LiquiChip[®] Analyzer Software Basic Users Guide

For analysis of data generated using xMAP[™] instruments

WWW.QIAGEN.COM

Trademarks: QIAGEN®, LiquiChip® (QIAGEN Group); Microsoft®, Windows® (Microsoft Inc.) xMAP™ (Luminex Corp.) 9239841 © 2006 QIAGEN, all rights reserved.

Contents

Introduction	4
Generating Raw Data Using Luminex IS 2.3. Software	4
Screen Architecture	5
LiquiChip Analyzer Software Environments	6
Analyzing xMAP Data Using LiquiChip Analyzer Software	8
Opening and Loading Raw xMAP Data Files Using LiquiChip Analyz Software	er 9
Defining Sample Types	10
Entering sample information	11
Automatically defining and entering multiple standard sample types	11
Generating average analyte values from identical samples	13
Entering Standard Concentrations	14
Manual entry	14
Automatic calculation of dilution concentrations	14
Analyzing Raw Data	15
Advanced Features	16
"Plate" and "Samples" environments	16
"Kit Setup" environment	17
"Analytes" window	17
"Standards" window	19
"Diagnostics" environment	21
"Analysis" environment	22
Standard points	22
Importing standard curves	23
"Replicates" environment	25
Exporting and Importing Data	26
Handling data	26
QIAGEN Companies	27
QIAGEN Distributors	27

Introduction

This handbook is intended as a short, basic introduction to the functions and features of LiquiChip[®] Analyzer software. It is divided into two sections. The initial section (pages 4–15) gives a brief introduction to the features of the software and enables the user to load, analyze, and export data generated using a LiquiChip Reader or similar xMAP[®] instrument.

Advanced features of the software are addressed in the second section (pages 16–26).

The LiquiChip Analyzer Software enables fast analysis and quantification of LiquiChip xMAP assays. Raw data is input as an output.csv file. Easy-to-use and intuitive environments let researchers define plate locations of standards, controls, and unknowns. Once information on standard concentrations is entered, concentrations of analytes are calculated using either a user-defined or best curve fit algorithm. Results can be exported in tabular or graph form.

Generating Raw Data Using Luminex IS 2.3. Software

Creating and running an advanced batch is described in the *IS* 2.3 Software *User Manual* 03/2006. Data are saved exclusively in the output.csv and run file and can be further analyzed or examined using the *IS* 2.3 Software.

Creating a template for assays that give raw data only is described on page 5-137 of the QIAGEN LiquiChip Workstation User Manual.

Creating a batch is described on page 5-62 of the QIAGEN LiquiChip Workstation User Manual.

To generate raw data suitable for analysis using LiquiChip Analyzer Software:

- The "Enable Raw Data Storage" box must be checked in the "General" tab of the "Options" dialog box.
- The "Trimmed %CV" box must be checked in the "Data Export" tab of the "Options" dialog box.

Screen Architecture

LiquiChip Analyzer software is based on familiar Windows[®] type architecture. Figure 1 shows the typical architecture of the LiquiChip Analyzer Software screen.

Figure 1 LiquiChip Analyzer Software screen architecture.

LiquiChip Analyzer Software Environments

The LiquiChip Analyzer Software contains eight separate environments. They are accessed by clicking on the relevant icon in the Environments shortcuts panel (see Figure 1). Once opened, each environment can also be accessed by clicking on the relevant Environment tab below the toolbar or by choosing the relevant environment from the "Window" drop-down menu.

Information environment

This environment contains information about the run generated by the output.csv file. This information includes machine serial number, application, and plate name. Comments can be added or deleted using the "Add Comment" or "Delete Comments" buttons.

Plate environment

This environment shows information about the samples on the plate being analyzed. Predefined information includes the sample name (if entered in IS 2.3 software) and total number of beads analyzed per well. Sample information that must be added by the user before data analysis includes the type of sample (e.g., background, control, or standard) and sample dilution factor. A breakdown of the data can also be displayed for each analyte. Groups of

Analytes environment

replicate samples can also be defined in this environment.

This environment displays in tabular form both raw data (e.g., bead count and raw MFI) and values calculated after analysis. A breakdown of the data is displayed for each analyte.

Samples environment

This environment displays the same data and information that is displayed in the "Plates" environment in tabular form. Sample and replicate information can also be directly entered in this environment.

Kit Setup environment

The Kit Setup environment enables users to define parameters for the calculation of the concentration of each analyte (e.g., whether or not to carry out a subtraction of background or to define a particular analyte as an internal control). The concentration of each standard and limits for acceptable data values are also defined on this environment.

Diagnostics environment

The "Diagnostics" environment allows users to apply diagnostics algorithms to their data in order to filter out inconsistent or low-quality data.

Analysis environment

The "Analysis" environment performs regression analysis on the standard curves and generates results for the unknown samples and a graphical representation of standard curves.

Replicates environment

The "Replicates" environment displays average results, %CV, and SD values for identical samples defined as groups in the "Plate" or "Samples" environments.

Analyzing xMAP Data Using LiquiChip Analyzer Software

The process of analyzing xMAP data can be broken down into 8 steps.

- Loading raw xMAP data (see page 9)
- Defining sample types (see page 10)
- Entering standard concentrations (see page 14)
- Performing a diagnostics data check (see page 21)
- Generating standard curves (see page 14)
- Analyzing raw data using the parameters entered in the first three steps (see page 15)
- Analysis of sample replicates (see page 25)
- Export or printing of data (see page 26)

Opening and Loading Raw xMAP Data Files Using LiquiChip Analyzer Software

- 1. Launch the LiquiChip Analyzer Software by clicking on the icon on the desktop. The "Information" environment is automatically opened.
- 2. Open the output.csv file using the <u>File > Open command or the icon</u> on the toolbar.

