verhältnis jeder Probe mit der Grauzone des NRatio_{COS}-Werts. Die Interpretation der Ergebnisse ist in Tabelle 14 zusammengefasst, und in Tabelle 15 ist ein Beispiel für eine Kalkulation und Interpretation der Daten wiedergegeben.

Tabelle 14. Interpretation der Genotypisierungsergebnisse anhand der normalisierten Verhältniszahlen

Ergebnisse	Interpretation
$NRatio_{Probe} > NRatio_{COS} \times 1,06$	JAK2-V617F-Mutation detektiert
NRatio _{Probe} < NRatio _{COS} x 0,94	JAK2-V617F-Mutation nicht detektiert
NRatio _{Probe} in NRatio _{COS} -GZ	Ergebnis nicht eindeutig

Probe	VIC	FAM	Verhältnis	Verhältnis- Mittelwert	NRatio	Interpretation	
NC	2,415	1,782	0,738	0 747	1 000	Mutation nicht	
NC	2,46	1,861	0,757	0,747	1,000	detektiert	
PC	1,241	5,606	4,517	4 670	6 952	Mutation	
PC	1,182	5,706	4,827	4,072	0,233	detektiert	
COS	1,91	1,832	0,959	0.059	1 202	Cut off Probo	
COS	2,035	1,946	0,956	0,956	1,202	Cut-off-Probe	
S 1	2,311	1,783	0,772	0 7 4 2	0.000	Mutation nicht	
S 1	2,555	1,818	0,712	0,742	0,992	detektiert	
S 2	1,097	5,745	5,237	4 076	5 700	Mutation	
S 2	1,437	4,764	3,315	4,270	5,725	detektiert	
S 3	2,265	2,149	0,949	0.007	1 0 4 1	Ergebnis nicht	
S 3	2,435	2,206	0,906	0,927	1,241	eindeutig	
S 4	2,385	2,063	0,865	0.004	1 010	Ergebnis nicht	
S 4	2,322	2,191	0,944	0,704	1,210	eindeutig	
GZ	1,205	1,359					

Tabelle 15. Beispiel für die Berechnung und Interpretation der Fluoreszenzdaten

Hilfe zur Fehlerbehebung

Diese Anleitung zur Fehlersuche soll Ihnen eine Hilfe geben, falls einmal Probleme auftreten sollten. Weitere Informationen finden Sie auch auf der "Frequently Asked Questions"-Seite unseres Support-Centers unter: **www.qiagen.com/FAQ/FAQList.aspx**. Außerdem beantwortet das Team vom Technischen Service bei QIAGEN gerne Ihre Fragen zu den Angaben und zu den Protokollen in diesem Handbuch bzw. zu Proben- und Testtechnologien allgemein (Möglichkeiten der Kontaktaufnahme, siehe "Kontaktinformationen" auf Seite 64).

Kommentare und Vorschläge

Signal bei Positivkontrolle ergibt negatives Ergebnis

a)	Pipettierfehler	Überprüfen Sie das Pipettierschema und den Reaktionsansatz.
		Wiederholen Sie den PCR-Lauf.
b)	Unsachgemäße Lagerung von Kit-Komponenten	Lagern Sie den <i>ipsogen</i> JAK2 MutaScreen Kit bei –30 °C bis –15 °C und schützen Sie Primer- und Sonden-Mischungen (PPM) vor Lichteinfluss, siehe "Lagerung und Handhabung der Reagenzien" auf Seite 13.
		Vermeiden Sie wiederholtes Einfrieren und Wiederauftauen.
		Aliquotieren Sie die Reagenzien vor der Lagerung.

Negativkontrollen ergeben positives Ergebnis

Kreuzkontamination	Tauschen Sie alle kritischen Reagenzien aus.
	Wiederholen Sie das Experiment mit neuen Aliquots sämtlicher Reagenzien.
	Handhaben Sie Proben, Kit-Komponenten und Verbrauchsartikel gemäß den allgemein anerkannten Regeln der guten Laborpraxis, um eine Verschleppungskontamination zu vermeiden.