Machine serial number, application, and plate name are displayed.

Defining Sample Types

Defining the location and type of sample on a plate is performed in the "Type" window or column of the "Plate" or "Samples" environment respectively. In the "Plate" environment the sample information is displayed in a 96-well plate format, and in the "Samples" environment in a table format (see below). To enter sample type information in the "Plate" environment click on the "Well" radio button and choose "Type" from the drop-down menu (see below).

Tip: When working in the "Plate" environment, highlight and copy the information in the "Well" > "Name" fields. Select "Type" from the drop-down menu, and paste the information into the corresponding wells. Overwrite the "Name" fields with the "Type" information. This saves having to switch between "Name" and Type" fields while defining sample types. Information in the "Name" and "Total Beads" fields is imported from the output.csv file.

🔀 Output.csv -	Liqu	iiCh	ip A	۱na	lyz	er		
<u>Fi</u> le <u>E</u> dit <u>V</u> iew	U	ser	W	'ind	ow	F	<u>t</u> elp	2
🗅 🛩 🖬 🙆	*	C)	Ē	4	}	Ħ	▶	▶ 🗶 💲 ↔ 🗸 🗙 ? 58
Views P ×	1	Inf	orma	atio	n [Pla	ate 📳 Samples
Shortcuts	• Well							
	0	An	alyte	•				Type 🗾
		1	2	3	4	5	6	Туре
Information	Α	•	•	•	•	•	-	Group Total Roado
1	В	·	•	•	•	•	-	Dilution Override
	С	·	·	•	•	•	-	Dilution Multiplier
Plate	D	•	-	·	•	•	-	
THE	E	•	-	•	•	•	-	
	F	•	-	•	•	•	-	
Analytes	G	•	-	·	•	•	-	
	н	•	•	•	·	·	•	
Samples								

"Plate" environment

Entering sample information

The location and type of each sample is entered by highlighting the relevant well(s) ("Plate" environment) or cell(s) ("Samples" environment) and clicking on the corresponding button in the toolbar, or by copying and pasting defined wells or cells.

There are four types of sample that can be defined:

- Unknown Sample (? on the toolbar) wells containing test samples whose concentration is calculated on the basis of the standard curve defined using the selectable standards
- Sample background (SB on the toolbar) "blank" wells. The MFI value in wells defined as SB can be subtracted from test values to normalize data.
- Selectable standards (S1–Sⁿ on the toolbar) wells containing the dilutions of standards which make up the standard curve. Define the most dilute standard as S1, the next most dilute as S2, and so on.
- Controls (C1=1st level control, C2 = 2nd level control, etc.) wells that contain "internal controls" that serve as reference values for unknown samples.

Automatically defining and entering multiple standard sample types

LiquiChip Analyzer Software allows multiple standard sample types to be defined and entered in the "Plate" or "Samples" environments. The example shown below is performed in the "Samples" environment.

1. Define the multiplicity of the wells containing standard-curve samples using the drop-down menu on the toolbar.

🔀 Output.csv - I	Output.csv - LiquiChip Analyzer											
<u>Fi</u> le <u>E</u> dit <u>Vi</u> ew	<u>U</u> ser	Window	v <u>H</u> elp									
🗅 🖻 🖬 🙆	X 🗈 🕻	🖥 t)	±⇒÷‡⇔	? SB	Dup	licates 🔻 51 🝷 C1 C2						
Views P ×	🚺 Inform	nation	IIIII Plate 🔢 Samples		No Replicates							
Shortcuts	Sample	Well	Name	Туре	i 🖌	Duplicates D						
	1	A1	Background	-		Triplicates						
	2	B1	Background	-								
Information	3	C1	Standard1	-		4						
miomadon	4	D1	Standard1			5						
1	5	E1	Standard2									
	6	F1	Standard2	-		6						
Plate	7	G1	Standard3	-		7						
TEFFE	8	H1	Standard3	-								
	9	A2	Standard4	-		0						
Analutes	10	B2	Standard4	-		9						
1 #10091000	11	C2	Standard5	-	•	· ·						
	12	D2	Standard5	-	-	· ·						
U.S.	13 E2			-	-	•						
Samples	14	F2	Standard6		-	•						

2. Select the standard level with which you wish to begin the series (usually S1) in the "Selectable standard" drop-down menu in the toolbar.

Note: The standard levels define each concentration in a dilution series. For example, when using a standard curve containing 8 duplicate points from blank to most concentrated, define the two blank wells as SB, the most dilute standard wells as S1, the next most concentrated as S2, and so on until S7, the most concentrated (see below).