Kein Signal, auch nicht bei Positivkontrollen

a)	Pipettierfehler oder Reagenzien vergessen	Überprüfen Sie das Pipettierschema und den Reaktionsansatz.		
		Wiederholen Sie den PCR-Lauf.		
b)	Inhibitorische Effekte des Probenmaterials, verursacht durch unzureichende Nukleinsäure-Reinigung	Wiederholen Sie die DNA-Präparation.		
c)	LightCycler: Falscher Detektionskanal gewählt	Stellen Sie den Kanal auf F1/F2 oder 530 nm / 640 nm ein.		
d)	LightCycler: Keine Datenerfassung programmiert	Überprüfen Sie das Zyklenprogramm. Wählen Sie den Erfassungsmodus "Single" ("Einzel") am Ende jedes Annealing-Schritts des PCR-Programms		

Kein oder schwaches Signal in Proben, während Positivkontrollen in Ordnung sind

Mindere DNA-Qualität	Überprüfen Sie immer die DNA-Qualität und
oder geringe	-Konzentration vor Testbeginn.
Konzentration	

LightCycler: Fluoreszenzintensität zu gering

a)	Unsachgemäße Lagerung von Kit-Komponenten	Lagern Sie den <i>ipsogen</i> JAK2 MutaScreen Kit bei –30 °C bis –15 °C und schützen Sie Primer- und Sonden-Mischungen (PPM) vor Lichteinfluss, siehe "Lagerung und Handhabung der Reagenzien" auf Seite 13.
		Vermeiden Sie wiederholtes Einfrieren und Wiederauftauen.
		Aliquotieren Sie die Reagenzien vor der Lagerung.
b)	Sehr geringe Ausgangsmenge an Target-DNA	Erhöhen Sie die Menge an Proben-DNA.
		Hinweis: Je nach gewählter Methode für die DNA-Präparation können inhibitorische Effekte auftreten.

Kommentare und Vorschläge

LightCycler: Fluoreszenzintensität variiert

a)	Pipettierfehler	Die durch sogenannte "Pipettierfehler" verursachte Variabilität beim LightCycler kann reduziert werden, indem die Daten im Modus F1/F2 oder 530 nm / 640 nm analysiert werden.
b)	Unzureichende Zentrifugation der Kapillaren	Der angesetzte PCR-Mix befindet sich noch im oberen Kapillargefäß, oder eine Luftblase ist in der Kapillarenspitze.
		Zentrifugieren Sie die mit dem Reaktions- gemisch gefüllten Kapillaren immer, wie im gerätespezifischen Bedienungshandbuch beschrieben.
c)	Äußere Oberfläche der Kapillarenspitze verschmutzt	Tragen Sie beim Umgang mit den Kapillaren immer Laborhandschuhe.

Qualitätskontrolle

Gemäß dem ISO-zertifizierten Qualitätsmanagement-System von QIAGEN wird jede Charge des *ipsogen* JAK2 MutaScreen Kits zur Gewährleistung einer einheitlichen Produktqualität nach festgelegten Prüfkriterien getestet. Analysenzertifikate sind auf Anfrage unter **www.qiagen.com/support** erhältlich.

Beschränkungen des Tests

Die Anwender müssen in dieser Technologie geschult und mit ihrer Anwendung vertraut sein, bevor Sie dieses Testverfahren anwenden. Dieser Kit sollte gemäß den Anweisungen in diesem Handbuch und in Kombination mit einem validierten Gerät der im Abschnitt "Vom Anwender bereitzustellende Ausrüstung und Reagenzien" auf Seite 10 genannten Modelle verwendet werden.

Alle mit dem System erhaltenen diagnostischen Ergebnisse sollten nur im Zusammenhang mit anderen klinischen und/oder labormedizinischen Untersuchungsergebnissen interpretiert werden. Es liegt in der Verantwortung des Anwenders, die Leistungscharakteristik des Systems für jede laboreigene Methode, die nicht durch die QIAGEN Untersuchungen zur Leistungsevaluierung abgedeckt ist, selbst zu validieren. Achten Sie auf die Haltbarkeitsdaten, die auf der Kit-Verpackung und den Etiketten der einzelnen Komponenten des Kits aufgedruckt sind. Verwenden Sie keine Kit-Komponenten, deren Haltbarkeitsdatum abgelaufen ist.

Leistungscharakteristik

Untersuchung nichtklinischer Proben

Untersuchungen mit nichtklinischen Proben wurden durchgeführt, um die analytische Leistungsfähigkeit des *ipsogen* JAK2 MutaScreen Kits zu bestimmen.

Präzision

Drei Verdünnungsstufen genomischer DNA, die aus Zelllinien, welche die JAK2-V617F-Mutation in Wildtyp-DNA beherbergen, isoliert wurde, wurden mit dem *ipsogen* JAK2 MutaScreen Kit getestet. Die Verdünnungen entsprachen einer Mutationslast von 1 %, 2 % und 3 %. Für jede Verdünnungsstufe wurden unabhängige Chargen gewonnen, und mehrere Wiederholproben (Replikate) dieser Verdünnungen wurden in drei unabhängigen Experimenten getestet. Die Verhältniszahlen (Ratio_{Probe}), die für jede DNA-Probe erhalten wurden, wurden mit dem Verhältnis der Negativkontrolle (100 % JAK2-Wildtyp-DNA, Ratio_{NC}) verglichen. Die Ergebnisse sind in Tabelle 16 zusammengefasst.

Tabelle 16. Präzisionsdaten für die Untersuchung der nichtklinischen Proben

Mutationsniveau	Ratio _{Probe} > Ratio _{NC}	% CV (Verhältnis)
1 % V617F-DNA	100 % (n = 183)	6,8
2 % V617F-DNA	100 % (n = 72)	4,5
3 % V617F-DNA	100 % (n = 135)	5,1

Analytische Daten aus Ringversuch

Eine multizentrische Studie wurde durchgeführt, an der 13 Labors beteiligt waren. Analytische Daten der Tests mit Verdünnungen genomischer DNA, welche die JAK2-V617F-Mutation in Wildtyp-DNA beherbergte, wurden erfasst. In jedem Labor wurden drei Experimente durchgeführt. Bei jedem Experiment wurden die folgenden aus Zelllinien gewonnenen DNA-Proben getestet:

- 1 Negativkontrolle (NC) 0 % V617F
- I Positivkontrolle (PC) 100 % V617F
- 1 Cut-off-Probe (COS) 2 % V617F

3 Proben mit dazwischenliegenden Mutationslasten (20 %, 50 % und 80 %)

Die Experimente wurden mit sieben verschiedenen Thermocycler-Modellen durchgeführt:

- ABI PRISM 7000 SDS
- Applied Biosystems 7300 Real-Time PCR System
- Applied Biosystems 7500 Real-Time PCR System
- ABI PRISM 7700 SDS
- ABI PRISM 7900 SDS
- LightCycler 2.0
- iCycler[®]

Die Ergebnisse sind in Tabelle 17 zusammengefasst.

Tabelle 17. Analytische Daten aus Ringversuch, die beim Testen von Verdünnungen genomischer DNA – isoliert aus Zelllinien mit der JAK2-V617F-Mutation in Wildtyp-DNA – erhalten wurden

Proben-Detektion	Positive Proben	Negative Proben
JAK2-V617F	177*	0
JAK2-Wildtyp	0	36

* Unter den positiven Proben befanden sich 36 Positivkontrollen (PC-VF), 36 Cut-off-Proben (COS-VF; 2 % V617F), 34 Proben mit 20 % JAK2-V617F, 35 Proben mit 50 % JAK2-V617F und 36 Proben mit 80 % JAK2-V617F.

Untersuchung klinischer Proben

Vergleich zwischen ipsogen JAK2 MutaScreen Kit und ARMS® Methode

DNA-Proben, die von 141 Patienten mit Verdacht auf MPN stammten, wurden parallel mit dem *ipsogen* JAK2 MutaScreen Kit und einem qPCR-Assay getestet, der auf der allelspezifischen Amplifikationstechnologie ARMS (= Amplification Refractory Mutation System) basiert (11). Die Ergebnisse des Methodenvergleichs sind in Tabelle 18 (2-x-3-Kontingenztabelle) und Tabelle 19 (Prozentsatz der Übereinstimmung) zusammengefasst.