🔀 Output.csv - LiquiChip Analyzer										
<u>Fi</u> le <u>E</u> dit <u>Vi</u> ew	<u>U</u> ser	Window	, <u>H</u> elp							
🗅 🖻 🖥 🙆	¥ 🖻 🕻	🖥 t)	± ↦ ∓ \$ ↔	? SB	Duplic	ates 🝷	S1	• C1	C2	
Views P ×	inforr		S1							
Shortcuts	Sample	Well	Name	Туре	Group	Dilutio		S2	ilut	
	1	A1	Background	-	-			53		
(i)	1 2 B1 B			Background -						
Information	3	C1	Standard1		-			54		
moniadon	4	D1	Standard1		-			S5		
1	5	E1	Standard2	-	-					
	6	F1	Standard2		-			56		
Plate	7	G1	Standard3		-			S7		
THEFT	8	H1	Standard3		-			c0		
	9	A2	Standard4	-	-			50		
Analutes	10	B2	Standard4		-			S9		
	11	C2	Standard5		-			S10		
	12	D2	Standard5		-					
U.S.	13	E2	Standard6		-			S11		
Samples	14	F2	Standard6	-				512		

3. In the "Type" column, highlight the cells corresponding to the standard wells.

💥 Output.csv -	LiquiChip	Analy	zer			
<u>Fi</u> le <u>E</u> dit <u>V</u> iew	<u>U</u> ser	Window	v <u>H</u> elp			
🗅 🖻 🖪 🙆	🔏 🗈 🕻	🖥 t)	± >> ∓ ‡ ↔	? SB	Duplic	ates 🝷 S1 🝷
Views P ×	🚺 Inforr	nation	Plate Sample:	5		
Shortcuts	Sample	Well	Name	Туре	Group	Dilution Overria
	1	A1	Background			-
	2	B1	Background	-	-	-
Information	3	C1	Standard1	-	-	-
momation	4	D1	Standard1	-	-	-
5 E1 6 F1		Standard2		-	-	
		F1	Standard2		-	-
Plate	7	G1	Standard3	-	-	-
TITE	8	H1	Standard3	-	-	-
	9	A2	Standard4	-	-	-
Analutes	10	B2	Standard4		-	-
r in aly too	11	C2	Standard5	•	-	-
	12	D2	Standard5		-	-
	13	E2	Standard6	•	-	-
Samples	14	F2	Standard6	-	-	-
	15	G2	Standard7	•	-	-
	16	H2	Standard7		-	-
Kit Setup	17	A3	<unnamed> (12797)</unnamed>		-	-

4. Click on the "Selectable standard" button in the toolbar.

The software automatically defines the highlighted wells as standard wells with the desired multiplicity.

🔀 Output.csv - LiquiChip Analyzer*												
<u>File E</u> dit <u>V</u> iew	<u>U</u> ser N	Window	/ <u>H</u> elp									
C 🛩 🖬 🛆	አ 🖻 🕻	🖥 t रे	∄»‡‡⇔	? SB	Duplical							
Views 7 × Information IIII Plate Samples												
Shortcuts	Sample	Well	Name	Туре	Group							
	1	A1	Background	-	-							
i	2	B1	Background	-	-							
Information	3	C1	Standard1	S1	-							
momotor	4	D1	Standard1	S1	-							
	5	E1	Standard2	S2	-							
	6	F1	Standard2	S2	-							
Plate	7	G1	Standard3	S3	-							
THEFE	8	H1	Standard3	S3	-							
	9	A2	Standard4	S4	-							
Analytes	10	B2	Standard4	S4	-							
	11	C2	Standard5	S5	-							
	12	D2	Standard5	S5	-							
10 H R.	13	E2	Standard6	S6	-							
Samples	14	F2	Standard6	S6	-							
	15	G2	Standard7	S7	-							
	16	H2	Standard7	S7	-							
Kit Setup	17	A3	<unnamed> (12797)</unnamed>	-	-							

Generating average analyte values from identical samples

Average analyte values for multiple identical samples can be obtained by defining the relevant samples as groups. An average analyte result, %CV, and SD are displayed in the "Replicates" environment for all wells that are assigned an identical identifier in the "Group" window ("Plate" environment) or column ("Samples" environment) (see page 25).

Entering Standard Concentrations

Concentrations of standards that make up the standard curve(s) are entered in the "Standards" tab of the "Kit Setup" environment.

Manual entry

Values can be entered directly into the relevant cells, or copied and pasted from spreadsheets.

Automatic calculation of dilution concentrations

LiquiChip Analyzer software can automatically calculate and enter standard serial dilution concentrations.

- 1. Enter the concentration of the most concentrated standard (e.g., S7 for an 7-point standard curve).
- 2. Highlight all the cells that correspond to the standard serial dilutions (including the most concentrated standard).
- 3. Select the relevant dilution factor from the drop-down menu in the toolbar or enter a custom value.

The anonon racio, will appear in the toolbar bollon.	The	dilution	factor	will	appear	in	the	toolbar	button.
--	-----	----------	--------	------	--------	----	-----	---------	---------

UUL	1:10 -	_												
s	(1/2 L 1:10 B.162	E.	Analysis											
	(2/3 Log) 1:4.21													
	(3/4 Log) 1:5.624	ded	Limits	Minimum Concentration	Maximum Concentration	Minimum MFI	Maximum MFI	S1	S2	S3	S4	S5	S6	S7
	1:3.377			-	-	-	•	0	0	0	0	0	0	1000
	1:10			-	-	-	-	0	0	0	0	0	0	0
	1,10			-	-	-	-	0	0	0	0	0	0	0
	1:5			-	-	-	-	0	0	0	0	0	0	0
	1:2													
	Custom													

4. Click on the dilution button in the toolbar.

The concentration of each dilution is automatically calculated and entered into the relevant cell.