		Ergebnisse der ARMS-Testmethode		
		JAK2- V617F > 2 %	JAK2-Wildtyp (JAK2-V617F < 2 %)	Gesamt
Ergebnisse	JAK2-V617F Mutation detektiert	91	0	91
ipsogen JAK2 MutaScreen-	Ergebnis nicht eindeutig	1	2	3
Testmethode	JAK2-WT Mutation nicht detektiert	1	46	47
Gesamt		93	48	n = 141

Tabelle 18. Methodenvergleich: ipsogen JAK2 MutaScreen Kit und ARMS

Tabelle 19. Methodenvergleich: ipsogen JAK2 MutaScreen Kit und ARMS

	Übereinstimmung (%)	95-%-KI* (%)
Daten Positivproben Übereinstimmung zwischen ipsogen JAK2 MutaScreen Kit und ARMS	98,9	94,1–99,8
Daten Negativproben Übereinstimmung zwischen <i>ipsogen</i> JAK2 MutaScreen Kit und ARMS	100	92,3–100
Gesamt-Übereinstimmung	99,3	96,0–99,9

* Die Konfidenzintervalle wurden gemäß der CLSI-Richtlinie EP12-A "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" berechnet.

Vergleich zwischen ipsogen JAK2 MutaScreen Kit und Sequenzierung

DNA-Proben, die von 51 Patienten mit Verdacht auf MPN stammten, wurden parallel mit dem *ipsogen* JAK2 MutaScreen Kit und der Referenzmethode der direkten Sequenzierung (dem "Goldstandard") verglichen. Eine Probe konnte aufgrund einer Fehlfunktion bei der Sequenzierung nicht ausgewertet werden. Die Ergebnisse des Methodenvergleichs anhand der 50 interpretierbaren Proben sind in Tabelle 20 (2-x-3-Kontingenztabelle) und Tabelle 21 (Prozentsatz der Übereinstimmung) zusammengefasst.

		Ergebnisse der direkten Sequenzierung		
		JAK2- V617F > 2 %	JAK2-Wildtyp (JAK2-V617F < 2 %)	Gesamt
Ergebnisse	JAK2-V617F Mutation detektiert	26	1	27
der ipsogen JAK2 MutaScreen-	Ergebnis nicht eindeutig	0	1	1
Testmethode	JAK2-WT Mutation nicht detektiert	2	20	22
Gesamt		28	22	n = 50

Tabelle 20. Methodenvergleich: *ipsogen* JAK2 MutaScreen Kit und Sequenzierung

Tabelle 21. Methodenvergleich: *ipsogen* JAK2 MutaScreen Kit und Sequenzierung

	Übereinstimmung (%)	95-%-KI* (%)
Daten Positivproben Übereinstimmung zwischen ipsogen JAK2 MutaScreen Kit und Sequenzierung	92,9	77,4–98,0
Daten Negativproben Übereinstimmung zwischen ipsogen JAK2 MutaScreen Kit und Sequenzierung	95,2	77,3–99,2
Gesamt-Übereinstimmung	93,9	83,5–97,9

* Die Konfidenzintervalle wurden gemäß der CLSI-Richtlinie EP12-A "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" berechnet.

Multizentrische Studie an 228 Patientenproben

Von Patienten stammende DNA-Proben wurden nach laboreigenen Methoden in 13 Labors, die an einem Ringversuch beteiligt waren, analysiert. In jedem Labor wurden drei Experimente durchgeführt, wobei aus Zelllinien isolierte DNA (wie bei der Präzisionsuntersuchung mit nichtklinischen Proben beschrieben, siehe oben) und DNA aus 10 Patientenproben, die im Labor zur Verfügung standen, verwendet wurden.