•[UUU 1:10) -													
les	Ana	alytes 🛛	🕘 Kit Setup 🔃	Analysis											
1	Analytes	s Stan	dards												
	Name	Units	Recommended Formula	Limits	Minimum Concentration	Maximum Concentration	Minimum MFI	Maximum MFI	S1	S2	S3	S4	S5	S6	S7
	IFNg	ng/ml	-		-	-		•	0.001	0.01	0.1	1	10	100	1000
	IL-12	ng/ml	-		-	-	•	-	0	0	0	0	0	0	0
	IL-2	ng/ml	-		-	-	•	•	0	0	0	0	0	0	0
	IL-4	ng/ml	-		-	-			0	0	0	0	0	0	0

Analyzing Raw Data

Once raw data has been loaded, well types have been defined, and standard concentrations have been entered, standard curves and the analyte concentration in unknown samples can be calculated. This analysis is performed in the "Analysis" environment.

🔀 Output.csv - I	LiquiChip Analy	/zer*					
<u>Fi</u> le <u>E</u> dit <u>Vi</u> ew	<u>U</u> ser Windo	v <u>H</u> elp	<u>A</u> nalysis				
🗅 🖻 🖥 🙆	👗 🖻 🛍 🖯	±.	∓ ‡ ↔	+ +*	Equation:	Kit Equati	on 🚺 🕵 🕻 🕻
Views 7 ×	i Information	Plate	Samples	Ana	lytes [Kit Setup	💶 Analysis
Shortcuts	Analyte	R^2	Equation	Kit Eq.			
	IFNg	-	-				
1	IL-12	•	-				
Information.	IL-2	•	-				
Information	IL-4	-	•				

Standard curves and calculation of the concentration of unknowns is performed by clicking the either the + "Calculate Selected Analyte" or + ("Calculate All Analytes") button on the toolbar.

Calculated concentrations of unknown samples can be viewed in the "Result" field of the "Analytes" environment.

Replicates 1.1xout - LiquiChip Analyzer												
<u>File E</u> dit <u>Vi</u> ew	<u>U</u> ser M	Window	v <u>H</u> elp									
🗅 🛩 🖬 🙆	1 🚔 🖬 🙈 🤚 🔁 🤁 🛨 🅨 🏅 🔹 🗸 🗙											
/iews ∓ ≍ 🚺 Information 🚛 Plate 📳 Samples 🏢 Analytes 💽 Kit Setup 🔃 Analysis												
Shortcuts	Besult		•	1								
	Raw MF	1		Ì								
	2% CV			Туре	FGF-9	GM-CSF	IFN-gamma	IL-10	IL-11	IL-12p70		
Information	Normaliz	ed MFI			mg/ml	ng/ml	pg/ml	pg/ml	pg/ml	pg/ml		
	Bead Co	unt		S8	<high></high>	589	3190	7750	4400	24600		
	2	B1	STD7	S7	4910	170	1030	2230	1270	7080		
Dista	3	C1	STD6	S6	1390	48.8	282	705	384	2120		
Fiale	4	D1	STD5	S5	478	16.1	95.9	206	119	703		
111	5	E1	STD4	S4	189	4.05	34.8	64.3	43.5	189		
	6	F1	STD3	S3	19.4	1.56	15.4	14.9	11.2	77.9		
Analytes	7	G1	STD2	S2	<low></low>	0.695	4.23	9.79	4.17	21.8		
THE	8	H1	STD1	S1	<low></low>	<low></low>	6.02	<low></low>	1.45	<low></low>		
	9	A2	JS042303LS #1	?	2540	35.1	159	203	105	583		
Samples	10	B2	JS042303LS #2	?	1730	31.5	77.4	162	119	243		
Campios	11	C2	JS042303LS #3	?	1410	20.9	154	232	91.3	193		

Advanced Features

"Plate" and "Samples" environments

There are further parameters that can be defined in the "Well" screen of the "Plate" environment and "Samples" environment:

- Group this function is used to define groups of identical samples. The identifier for each group is a group name. After analysis, the software averages the results for all the wells in a group to give a mean analyte value, %CV, and SD.
- Dilution Override any dilution factor defined here will be used to calculate the concentration of a sample, irrespective of any other dilution information entered in other locations (see below)
- Dilution Multiplier this function is used to modify any dilution factor applied across the entire plate (defined in the "Kit Setup" environment). For example, if the "Dilution factor" defined in the "Kit Setup" environment is 5, applying a "Dilution Multiplier" of 10 to a well will result in a total dilution factor of 50 being applied.

"Kit Setup" environment

🔾 Output.csv - Li	quiChip Analyze	r*								_ _ 6 ×	:
<u>Fi</u> le <u>E</u> dit <u>V</u> iew	User Window	<u>H</u> elp <u>Ki</u> t									
C 🖻 🖬 🛆 🐰	🖻 🛍 🕂 🕇	╡┝┝╶╤╶╡┥	• 🗰	:10 -							
Views 4 ×	() Information	Plate T An	alytes	Sampl	les 🧿	Kit Setup				×	:
Shortcuts	Information	Ar	nalytes	Standard	is						
()	Kit Name	Value		Name	Bead ID	Normalize Front to Back	Internal Control	Background Subtraction	Correction Factor		
Information	Lot Name		1	IFNg	49		e	1.50	1.50		1
Zamana I	Dilution factor		2	IL-12	52			•			1
			3	IL-2	13			-	(20)	-	1
Plate			4	IL-4	44		•		-	_k	1
TITEE											1
	<u>,</u>										1
Analytes	- Component Lots										1
Tana and Andreas	Type Lot										
Samples											1
e											

The "Information" window of the "Kit Setup" environment contains fields in which "Kit Name", "Lot Name", and "Dilution factor" information can be entered.

The "Component Lots" window can be used to record lot information on the reagents used in the assay.

The large window in the "Kit Setup" environment displays either the "Analytes" or "Standards" window, depending on the chosen tab.

"Analytes" window

The following parameters can be defined in the "Analytes" window of the "Kit Setup" environment.

- Name names of analytes are imported from the output .csv file.
- Bead ID bead code information, imported from the output .csv file. This information cannot be altered. If the bead-code information were changed, analysis would not be possible.

Note: If data are imported from IS 2.x software, the bead codes are automatically reassigned a new value from -1 to -x. If you wish to import the data in a particular order open the following tab in the IS Software Tools>Options>Data Export. In the Test Sort Order field click on **Alphabetical by Test Name** — to export data arranged alphabetically according to the test name

Sequential by Region ID — to export data arranged according to increasing bead code

Template Setup Order — to export data arranged according to the order of template setup

- Normalize Front to Back
 - None default value.
 - Front-back standards choosing this option applies an algorithm to the assay results that takes the "plate effect" into account when calculating final concentrations. This feature can only be used when two identical standard curve dilutions are present in the first and last columns of an assay.
- Internal Control
 - Yes choosing this option enables an analyte to be defined as an internal control.
 - No default value.
- Background Subtraction
 - Yes Default value. Choosing this option subtracts the average value in wells defined as "Sample Background" in the "Plate" or "Samples" environments (see page 10) from raw MFI values. These values can be displayed by choosing "Normalized MFI" in the drop-down menu in the "Analyte" screen of the "Plate" environment or in the "Analytes" environment.
 - No shows raw MFI values.
- Correction Factor any multiplication factor entered here will be used in calculating the final result. This feature is useful for correlating data to given external standards (e.g., WHO standards).

"Standards" window

The following parameters can be defined in the "Standards" window of the "Kit Setup" environment.

- Units the units used to define concentrations (e.g., pg/ml) can be defined here.
- Recommended Formula drop-down menu allowing choice of analysis algorithm.
 - 4PL and 5PL Logistic 4- or 5-point fitting.
 - 4PL (Log) and 5PL (Log) Logistic 4- or 5-point fitting using logs of the raw data.
 - External imported curve-fitting algorithm.
 - Best fit default value which applies all the above algorithms to the data until the best fit is found.
- Limits sets absolute limits on MFI or concentration values below or above which they will be rejected.
 - Relative Default value. Uses the minimum and maximum standard MFI values to reject data lying outside these boundaries.
 - None All data values will be accepted.
 - Fixed uses fixed MFI or concentration values to reject data.
 - External uses imported limits to accept or reject data.
- Minimum Concentration minimum concentration below which calculated concentrations will be rejected. The value entered will be applied as a fixed or relative value (see above). For example, if the chosen units are ng/ml and "Fixed" is chosen in the "Limits" field, entering 20 will reject all values below 20 ng/ml. If "Relative" is chosen in the "Limits" field, entering 0.2 will reject all values below 20% of the minimum standard concentration.
- Maximum Concentration maximum concentration above which calculated concentrations will be rejected. The value entered will be applied as a fixed or relative value (see above). For example, if the chosen units are ng/ml and "Fixed" is chosen in the "Limits" field, entering 200 will reject all values above 200 ng/ml. If "Relative" is chosen in the "Limits" field, entering 0.9 will reject all values above 90% of the maximum standard concentration.

- Minimum MFI minimum MFI below which data will be rejected. The value entered will be applied as a fixed or relative value (see above). For example, if "Fixed" is chosen in the "Limits" field, entering 20 will reject all MFI values below 20. If "Relative" is chosen in the "Limits" field, entering 0.2 will reject all values below 20% of the maximum standard MFI.
- Maximum MFI maximum MFI above which data will be rejected. The value entered will be applied as a fixed or relative value (see above). For example, if "Fixed" is chosen in the "Limits" field, entering 20,000 will reject all MFI values above 20,000. If "Relative" is chosen in the "Limits" field, entering 0.9 will reject all values above 90% of the maximum standard MFI.

"Diagnostics" environment

This environment allows users to apply diagnostics algorithms to their data in order to filter out inconsistent or low-quality data. The "Diagnostics" environment window contains 5 diagnostics algorithms which can be toggled by clicking on the relevant algorithm. Active algorithms are indicated by a checked box. Clicking on the "Run" button starts the diagnostics check.

- Low Bead Count absolute this algorithm checks the absolute number of beads in each well and generates a warning for wells in which the number of beads is below a defined minimum value.
- Low Bead Count relative this algorithm checks the number of beads in each well. It generates a warning for wells in which the number of beads is more than 2 standard deviations below the median value.
- Hook effect this algorithm checks for saturation effects in standard curves containing high concentrations of analyte in a non-wash or nonfiltered assay.
- Internal control this algorithm detects the presence of an internal control bead and generates a warning for all wells in which it's MFI value varies by more than 2 standard deviations.
- High RP1 CV relative this algorithm generates a warning for all unknown sample wells in which the CV value is above a certain limit, relative to the analyte median CV values across the entire plate. Standards and controls are not checked.

"Analysis" environment

In this environment, data are analyzed on the basis of information entered or imported into the "Samples", "Analytes", and "Kit Setup" environments.

Standard curves and calculation of the concentration of unknowns is performed

by clicking the either the + "Calculate Selected Analyte" or + ("Calculate All Analytes") button on the toolbar.