Die insgesamt 228 Proben mit bekanntem JAK2-Genotyp wurden parallel mit dem *ipsogen* JAK2 MutaScreen Kit und den jeweiligen laboreigenen Methoden getestet, darunter qualitative PCR, allelspezifische PCR, Fluoreszenzenergie-Resonanztransfer (FRET), Sequenzierung, PCR mit allelspezifischen Oligonukleotiden, RFLP und Alleldiskriminierung. Die Ergebnisse der Methodenvergleiche sind in Tabelle 22 (2-x-3-Kontingenztabelle) und Tabelle 23 (Prozentsatz der Übereinstimmung) zusammengefasst.

		Ergebnisse der laboreigenen Testverfahren		
		Mutation detektiert JAK2-V617F	Mutation nicht detektiert JAK2-Wildtyp	Gesamt
	JAK2-V617F Mutation detektiert	139	3	142
Ergebnisse der ipsogen JAK2 MutaScreen-	Ergebnis nicht eindeutig	5	17	22
Testmethode	JAK2-WT Mutation nicht detektiert	3	61	64
Gesamt		147	81	n = 228

Tabelle 22. Methodenvergleich: *ipsogen* JAK2 MutaScreen Kit und laboreigene Methoden

Tabelle 23. Methodenvergleich: *ipsogen* JAK2 MutaScreen Kit und laboreigene Methoden

	Übereinstimmung (%)	95-%-KI* (%)
Daten Positivproben Übereinstimmung zwischen ipsogen JAK2 MutaScreen Kit und laboreigener Methode	97,9	94,0–99,3
Daten Negativproben Übereinstimmung zwischen ipsogen JAK2 MutaScreen Kit und laboreigenen Methoden	95,3	87,1–98,4
Gesamt-Übereinstimmung	97,1	93,8–98,7

* Die Konfidenzintervalle wurden gemäß der CLSI-Richtlinie EP12-A "User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline" berechnet.

Robustheit: Testung von Proben gesunder Spender

DNA-Proben, die aus dem Blut von 103 gesunden Blutspendern gewonnen wurden, wurden mit dem *ipsogen* JAK2 MutaScreen RS Kit analysiert. Alle Proben wurden als JAK2-Wildtyp bestimmt. Die Analyse von 38 Proben mit dem LightCycler 480 Thermocycler ist in Abbildung 34 dargestellt.

Abbildung 34. Analyse der DNA-Proben gesunder Blutspender. Analyse von DNA-Proben, die aus dem Blut 38 gesunder Spender (�) unter Verwendung des *ipsogen* JAK2 MutaScreen RS Kits (Kat.-Nr. 673123) mit dem LightCycler 480 getestet wurden. In Doppelbestimmung erhaltene positive Ergebnisse (�) entsprechen einer Referenzskala, die mit dem Kit geliefert wird. VIC-Fluoreszenzwerte sind auf der x-Achse und FAM-Werte auf der y-Achse aufgetragen.

Literatur

- 1. Ma, W. et al. (2009) Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J. Mol. Diagn. **11**, 49.
- 2. James, C. et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature **434**, 1144.
- 3. Levine, R.L. et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell **7**, 387.
- 4. Kralovics, R. et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. **352**, 1779.
- 5. Baxter, E.J. et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet **36**, 1054.
- 6. Tefferi, A. et al. (2009) Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat. Rev. Clin. Oncol. **6**, 627.
- 7. Prchal, J.F. and Axelrad, A.A. (1974) Bone marrow responses in polycythemia vera. N. Engl. J. Med. **290**, 1382.
- 8. Tefferi, A. and Vardiman, J.W. (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia **22**, 14.
- 9. Barosi, G. et al. (2009) Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood **113**, 4829.
- 10. Pardanani, A. et al. (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J. Clin. Oncol. **29**, 789.
- Lippert, E. et al. (2006) The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood **108**, 1865.

Symbole

Folgende Symbole werden auf der Verpackung und den Etiketten verwendet:

∑∑ <n></n>	Kit enthält Reagenzien für < n > Tests
	Zur Verwendung bis
IVD	In-vitro-diagnostisches Medizinprodukt
REF	Katalognummer
LOT	Chargennummer
MAT	Materialnummer
GTIN	Global Trade Item Number (Globale Artikelnummer)
	Zulässiger Temperaturbereich
	Hersteller
i	Beachten Sie die Anwendungshinweise

Kontaktinformationen

Technische Hinweise und zusätzliche nützliche Informationen finden Sie in unserem Technischen Support-Center unter **www.qiagen.com/Support** oder erhalten Sie unter der Rufnummer 00800-22-44-6000. Darüber hinaus ist Ihnen das Team vom Technischen Service gerne behilflich, falls Sie Rat oder weitere Informationen zu QIAGEN Produkten benötigen (Kontaktinformationen siehe hintere Umschlagseite oder unter **www.qiagen.com**).

Bestellinformationen

Produkt	Inhalt	KatNr.
ipsogen JAK2 MutaScreen Kit (10)	Für 10 Reaktionen: V617F-Positiv- kontrolle, V617F-Negativkontrolle, V617F-Cut-off-Probe, Primer- und Sonden-Mischungen JAK2 und JAK2-V617F	673022
ipsogen JAK2 MutaScreen Kit (24)	Für 24 Reaktionen: V617F-Positiv- kontrolle, V617F-Negativkontrolle, V617F-Cut-off-Probe, Primer- und Sonden-Mischungen JAK2 und JAK2-V617F	673023
Rotor-Gene Q MDx – fü Analysen bei klinisch-c	ör IVD-validierte Real-Time-PCR- liagnostischen Applikationen	
Rotor-Gene Q MDx 5plex HRM Platform	Real-Time-PCR-Thermocycler und Analyzer für hochauflösende Schmelz- kurvenanalysen (HRM) mit fünf Fluoreszenz-Kanälen (grün, gelb, orange, rot, purpur) und einem HRM- Kanal, inklusive Laptop, Software, Zubehör und 1 Jahr Garantie auf alle Teile sowie Arbeitskosten; Installation und Unterweisung nicht inbegriffen	9002032
Rotor-Gene Q MDx 5plex HRM System	Real-Time-PCR-Thermocycler und Analyzer für hochauflösende Schmelz- kurvenanalysen (HRM) mit fünf Fluoreszenz-Kanälen (grün, gelb, orange, rot, purpur) und einem HRM- Kanal, inklusive Laptop, Software, Zubehör, 1 Jahr Garantie auf alle Teile sowie Arbeitskosten, Installation und Unterweisung	9002033

Aktuelle Lizenzinformationen und produktspezifische

Anwendungseinschränkungen finden Sie im jeweiligen QIAGEN Kit- oder Geräte-Handbuch. QIAGEN Kit- und Geräte-Handbücher stehen unter **www.qiagen.com** zur Verfügung oder können Sie vom QIAGEN Technischen Service oder dem für Sie zuständigen Außendienstmitarbeiter oder Distributor anfordern. Frei bleibende Seite

Dieses Produkt ist für den in-vitro-diagnostischen Gebrauch vorgesehen. ipsogen Produkte dürfen weder wiederverkauft noch für den Wiederverkauf modifiziert oder ohne vorherige schriftliche Zustimmung durch QIAGEN zur Herstellung kommerzieller Produkte verwendet werden.

Die in diesem Dokument gemachten Angaben können ohne vorherige Ankündigung geändert werden. QIAGEN übernimmt keine Verantwortung für Fehler, die möglicherweise in diesem Dokument vorhanden sind. Die Angaben in diesem Dokument zum Zeitpunkt der Veröffentlichung werden als vollständig und richtig erachtet. In keinem Fall haftet QIAGEN für zufällige, besondere, mehrfache oder Folgeschäden, die aus oder in Verbindung mit dem Gebrauch dieses Dokuments entstehen können.

Die Einhaltung der angegebenen Spezifikationen der ipsogen Produkte wird zugesichert. QIAGENs einzige Verpflichtung und der ausschließliche Anspruch des Kunden beschränken sich auf den kostenfreien Ersatz von Produkten für den Fall, dass die Produkte nicht die zugesicherte Leistung einhalten.