The equation used to fit the standard curve(s) can be defined by selecting the desired equation from the "Equation:" drop-down menu and clicking the "Calculate Selected Analyte" or "Calculate All Analytes" button on the toolbar.

After a standard curve has been calculated, standards, controls, and unknowns can be displayed on or removed from the curve by toggling the ("Standards") ("Controls"), and ("Unknowns") buttons respectively. The buttons will appear orange when selected.

The 🎽 ("View Previous Curve") button allows comparison of curves generated by different fitting equations.

The 🎤 ("Zoom") button permits chosen section of the curve to be magnified.

Using the drop-down menu on the *("Axis"*) button allows linear or logarithmic scales to be chosen for the x- and y-axes.

Right-clicking on the graph opens a dialog box that allows display and export parameters to be defined. The graph can also be exported using the "Export">"Graph" command in the "File" drop-down menu.

Standard points

Point information (status, well location, raw and normalized MFI) can be viewed by clicking on the 2 ("Information") button and clicking on the standard point. This button is orange when active and gray when inactive.

Standard points can be discarded from the fitting of a standard curve by clicking on the \Join ("Reject Standard") button and clicking on the point to be rejected. This button is orange when active and gray when inactive. The standard curve can then be recalculated using the "Calculate Selected Analyte" button.

Rejected standard points can be included the fitting of a standard curve by clicking on the 🖌 ("Accept Standard") button and clicking on the point to be included. This button is orange when active and gray when inactive. The standard curve can then be recalculated using the "Calculate Selected Analyte" button.

Importing standard curves

Data can be analyzed using an existing standard curve. To import the standard curve, select "External Standard Curves" from the "Import" command in the "File" drop-down menu. Select and open the **.lxout** file from which the standard curve is to be imported. Choose the standard curve(s) to be imported from the list in the dialog box. To analyze data using an imported standard curve, select "External" from the drop-down menu on the "Equation:" toolbar button. The analyte name in the data to be analyzed and the imported standard curve must be identical. Importing a standard curve and using its data for analysis is only possible if it was obtained using the same kit set up as the new assay.

1. Import the external standard curve data by selecting File>Import>External Standard Curves....

2. Select and open the .lxout file from which the standard curve is to be imported. Choose the standard curve(s) to be imported from the list in the dialog box.

3. Choose the option "External" in the drop-down menu of the Equation: External toolbar.

🚮 LT24.lxout - Lie	quiChip Analyze	er*						
<u>Fi</u> le <u>E</u> dit ⊻iew	User Window	Help Ar	alysis					
🗅 🛥 🖬 🗿 👌	। 🖻 🛍 🕂	±⇒∓	\$ ++ +*	Eq	uation: External	<mark>ts</mark> ,ថ, ថ, ⊈ 🔎 🖩 • ⊈ •	At - ? 🗸 🗙	
Views 7 ×	() Information	🚺 Kit Sel	up 🛄 Plate 🔃		4PL	s 📑 Analytes 📳 Samples 🛃 D	iagnostics	×
Shortcuts	Analyte R ^ 2 Equation Kit I Ht6-TNF 0,99629 5PL (Log)			E	5PL			
					4PL (Log)	5		
Information	Thioredoxin	0,99113	5PL (Log)		5PL (Log)	Curve fit	Active	Inactive
(mmm)					Best Fit			
Dista					Current			••••••••••••••••••••••••••••••••••••••
Plate				~	External			
					Kit Equation]		

4. Recalculate the appropriate standard curve(s).

"Replicates" environment

After analysis of data the "Replicates" environment enables a report on the "Groups" defined in the "Plate" or "Samples" environment to be generated. A basic report, giving the average value for each group is generated by clicking on the "Generate Report" button in the toolbar. The basic report displays the name of the group, in which wells the samples belonging to the group were present, and the average MFI and unit values for each checked analyte.

iews o	🔹 Information 🌆 Kit S	ietup 💼 Plate	Analysis B Replicates															×
Shortcuts	Thioredoxin						Tł	ioredo	xin .			Linne	mon		Thioed			
	M Thoek	Group name	Wells	Ν	MFI	SD	%CV	Scale	Result	SD	%CV	N	MFI	SD	XCV	Scale	Result	SI
	M HIGHNY apha	S1	C1 D1	2	29,8	3,2	11	1	0,0474	0,0112	24	5	118,0	2,8	2	1	0,0462	0,00
Information		52	ETFT	2	44,3	6,0	14	1	0,0934	0,0179	19	5	461,5	22,6	5	1	0,0993	0,00
		\$3	G1 H1	2	76.8	3,9	5	1	0,1890	0.0113	6	2	940.0	41,0	- 4	1	0.1775	0.0
		54	A2 B2	2	139.0	0.5	6	1	0.3030	0.0203	7	2	2079.3	70,1	4	1	0.3060	0,0
Dista		\$5	C2D2	2	227,5	0,7	0	1	0,7170	0,0028	0	2	3650,3	36,4	1	1	0,7420	0,0
Prote		56	E2F2	2	382,5	13,4	4	1	1,5650	0,0919	5	2	5929,0	241,1	4	1	1,5050	0,10
101		57	GZHZ	2	535,5	13,4	3	1	2,9500	0,1556	5	2	8081,8	317,1	4	1	3,0150	0,3
		Sample 1	A3 A4 A5 A6 A7 A8 A9 A10 A11 A12	10	17.9	4.0	23	1	0.0356	0.0000	0	10	18.9	3.8	20	1	0.0317	0.0
Analytes		Sample 2	03040506070009010011012	10	27.4	J.1	- 11	1	0.0370	0.0120	34	10	90.1	5./	0	1	0.0433	0.00
		Sample 3	1314151617181311011112	10	120,7	4,/			0,3400	0,0152		10	1939,1	41,4			0,3500	0,0
		Sample 4	03040505070803010011012	10	339,0	5.3			1,2890	0,1403	10	10	10.0	186,1	3		1,3390	0,0
Samples		Sample S		10	10,0	3,3	30		0,0303	0,0047	10	10	101.0	9,1	61		0,0137	0,00
-		Sample 7	G3 G4 G5 G6 G7 G8 G9 G10 G11 G12	10	127,6	6,7	5	1	0,3455	0,0215	6	10	1976,4	51,4	3	1	0.3663	0,01
Via Caller		Sample 8	H3 H4 H5 H6 H7 H8 H9 H10 H11 H12	10	353.1	20.6	6	1	1.3730	0.1274	9	10	5712.4	147.8	3	1	1.4140	0.0
NX Setup		SB	A1 B1	2	19.5	1.4	7	1				2	22.5	2.8	13	1		
		Report	fields		-		-		·		· · · · · ·	1 1					r	
Diagnostics Analysis III Replicates	Check Uncheck All Uncheck	य य य य	lect the fields to display on the unitable. N Di T S Cancel T S Cancel T S C S S S S S S S S S S S]														