Dieses Produkt wird im Rahmen einer Lizenzvereinbarung mit Epoch Biosciences zur ausschließlichen Verwendung in der In-vitro-Diagnostik verkauft und darf für keinerlei andere Forschung, kommerzielle oder klinische Forschung, oder andere Verwendungszwecke, die nicht zur In-vitro-Diagnostik gehören, benutzt werden.

Die JAK2-V617F-Mutation und deren Nutzung unterliegen dem Schutz von Patenten, einschließlich des europäischen Patents EP1692281, der US-Patente 7.429.456 und 7.781.199, der beantragten US-Patente US20090162849 und US20120066776 sowie den entsprechenden Patenten in anderen Ländern.

Der Kauf dieses Produkts gewährt keinerlei Recht, das Produkt bei klinischen Studien zu Arzneimitteln, die auf JAK2-V617F abzielen, einzusetzen. Für derartige Verwendungszwecke entwickelt QIAGEN spezifische Lizenzprogramme. Wenden Sie sich diesbezüglich bitte per E-Mail an unsere Rechtsabteilung unter **jak2licenses@qiagen.com**.

Warenzeichen/Markennamen: QIAGEN®, Sample to Insight®, QIAamp®, ipsogen®, Rotor-Gene® (QIAGEN Gruppe); ABI PRISM®, Applied Biosystems®, FAM™, VIC® (Life Technologies); ARMS® (AstraZeneca Ltd.); Excel® (Microsoft Corporation Corporation); iCycler® (Bio-Rad Laboratories, Inc.); LightCycler®, TaqMan® (Roche Gruppe); MGB™ (Epoch Biosciences).

Eingeschränkte Nutzungsvereinbarung

Mit der Nutzung dieses Produkts erkennen Käufer und Anwender des ipsogen JAK2 MutaScreen Kits die folgenden Bedingungen an:

- Der ipsogen JAK2 MutaScreen Kit darf nur gemä
 ß den Angaben im ipsogen JAK2 MutaScreen Kit Handbuch und ausschlie
 ßlich mit den Komponenten, die im Kit geliefert werden, verwendet werden. QIAGEN gew

 ährt im Rahmen ihrer Eigentumsrechte keinerlei Lizenz, die zum Kit geh

 örenden Komponenten mit anderen Komponenten, die nicht zum Kit geh

 ören, zu verwenden oder zu kombinieren, mit Ausnahme der im ipsogen JAK2 MutaScreen Kit Handbuch und in zus

 ätzlichen, unter www.qiagen.com verf

 ügbaren Protokollen beschriebenen Anwendungen.
- 2. Über die ausdrücklich erwähnten Lizenzanwendungen hinaus übernimmt QIAGEN keinerlei Garantie dafür, dass dieser Kit und/oder die mit ihm durchgeführte(n) Anwendung(en) die Rechte Dritter nicht verletzt.
- 3. Dieser Kit und seine Komponenten sind für die einmalige Verwendung lizenziert und dürfen nicht wiederverwendet, wiederaufgearbeitet oder weiterverkauft werden.
- QIAGEN lehnt außer der ausdrücklich genannten Lizenzgewährung jede weitere Lizenzgewährung ab, sowohl ausdrücklich als auch konkludent.
- 5. Käufer und Anwender des Kits stimmen zu, keinerlei Schritte zu unternehmen oder anderen die Einleitung von Schritten zu gestatten, die zu unerlaubten Handlungen im obigen Sinne führen könnten oder solche erleichtern könnten. QIAGEN kann die Verbote dieser eingeschränkten Nutzungsvereinbarung an jedem Ort gerichtlich geltend machen und wird sämtliche Ermittlungs- und Gerichtskosten, inklusive Anwaltsgebühren, zurückfordern, die ihr bei der Geltendmachung dieser eingeschränkten Nutzungsvereinbarung oder irgendeines ihrer geistigen Eigentumsrechte im Zusammenhang mit dem Kit und/oder dessen Komponenten entstehen.

Aktualisierte Nutzungs- und Lizenzbedingungen können unter www.qiagen.com nachgelesen werden.

HB-1371-003 © 2013–2016 QIAGEN, alle Rechte vorbehalten.

www.qiagen.com

1072500 154011606