To choose the fields that you wish to display click on the 🖽 (Fields...) icon in the Generate Report toolbar and check the relevant boxes.

N — number of replicates

MFI — mean of normalized replicate MFIs

SD — standard deviation of normalized replicate MFIs

 $\%~{\rm CV}-\%$ standard deviation of normalized replicate MFIs

Scale — dilution factor deriving from Dilution Override or Dilution Multiplier (see page16)

Result — mean of calculated replicate results

SD — standard deviation of calculated replicate results

% CV — % standard deviation of calculated replicate results

A more detailed report displaying MFI and unit values for each well in the group can be generated by clicking on the \blacksquare ("Show Details") button next to the "Generate Report" button in the toolbar.

Exporting and Importing Data

All values and definitions in the "Well" screen of the "Plate" environment and "Samples" environment ("Plate Information") and in the "Kit Setup" environment ("Kit Information") can be imported or exported using the "Import" and "Export" commands in the "File" drop-down menu. "Plate Information" is stored as a Plate template (**.lxfmt**) file. "Kit Information" is stored as a Kit template (**.lxkit**) file.

Analyzed data can be saved using the "Save" or "Save As" commands in the "File" drop-down menu. Data is saved as an Output (**.lxout**) file.

Handling data

Information in any data field can be imported from or exported to other spreadsheet-type programs (e.g., Microsoft[®] Excel). Information in grayed-out cells can be accessed or blocked by toggling the
("Show/Hide grid headers") button on the toolbar. Other buttons in the toolbar are useful for manipulating data in cells.

- Replicate Cells Right copies the value(s) in the first column of a highlighted block of cells into all highlighted cells to the right of the first column.
- Replicate Cells Downward copies the value(s) in the top row of a highlighted block of cells into all highlighted rows below.
- Swap Cells Vertically flips values in a highlighted block of cells vertically about the central axis.
- Swap Cells Horizontally flips values in a highlighted block of cells horizontally about the central axis.

QIAGEN Companies

Please see the back cover for contact information for your local QIAGEN office.

QIAGEN Distributors

Argenting Tecnolab S.A

(011) 4555 0010 Tel: (011) 4553 3331 Fax: E-mail: info@tecnolab.com.ar Web site: www.tecnolab.com.ar

Brazil

Uniscience do Brasil Tel· 011 3622 2320 011 3622 2323 Fax: E-mail: info@uniscience.com Web site: www.uniscience.com

Chile

Biosonda SA 562 209 6770 Tel: 562 274 5462 Fax: E-mail ventas@biosonda.cl Web site: www.biosonda.cl

China

Gene Company Limited (852)2896-6283 Tel: Fax: (852)2515-9371 E-mail: Hong Kong: info@genehk.com Beijing: info_bj@genecompany.com Shanghai: info_sh@genecompany.com Chengdu: gene@public.cd.sc.cn Guangzhou: info_gz@genecompany.com

Croatia

INEL Medicinska Tehnika d.o.o. Tel: (01) 2984-898 Fax: (01) 6520-966 F-mail inel-medicinska-tehnika@zg.htnet.hr

Cyprus

Scientronics Ltd Tel: 02-35 02-357 22 765416 02-357 22 764614 Fax E-mail: a.sarpetsas@biotronics.com.cy

Czech Republic

BIO-CONSULT spol. s.r.o. Tel/Fax: (420) 2 417 29 792 E-mail: info@bioconsult.cz Web site: www.bioconsult.cz

Denmark

VWR International A/S Tel: 43 86 87 88 43 86 87 90 Fax: E-mail: info@dk.vwr.com Web site: www.vwr.com

Egypt Clinilab

52 57 212 52 57 210 E-mail: Clinilab@link.net

Estonic PEAI-Est OÜ

Tel:

Fax:

Tel: (051) 65 830 Fax (07) 383 360 E-mail: langel@ut.ee

Greece

BioAnalytica S.A (210)-640 03 18 Tel: (210)-646 27 48 Fax: E-mail: bioanalyt@hol.gr Web site: www.bioanalytica.gr

Hungary

Kasztel-Med Co. Ltd. Tel: (01) 385 3887 Fax: (01) 381 0695 E-mail: info@kasztel.hu Web site: www.kasztel.hu

India

Genetix Tel: (011)-2542 1714 or (011)-2515 9346 (011)-2546 7637 Fax: E-mail: genetix@nda.vsnl.net.in

Israe Westburg (Israel) Ltd. Tel: 08-6900655 or 1-800 20 22 20 (toll free) Fax: 08-6900650

E-mail: info@westburg.co.il Web site: www.westburg.co.il

Korec

LRS Laboratories, Inc. (02) 924-86 97 Tel: Fax: (02) 924-86 96 E-mail: webmaster@lrslab.co.kr Web site: www.lrslab.co.kr

Malaysia

RESEARCH BIOLABS SDN. BHD. (603)-8070 3101 Tel: (603)-8070 5101 Fax: E-mail: biolabs@tm.net.my Web site: www researchbiolabs com

Mexico

Quimica Valaner S.A. de C.V. Tel: (55) 55 25 57 25 (55) 55 25 56 25 Fax: E-mail: ventas@valaner.com Web site: www.valaner.com

New Zealand

Biolab Ltd (09) 980 6700 Tel: or 0800 933 966 Fax: (09) 980 6788 E-mail:

biosciences@nzl.biolabgroup.com Web site: www.biolabgroup.com/nzl

Poland

Syngen Biotech Sp.z.o.o. (071) 798 58 50 - 52 (071) 798 58 53 Tel· Fax: E-mail info@syngen.pl Web site: www.syngen.pl

Portugal

IZASA PORTUGAL, LDA (21) 424 7312 Tel· (21) 417 2674 Fax: E-mail: consultasbiotec@izasa.es

Saudi Arabia

Abdulla Fouad Co. Ltd. Tel: (03) 8324400 Fax: (03) 8346174 E-mail: sadiq.omar@abdulla-fouad.com

Singapore

Research Biolabs Pte Ltd Tel· 6777 5366 6778 5177 Fax: E-mail: sales@researchbiolabs.com Web site: www.researchbiolabs.com

Slovak Republic

BIO-CONSULT Slovakia spol. s.r.o. Tel/Fax: (02) 5022 1336 E-mail: bio-cons@cdicon.sk Web site: www bioconsult cz

Slovenia

MEDILINE d.o.o. (01) 830-80-40 (01) 830-80-70 Tel· Fax: or (01) 830-80-63 E-mail: mediline@siol.net

South Africa

Southern Cross Biotechnology (Pty) Ltd Tel: (021) 671 5166 Fax (021) 671 7734 E-mail: info@scb.co.za

Spain

IZASA, S.A .. (93) 902.20.30.90 Tel: (93) 902.22.33.66 Fax: E-mail: consultasbiotec@izasa.es

Taiwan

TAIGEN Bioscience Corporation Tel: (02) 2880 2913 (02) 2880 2916 Fax: taigen@ms10.hinet.net E-mail

Thailand

Theera Trading Co. Ltd. (02) 412-5672 Tel: Fax. (02) 412-3244 E-mail: theetrad@samart.co.th

Turkey

Medek Medikal Ürünler ve Saglik Hizmetleri A. S. (216) 302 15 80 Tel: Fax: (216) 302 15 88 E-mail: makialp@med-ek.com

All other countries QIAGEN GmbH, Germany Australia = Orders 03-9840-9800 = Fax 03-9840-9888 = Technical 1-800-243-066 Austria = Orders 0800/28-10-10 = Fax 0800/28-10-19 = Technical 0800/28-10-11 Belgium = Orders 0800-79612 = Fax 0800-79611 = Technical 0800-79556 Canada = Orders 800-572-9613 = Fax 800-713-5951 = Technical 800-DNA-PREP (800-362-7737) China = Orders 021-51345678 = Fax 021-51342500 = Technical 021-51345678 Denmark = Orders 80-885945 = Fax 80-885944 = Technical 80-885942 Finland = Orders 0800-914416 = Fax 0800-914415 = Technical 0800-914413 France = Orders 01-60-920-920 = Fax 01-60-920-925 = Technical 01-60-920-930 Germany = Orders 02103-29-12000 = Fax 02103-29-22000 = Technical 02103-29-12400 Ireland = Orders 1800 555 049 = Fax 1800 555 048 = Technical 1800 555 061 Italy = Orders 02-33430411 = Fax 02-33430426 = Technical 800 787980 Japan = Telephone 03-5547-0811 = Fax 03-5547-0818 = Technical 03-5547-0811 Luxembourg = Orders 8002-2076 = Fax 8002-2073 = Technical 8002-2067 The Netherlands = Orders 0800-0229592 = Fax 0800-0229593 = Technical 0800-0229602 Norway = Orders 800-18859 = Fax 800-18817 = Technical 800-18712 Sweden = Orders 020-790282 = Fax 020-790582 = Technical 020-798328 Switzerland
Orders 055-254-22-11
Fax 055-254-22-13
Technical 055-254-22-12 **UK** = Orders 01293-422-911 = Fax 01293-422-922 = Technical 01293-422-999 USA = Orders 800-426-8157 = Fax 800-718-2056 = Technical 800-DNA-PREP (800-362-7737)

WWW.QIAGEN.COM